# One-Pot Transformation of RCHO to (*E*)-RCH=CHSiMe<sub>3</sub> Using CHI<sub>3</sub>, Mn, Me<sub>3</sub>SiCl, and a Catalytic Amount of CrCl<sub>2</sub>

Kazuhiko Takai,\* Shintaro Hikasa, Tetsuya Ichiguchi, Naoki Sumino

Department of Applied Chemistry, Faculty of Engineering, Okayama University, Tsushima, Okayama 700-8530, Japan Fax +81-86-251-8094; E-mail: ktakai@cc.okayama-u.ac.jp Received 14 July 1999

**Abstract**: Iodoform is reduced with manganese in the presence of  $Me_3SiCl$  to give  $Me_3SiCHI_2$  (**1**). A one-pot transformation of aldehydes to (*E*)-1-alkenyltrimethylsilanes is then performed with iodoform, manganese,  $Me_3SiCl$ , and a catalytic amount of chromium(II) chloride in THF via in situ formation of **1**.

**Keywords**: geminal dichromium reagent, geminal diiodo compound, (*E*)-1-alkenylsilane, chromium(II), chromium(III), manganese

Manganese metal has a reducing ability between that of samarium(II) and zinc, and is employed in organic synthesis after appropriate activation.<sup>1</sup> One of the typical methods for activating metals such as manganese is by treatment with Me<sub>3</sub>SiCl.<sup>2</sup> When active halogen compounds were treated with manganese and Me<sub>3</sub>SiCl, reduction of the halogen and successive silylation was found to occur. For example, treatment of iodoform with manganese in THF in the presence of an excess amount of Me<sub>3</sub>SiCl afforded Me<sub>3</sub>SiCHI<sub>2</sub> (1) in 33% yield (eq 1).<sup>3</sup> In this reaction, a trimethylsilyl group selectively replaced one of the three iodine atoms. The yield of 1 improved to 59%, when DME was used as a solvent and NaI was added.

|         | Mn, Me <sub>3</sub> SiCl |                                    |  |
|---------|--------------------------|------------------------------------|--|
| $CHI_3$ |                          | Me <sub>3</sub> SiCHI <sub>2</sub> |  |
|         |                          | 1                                  |  |
|         | THF, 0 °C, 10 min        | 33%                                |  |
|         | DME, Nal, 25 °C, 1 h     | 59%                                |  |

## **Equation 1**

The selective iodine-silicon exchange of iodoform prompted us to improve a chromium-based transformation of aldehydes into (*E*)-alkenylsilanes reported previously.<sup>4,5</sup> In this transformation, a geminal dichromium reagent was prepared by reduction of Me<sub>3</sub>SiCHBr<sub>2</sub> with chromium(II) chloride, and the reagent added to aldehydes without affecting the coexisting ketone and ester groups due to the mild nucleophilicity of the organochromium reagent.<sup>6</sup> However, there are two disadvantages: First, Me<sub>3</sub>SiCHBr<sub>2</sub> should be prepared in advance by deprotonation and silylation from dibromomethane, which requires using a strong base under a carefully controlled low temperature.<sup>7</sup> Second, chromium(II) chloride is a one-electron reductant, thus, 8 equiv. of the salt is usually necessary to obtain reasonable yields. Recently, Fürstner succeeded in reducing the amount of chromium(II) by using manganese metal and Me<sub>3</sub>SiCl in the reaction of allyl- and alkenylchromium reagents.<sup>8</sup> Therefore, the two disadvantages can be overcome using the manganese metal.

|                                                                                                            |                 |             | Ph                                       |  |  |
|------------------------------------------------------------------------------------------------------------|-----------------|-------------|------------------------------------------|--|--|
| THF                                                                                                        | , 25 °C         |             | <b>2</b>                                 |  |  |
| Me <sub>3</sub> SiCHX <sub>2</sub> (2.0), CrCl <sub>2</sub> (8.0)                                          | X = Br<br>X = I | 24 h<br>4 h | 86% (E/Z = >99/<1)<br>90% (E/Z = >99/<1) |  |  |
| CHI <sub>3</sub> (3.0), Mn (9.0), Me <sub>3</sub> SiCl (9.0), CrCl <sub>2</sub> (0.16)                     |                 |             | 74% (E/Z = >99/<1)                       |  |  |
| Me <sub>3</sub> SiCHI <sub>2</sub> (2.0), Mn (6.0)<br>Me <sub>3</sub> SiCI (6.0), CrCl <sub>2</sub> (0.16) |                 |             | 87% ( <i>E</i> / <i>Z</i> = >99 / <1)    |  |  |

## **Equation 2**

A THF solution of iodoform was added to a mixture of manganese, Me<sub>3</sub>SiCl, and a catalytic amount of CrCl<sub>2</sub> in THF. The mixture was stirred at 25 °C for 5 min, and 3-phenylpropanal was added to the mixture. The resulting mixture was stirred at 25 °C for 24 h. After usual workup and purification, (*E*)-alkenylsilane **2** was produced stereo-selectively in 74% yield along with 4-phenyl-1-butene (**3**) in 11% yield (eq. 2); 4-Phenyl-1-iodo-1-butene (**4**), which is produced by a reaction of iodoform and chromium(II) chloride,<sup>9</sup> was not detected.<sup>10</sup> The transformations from some aldehydes are summarized in Table 1. (*E*)-Isomers of alkenylsilanes were selectively produced in all cases. A ketone group was untouched during the transformation (run 4).

 Table 1
 Transformation of Aldehydes to (E)-Alkenylsilanes.<sup>a</sup>

CHI<sub>3</sub>, Mn, Me<sub>3</sub>SiCI, cat. CrCl<sub>2</sub> (or CrCl<sub>3</sub>)

|                  | РСНО                                         |                   |        | 🔔 R 🗸 🦯         | 0.11   |  |  |  |
|------------------|----------------------------------------------|-------------------|--------|-----------------|--------|--|--|--|
| THF, 25 °C, 24 h |                                              |                   |        |                 |        |  |  |  |
| run              | aldehyde                                     | CrCl <sub>2</sub> |        | CrCl3           |        |  |  |  |
|                  |                                              | silane            | alkene | silane          | alkene |  |  |  |
|                  |                                              | Y / %             | Y / %  | Y / %           | Y / %  |  |  |  |
| 1                | <i>n</i> -C <sub>8</sub> H <sub>17</sub> CHO | 74                | 11     | 60              | 7      |  |  |  |
| 2                | с-С <sub>6</sub> Н <sub>11</sub> СНО         | 76 <sup>b</sup>   | 9b     | 61 <sup>b</sup> | 13b    |  |  |  |
| 3                | PhCHO                                        | 80                | 12     | 58              | 13     |  |  |  |
| 4                | MeCO(CH <sub>2</sub> ) <sub>8</sub> CHO      | 73                | 5      | 61              | 7      |  |  |  |

<sup>a</sup>Reactions were conducted on a 2.0 mmol scale. Iodoform (3.0 mol), Mn (9.0 mol), Me<sub>3</sub>SiCl (9.0 mol), and CrCl<sub>2</sub> (or CrCl<sub>3</sub>) (0.16 mol) were used per mol of aldehyde. Isolated yields. <sup>b</sup>GLPC yields.

Under standard reaction conditions (Table 1, run 1), compounds were recovered in the following order: 1dodecene (98%); 1-dodecyne (99%); 1-chlorododecane (99%); ethyl octanoate (94%); nonanenitrile (92%). In contrast to a stoichiometric reaction with  $CrCl_2$  in which nonanal ethylene acetal was recovered in 97% yield, the compound was recovered in only 24% yield during the transformation. This was probably due to the formation of Me<sub>3</sub>SiI.

A plausible mechanism for the  $CrCl_2$ -manganese-promoted formation of alkenylsilane is shown in Scheme 1.<sup>11</sup> Iodoform is reduced with 1 equiv. of manganese in THF to form IMnCHI<sub>2</sub>, which is trapped with Me<sub>3</sub>SiCl to give Me<sub>3</sub>SiCHI<sub>2</sub>. Reduction of Me<sub>3</sub>SiCHI<sub>2</sub> with 4 equiv. of chromium(II) gives the corresponding geminal dichromium reagent, which reacts with an aldehyde followed by elimination of X<sub>2</sub>Cr–O–CrX<sub>2</sub> to afford an alkenylsilane. The formed X<sub>2</sub>Cr–O–CrX<sub>2</sub> is converted to chromium(III) halide with Me<sub>3</sub>SiCl, and the chromium(III) is then reduced with manganese to reproduce chromium(II).<sup>12</sup> Thus, 3 equiv. of both manganese and Me<sub>3</sub>SiCl are necessary for this transformation.





Two important factors for the preferential formation of an alkenylsilane over an iodoalkene are shown to be 1) a catalytic amount of  $CrCl_2$ , and 2) a mixture of iodoform, Me<sub>3</sub>SiCl, manganese, and  $CrCl_2$ , which is stirred for 5 min before addition of an aldehyde. For example, when the amount of  $CrCl_2$  was increased to stoichiometric (9.0 equiv.) in the typical procedure (eq. 2, line 3), the product distribution changed markedly; Iodoalkene **4** was obtained in 74% yield (E / Z = 81 / 19) as a major product and alkenylsilane **2** was produced in only 9% yield.<sup>13</sup> Addition of iodoform and 3-phenylpropanal at the same time in this catalytic CrCl<sub>2</sub> system also increased the amount of iodoalkene **4**. Iodoalkene **4**, alkenylsilane **2**, and alkene **3** were produced in 52%, 21%, and 9% yields, respectively. Because the catalytic cycle **A** proceeds quickly,<sup>14</sup> simultaneous addition of iodoform and an aldehyde produced a similar effect as increasing the amount of CrCl<sub>2</sub>. Formation of iodoalkene **4** was suppressed by pre-stirring the mixture of iodoform, Me<sub>3</sub>SiCl, manganese, and a catalytic amount of CrCl<sub>2</sub> at 25 °C for 5 min before addition of 3phenylpropanal, probably due to the consumption of iodoform leading to Me<sub>3</sub>SiCHI<sub>2</sub>.

#### **Typical Procedure**

Under an argon atmosphere, Me<sub>3</sub>SiCl (2.3 mL, 18 mmol) was added at 25 °C to a suspension of CrCl<sub>2</sub> (39 mg, 0.32 mmol),<sup>15</sup> and manganese (0.99 g, 18 mmol)<sup>16</sup> in THF (12 mL). After stirring the mixture at 25 °C for 30 min, a solution of iodoform (2.4 g, 6.0 mmol) in THF (8 mL) was added to the mixture at 25 °C over a period of 5 min, and the mixture was stirred for 5 min. A solution of 3-phenylpropanal (0.27 g, 2.0 mmol) in THF (8 mL) was added to the mixture at 25 °C over a period of 5 min and the resulting mixture was stirred at 25 °C for 24 h. The color of the mixture gradually turned from dark red to brown while stirring. The reaction mixture was poured into water (50 mL) and the mixture was extracted with hexane (3x40 mL). The organic extracts were washed with aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and brine, dried over anhydrous MgSO<sub>4</sub> and concentrated. Purification by column chromatography on silgel (hexane) gave trimethyl((E)-4-phenyl-1ica butenyl)silane (**2**) in 74% yield (0.30 g, E / Z = >99 / <1) as a colorless oil along with 4-phenyl-1-butene (3, 29 mg, 11%).

# Acknowledgement

Financial support by a Grant-in-Aid for Scientific Research on Priority Area No. 283 from the Ministry of Education, Science, Sports and Culture of Japan is gratefully acknowledged.

#### **References and Notes**

- (a) Hiyama, T.; Sawahata, M.; Obayashi, M. Chem. Lett. 1983, 1237; Nippon Kagaku Kaishi, 1984, 1022. (b) Cahiez, G.; Chavant, P.-Y. Tetrahedron Lett. 1989, 30, 7373.
   (c) Takai, K.; Ueda, T.; Hayashi, T.; Moriwake, T. Tetrahedron Lett. 1996, 37, 7094. (d) Takai, K.; Ueda, T.; Ikeda, N.; Moriwake, T. J. Org. Chem. 1996, 61, 7990.
   (e) Hojo, M.; Aihara, H.; Suginohara, Y.; Sakata, K.; Nakamura, S.-y.; Murakami, C.; Hosomi, A. J. Org. Chem. 1997, 62, 8610. (f) Takai, K.; Kaihara, H.; Higashiura, K.-i.; Ikeda, N. J. Org. Chem. 1997, 62, 8612. (g) Li, C.-J.; Meng, Y.; Yi, X.-H. J. Org. Chem. 1997, 62, 8632.
- (2) (a) Gaudemar, M. Bull. Soc. Chim. Fr. 1962, 974.
  (b) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390. (c) Fürstner, A.; Hupperts, A. J. Am. Chem. Soc. 1995, 117, 4468.

- (3) Seyferth, D.; Lambert, R. L., Jr.; Hanson, E. M. J. Org. Chem. 1970, 24, 647; Charreau, P.; Julia, M.; Verpeaux, J. N. Bull. Soc. Chim. Fr. 1990, 127, 275.
- (4) Takai, K.; Kataoka, Y.; Okazoe, T.; Utimoto, K. *Tetrahedron Lett.* **1987**, 28, 1443.
- (5) For some representative examples, see: Burke, S. D.; Deaton, D. N. *Tetrahedron Lett.* **1991**, *32*, 4651; Yoshida, J.-i.; Maekawa, T.; Morita, Y.; Isoe, S. *J. Org. Chem.* **1992**, *57*, 1321.
- (6) For some reviews of organochromium reagents, see:
  (a) Takai, K.; Utimoto, K. J. Synth. Org. Chem., Jpn. 1988, 46, 66; (b) Saccomano, N. A. In Comprehensive Organic Synthesis, Vol. 1; Trost B. M., Ed; Pergamon Press: Oxford, 1991; p 173; (c) Cintas, P. Synthesis 1992, 248.
  (d) Wessjohann, L. A.; Scheid, G. Synthesis 1999, 1.
  (e) Fürstner, A. Chem. Rev. 1999, 99, 991.
- (7) Villieras, J.; Bacquet, C.; Normant, J.-F. *Bull. Soc. Chim. Fr.* **1975**, 1797.
- (8) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 2533;
   Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349.
- (9) (a) Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408. (b) Takai, K.; Ichiguchi, T.; Hikasa, S. Synlett 1999, 1268.
- (10) 4-Phenyl-1-iodo-1-butene (4) was reduced to 4-phenyl-1-butene (3) under the reaction conditions (25 °C, 24 h).
- (11) Stirring a mixture of iodoalkene **4**, iodoform, manganese, and Me<sub>3</sub>SiCl, and a catalytic amount of chromium(II) chloride at 25 °C for 24 h did not afford alkenylsilane **2**; iodoalkene **4** was

recovered in 66% yield along with alkene **3** in 20% yield. The result suggests that alkenylsilane **2** was not produced via reductive iodine-silicone exchange of iodoalkene **4**.

- (12) A catalytic amount of CrCl<sub>3</sub> can be used for the transformation, however the yields are somewhat lower than those with CrCl<sub>2</sub> (Table 1). Chromium(III) hexahydrate (99.995% purity) was purchased from Aldrich Chemical Co. and dehydrated by treatment with thionyl chloride. Pray, A. R. *Inorg. Synth.* **1954**, *5*, 153.
- (13) The reaction was finished within 1 h at 25  $^{\circ}$ C.
- (14) The chromium(II)-reduction of Me<sub>3</sub>SiCHI<sub>2</sub> to the corresponding geminal dichromium reagent (Catalytic Cycle B) proved to proceed slower than that of iodoform (Catalytic Cycle A). For example, addition of 3-phenylpropanal to a mixture of iodoform (0.1 equiv.), Me<sub>3</sub>SiCHI<sub>2</sub> (0.1 equiv.), and CrCl<sub>2</sub> (0.4 equiv.) at 25 °C, followed by stirring for 3 h produced iodoalkene 4 in 73% yield (based on CrCl<sub>2</sub>); Alkenylsilane 2 was not detected. Recovery of iodoform and Me<sub>3</sub>SiCHI<sub>2</sub> were in 7% and 79% yields, respectively.
- (15) Chromium(II) chloride (99.9% purity) was purchased from Aldrich Chemical Co.
- (16) Manganese powder was purchased from Kojundo Chemical Laboratory Co. (99.9% purity, -50 mesh). The powder was used for reactions without purification.

Article Identifier:

1437-2096,E;1999,0,11,1769,1771,ftx,en;Y14999ST.pdf