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Indoles and pyrroles occupy a privileged position in pharma-
ceuticals, material sciences, and natural products.[1] Conse-
quently, methods to synthesize and functionalize these
heterocycles are of utmost importance in organic chemistry.[2]

Metal-catalyzed cross-coupling is the method most often used
for the introduction of (hetero)aryl, vinyl, or acetylene groups
to indoles and pyrroles, but it requires premodification of the
heterocycle.[3] Recently, the direct C�H functionalization of
indoles and pyrroles has emerged as a more efficient
alternative for the introduction of vinyl and aryl groups.[4] In
contrast, examples of the direct alkynylation of aromatic
compounds are scarce.[5] Recently reported methods include
the gallium-catalyzed acetylenation of phenols and aniline-
s;[5a,b] the palladium-catalyzed alkynylation of N-fused heter-
ocycles,[5c] anilines,[5d] and indoles;[5e] the nickel-catalyzed
alkynylation of azoles;[5f] the reaction of pyrroles with
bromoacetylene ketone derivatives;[5g,h] and the oxidative N-
alkynylation of indoles.[5i] The single example of alkynylation
of indoles[5e] was limited to the use of aryl and alkenylbro-
moacetylenes in large excess (3 equiv). These substrates
cannot be converted into free acetylenes and the large
excess of reagent needed limited the practicability of the
reaction. Furthermore, the reaction was limited to indoles
with only methyl, methoxy, or ester functional groups. Indoles
substituted at position 2 resulted in a low yield, and 3-
substituted indoles could not be used. In view of the limited
scope in the case of indoles and pyrroles, there is an urgent
need for new alkynylation methods, especially when consid-
ering the importance of acetylenes in organic synthesis.[6]

Herein, we report a functional group tolerant gold-catalyzed
alkynylation of indoles and pyrroles. The reaction proceeds in
high yield at room temperature in air by using benziodox-
olone-derived hypervalent iodine reagent 1 d, and gives easily
deprotected silylacetylene products (Scheme 1).

The limited results obtained with halogenated acetylene
derivatives[5a–h] prompted us to consider using more-reactive
hypervalent iodine reagents.[7,8] In particular, the use of
alkynyliodonium salts as electrophilic/oxidative reagents for
acetylene transfer are well-established.[8a–g] Surprisingly, their
use for C�H functionalization has not yet been reported,

although other hypervalent iodine reagents have been highly
successful in arylation and heteroatom-transfer reac-
tions.[4g,h, 9] However, no product could be isolated when the
reaction conditions reported for the direct arylation of indole
2a using copper[4g] and palladium[4h] catalysts were examined
with alkynyliodonium salts 1a and 1b[8b,d–f] and neutral
benziodoxolone-derived reagents 1c and 1d [8h,i] (Table 1,

entries 1 and 2); the same result was also obtained with
several other metal catalysts.[10] We then turned our attention
to gold catalysts.[11] Their capacity to activate multiple
p bonds[12] is well-established and they have also been used
in the formation of C�C bonds with an accompanying change
in the oxidation state of the gold center.[13] The functionaliza-
tion of C�H bonds using gold catalysts has been realized in
classical hydroarylation reactions.[14] Other reports remained
limited to stoichiometric methods[15] or the introduction of
heteroatoms.[16] Hydroarylation reactions were shown to be

Scheme 1.

Table 1: Optimization of alkynylation of indole (2a).

Entry Catalyst Solvent Yield[a]

1 Pd(OAc)2 AcOH <5%
2 Cu(OTf)2 CH2Cl2 <5%
3 AuCl CH2Cl2 65%
4 AuCl3 CH2Cl2 56%
5 [Au(NHC)Cl][b] CH2Cl2 17%
6 AuCl toluene 42%
7 AuCl Et2O 84%
8 AuCl THF 85%
9 AuCl CH3CN 82%
10 AuCl DMF 62%
11 AuCl iPrOH 81%
12 AuCl MeOH 51%

[a] Reaction conditions: 0.20 mmol 2a, 5–10% mol catalyst, 1.2 equiv
reagent, 4 mL solvent. Yield was determined by GC-MS. [b] NHC =1,3-
di(2,6-diisopropylphenyl)imidazol-2-ylidene.
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favored in the case of alkynes, and no alkynylation methods
based on gold catalysts have so far been developed.[14a] The
unique combination of 5 mol% AuCl and sterically hindered
reagent 1 d[17] in CH2Cl2 led to the formation of the 3-
alkynylation product 3 a exclusively in 65 % yield (Table 1,
entry 3). This constituted the first example of gold-catalyzed
C�H alkynylation, as well as an unprecedented use of
benziodoxolone-based hypervalent iodine reagents for acet-
ylene transfer.

Examination of several gold catalysts (Table 1, entries 4
and 5)[18] confirmed that AuCl was the best catalyst. The
reaction worked in a broad range of solvents (Table 1,
entries 6–12), with the best reproducibility and scope
obtained in Et2O (Table 1, entry 7). Inert conditions or dry
solvents were not needed for the reaction, and 3a was isolated
in 86% yield on a 0.40 mmol scale after column chromatog-
raphy (Table 2, entry 1). Importantly, only a slight excess of
reagent 1d (20%) was needed to obtain good yields. This is a
distinct advantage of the gold catalyst over the palladium
catalysts, for which extensive dimerization of the acetylene
group was observed.[5e] Compound 3a was isolated in 84%
yield when the reaction was performed on a 2.0 mmol scale
with only 1 mol% of AuCl, which constitutes the lowest
catalyst loading reported so far for C�H alkynylation
reactions. Furthermore, 63% of 2-iodobenzoic acid (4) was
recovered by a simple extraction procedure, thus demonstrat-
ing a further advantage of the benziodoxolone-based reagent.
The obtained 2-iodobenzoic acid (4) can then be used for the
synthesis of reagent 1 d in two steps and 76 % overall yield,
with one single recrystallization used for purification. The
preparation of 1d is straightforward, and 6 g of pure 1d have
been obtained from 2-iodobenzoic acid (4) in a single day.
Deprotection using tetrabutylammonium fluoride (TBAF)
allowed the isolation of the indole with a free acetylene
substituent in 94 % yield.

The scope of the reaction was then examined for several
indole derivatives (Table 2). N-Methylindole (2b) gave the
desired product in 83% yield (entry 2). Both electron-
donating (entries 3 and 4) and electron-withdrawing
(entries 5–9) groups were tolerated in the reaction, including
OH (entry 4), CN (entry 5), CO2H (entry 6), NO2 (entry 7),
Br (entry 8), and I (entry 9) groups, which have never been
reported before. Importantly, yields higher than 90 % were
obtained for Br and I substituents (entries 8 and 9), thus
making the method orthogonal to classical palladium(0)
cross-coupling reactions, which is not the case for previously
reported direct alkynylation methods based on palla-
dium(0).[5c,e] The reaction was also successful for 4-, 6-, and
7-bromo-substituted indoles (entries 10–12). In contrast to
previous reports,[5e] good yields were also obtained in the case
of 2-substituted indoles (entries 13–15). Finally, 3-methylin-
dole, a substrate for which no successful alkynylation has ever
been reported,[5e] gave the 2-alkynylation product in 76%
yield (entry 16).

We then turned to the alkynylation of pyrroles (Table 3).
Before this study, there was no report on metal-catalyzed
direct alkynylation of these heterocycles. Pyrroles are sensi-
tive compounds that usually require protection of the NH
group.[19] In the context of an alkynylation reaction, bromo-

pyrroles with unprotected NH groups are too unstable to be
useful, and the use of classical Sonogashira reactions con-
sequently involves multistep procedures to give the free
acetylene derivatives. Gratifyingly, free pyrroles could be
used in our protocol (Table 3, entries 1 and 4–8). For pyrrole

Table 2: Scope of the alkynylation reaction of indoles.

Entry Substrate Product Yield[a]

1 86%

2 83%

3 R = OMe (2c) 3c 80%
4 R = OH (2d) 3d 76%
5 R = CN (2e) 3e 80%
6 R = CO2H (2 f) 3 f 67%
7 R = NO2 (2g) 3g 85%[b]

8 R = Br (2h) 3h 93%
9 R = I (2 i) 3 i 91%

10 80%[b]

11 77%

12 84%

13 90%

14 88%

15 82%

16 76%

[a] Reaction conditions: 0.40 mmol 2, 0.48 mmol 1d, and 0.02 mmol
AuCl in 8 mL Et2O at 23 8C under air for 12–15 h. Yields are reported for
products isolated after column chromatography. [b] Purity >95 %; small
amounts of 2 could not be separated from the desired product.
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itself, the 2-alkynylation product 6a was obtained in 62%
yield (entry 1). The yield could be increased to 83% by using
three equivalents of pyrrole and one equivalent of 1d. The
reaction was sensitive to the steric bulk on the nitrogen atom:
while 2-alkynylation product 6a was obtained exclusively
with pyrrole (5a ; entry 1), a significant amount of 3-alkyny-
lation product 7b was isolated for N-methylpyrrole (5 b ;
entry 2), and 3-alkynylation was observed exclusively for N-
triisopropylsilyl-protected pyrrole (5c ; entry 3). Conse-
quently, the regioselectivity of the reaction can be controlled
by the use of easily removable protecting groups. Monosub-
stituted (entries 4–6), disubstituted (entry 7), and trisubsti-
tuted (entry 8) pyrroles could also be used. An electron-
withdrawing group was tolerated at the 3-position (entry 6),
but not at the 2-position (result not shown). The use of
monosubstituted pyrroles has rarely been reported in metal-
catalyzed C�H functionalization reactions,[4f] and the use of
di- and tri-substituted pyrroles is unprecedented.

Considering the numerous precedents for gold-mediated
activation of p systems[12, 14] and the few other examples of
C�H functionalization,[15,16] at least two hypotheses could be
considered for the mechanism: 1) Similar to the copper
system,[4g] oxidation of gold(I) with 1 d to form a gold(III)–

acetylene complex I, followed by indole metalation and
reductive elimination[15b] (Scheme 2) or 2) gold-mediated
addition of indole to the triple bond of 1d to form vinyl–

gold complex IIIa or IIIb,[14] followed either by b-elimination
or a a-elimination/1,2-shift sequence[8b] depending on the
regioselectivity of the addition. No 1,2-migration of the silicon
group was observed in the product when using 1d with a 13C
label next to the silicon atom. Unfortunately, this result does
not allow to distinguish between the proposed pathways, as an
indole 1,2-shift could also account for this result. Clearly,
further experiments are needed to fully understand the
reaction mechanism.

In conclusion, we have reported the first gold-catalyzed
direct alkynylation of indole and pyrrole heterocycles by
using a benziodoxolone-based hypervalent iodine reagent.
When compared with the only reported method for the direct
alkynylation of indoles,[5e] functional-group tolerance was
greatly increased and unprecedented substitution patterns
could be obtained. The reaction efficiency was improved
(1 mol% catalyst, 1.2 equiv alkyne, 23 8C compared with
10 mol% catalyst, 3 equiv alkyne, 50 8C) and easily depro-
tected silylacetylene derivatives were obtained. The catalytic,
regioselective alkynylation of pyrroles was reported for the
first time. The reaction further constitutes a departure from
classical gold-catalyzed hydroarylation reactions and was
efficient at an unprecedently low catalyst loading compared
with other direct alkynylation methods. The unique proper-
ties of benziodoxolone-derived hypervalent reagents for
acetylene transfer were discovered, which constitutes an
important advance in the field of hypervalent iodine chemis-
try. The exceptional scope of the reaction, as well as the mild
reaction conditions and simple experimental procedure
(easily accessible reagent, no inert gas, no dry solvent) bode
well for the application of the method in organic and
medicinal chemistry.
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Table 3: Scope of the alkynylation reaction of pyrroles.

Entry Substrate Product Yield[a]

1 62 % (83%)[b]

2 48 % (6b) 25 % (7b)[b]

3 79 %

4 58 %

5 60 %

6 58 %

7 59 %[b]

8 48 %

[a] Reaction conditions: 0.40 mmol 5, 0.48 mmol 1d, and 0.02 mmol
AuCl in 8 mL Et2O at 23 8C under air for 12–15 h. [b] Yields based on 1d
with 3 equiv 5.

Scheme 2. Working hypothesis for the mechanism of the alkynylation
reaction.
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