Journal of Catalysis xxx (xxxx) xxx

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

$Co_x Fe_{1-x}Al_2O_{4+\delta}$ composite oxides supported Pt nanoparticles as efficient and recyclable catalysts for the liquid-phase selective hydrogenation of cinnamaldehyde

Huiyue Xin, Yujie Xue, Wenbo Zhang, Peng Wu, Xiaohong Li*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd., Shanghai 200062, China

ARTICLE INFO

Article history: Received 29 July 2019 Revised 11 September 2019 Accepted 29 September 2019 Available online xxxx

Keywords: Co_xFe_{1-x}Al₂O_{4+δ} composite oxides Pt catalyst Selective hydrogenation Cinnamaldehyde Cinnamyl alcohol

ABSTRACT

Co_xFe_{1-x}Al₂O_{4+ δ} composite oxides were prepared using a sol-gel method with glucose as hard template. Pt nanoparticles supported on Co_xFe_{1-x}Al₂O_{4+ δ} were employed for the liquid-phase selective hydrogenation of cinnamaldehyde (CAL) to yield the desired cinnamyl alcohol (COL). The activity increased with the x value; while the selectivity to COL almost kept above 90% despite of different x values. Upon investigation of kinetic behaviour with Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ} as a model catalyst, the initial activity (in terms of TOF, defined as the converted CAL molecules per surface Pt atoms per second) of 4.1 s⁻¹ was furnished. As for the selectivity to COL, it almost kept around 95% at whatever CAL conversions despite of the reaction temperatures. Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ} catalyst can also be recycled for at least 10 times without obvious loss in activity or selectivity toward COL. This suggests that the active sites on the Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ} catalyst preferentially adsorb and activate CAL via the terminal carbonyl groups. XPS analyses, H₂-TPR, and CO-IR studies reveal that the intimate contact of Pt nanoparticles with FeO_x or CoO_x plays an important role in determining the catalytic performance of the Pt/Co_xFe_{1-x}Al₂O_{4+ δ} catalysts.

© 2019 Elsevier Inc. All rights reserved.

JOURNAL OF CATALYSIS

1. Introduction

Cinnamaldehyde (CAL), one of typical α , β -unsaturated aldehydes, can be selectively hydrogenated to corresponding α , β -unsaturated alcohol, cinnamyl alcohol (COL). COL is the valuable intermediate and can be widely used in perfumes, pharmaceuticals, pesticides, foods, etc [1]. However, the selective hydrogenation of C=O double bond in CAL to yield COL is not thermodynamically favorable due to the conjugate effect between C=C double bond and C=O double bond. Nevertheless, great efforts have been made to develop efficient catalysts with attractive chemoselectivity in recent two decades [2–8].

After literature survey, it can be found that Pt-based catalysts are widely investigated for the selective hydrogenation of CAL to yield COL. However, traditional Pt catalysts can only show mediocre selectivity toward COL in most cases (Scheme 1B) [9,10]. To improve the catalytic performance, particularly the COL selectivity at higher CAL conversions with the Pt-based catalysts, many studies have been focused on the issues as follows: (1) support-induced

* Corresponding author. *E-mail address:* xhli@chem.ecnu.edu.cn (X. Li). modification of Pt electronic properties using special materials as support materials, such as CeO₂-ZrO₂ [11], SiO₂-Al₂O₃ [12], TiO₂-SiO₂ [13], CoAl mixed metal oxide nanosheets [14], YCo_xFe_{1-x}O₃ perovskite composites [15] and FeFe-LDH [16]; (2) control of the Pt morphologies including controllable construction of 1D metal nanowires or control of the exposure of special Pt facets [17–19]; (3) adopting the second metal component like Fe [9,10], Co [20] and Sn [21] to modulate the electronic properties of Pt nanoparticles; (4) confinement of Pt nanoparticles within metal-organic frameworks [22,23] or surface modification of Pt catalysts by long-chain ligands or thiols [24-26]. In some cases, two or more strategies were adopted to achieve better results for the Pt-based catalysts, including activity and selectivity toward COL. According to the literature, the second metal such as Fe or Co is usually doped to improve the Pt-based catalysts via modulating the Pt surface electronic properties. However, when used as additives, Fe, Co or other second metals usually exist as their oxide aggregates, so that the interaction of Pt with the second metal oxides is difficult to control owing to lack of intimate contact if they are not highly and uniformly dispersed.

Spinel composite metal oxides (SCMOs), with an adjustable degeneration and structural stability, are widely used as redox

https://doi.org/10.1016/j.jcat.2019.09.042 0021-9517/© 2019 Elsevier Inc. All rights reserved.

Scheme 1. (A) Design and preparation of the Pt catalyst supported on Co_xFe_{1-x}Al₂O_{4+δ} SCMOs and (B) the selective hydrogenation of CAL to the desired COL.

catalysts and catalyst supports [27–30]. Monoclinic AB₂O₄ SCMOs (where A = Mg, Fe, Co, Ni, Zn, or Mn; B = Al, Cr, Ga, Co, or Fe), have attracted considerable attention because of their versatile physicochemical properties. We notice that Fe or Co can serve as "A" site ions, while Al can serve as "B" site ions in AB₂O₄ SCMOs, respectively. Therefore, both Fe/Co and Al can be well isolated and dispersed uniformly, although they still exist in their oxides. Under this circumstances, there will be intimate contact between Pt nanoparticles and FeO_x/CoO_x or AlO_x when Fe(Co)Al₂O_{4+δ} SCMOs are used to load Pt nanoparticles. Therefore, the interaction between Pt nanoparticles and FeO_x/CoO_x or AlO_x becomes possible and controllable.

Considering that Fe/Co are better additives for the Pt-based catalysts towards the selective hydrogenation of CAL to yield COL and that alumina is a common support material for Pt nanoparticles, we are eager to prepare $Co_x Fe_{1-x}Al_2O_{4+\delta}$ SCMOs (x represents the Co/(Co + Fe) molar ratio, x = 0-1) for Pt nanoparticles towards the selective hydrogenation of CAL to yield COL. Nevertheless, SCMOs prepared by a traditional co-precipitation method usually suffer from a drawback of extremely low specific surface area, which greatly limits the application in catalysis. Therefore, preparation of SCMOs with relatively larger specific surface area becomes a challenge. Hard template method provides an efficient way to prepare the porous SCMOs with comparatively larger specific surface area. Herein, we prepared $Co_xFe_{1-x}Al_2O_{4+\delta}$ SCMOs with a modified sol-gel method using glucose as template, and then investigated their catalytic performance after loading Pt nanoparticles for the selective liquid-phase hydrogenation of CAL. The $Co_x Fe_{1-x}Al_2O_{4+\delta}$ SCMOs have a relatively larger specific surface area when compared with those obtained via the traditional co-precipitation method. The Co/(Fe + Co) molar ratio, Pt-FeO_x/CoO_x interaction and the surface electronic properties of $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts were investigated in detail. As a result, the $Pt/Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ catalyst furnished an initial activity (in terms of TOF, defined as the converted CAL molecules per surface Pt atoms per second) of 4.1 s^{-1} along with 95% selectivity toward COL under mild conditions.

2. Experimental

2.1. Chemicals

Chloroplatinic acid hexahydrate $(H_2PtCl_6\cdot 6H_2O)$ and other chemicals were of analytical grade and used as received. CAL was purchased from Alfa Aesar and used as received. Other reagents

including $Fe(NO_3)_3 \cdot 9H_2O$, $Al(NO_3)_3 \cdot 9H_2O$, $Co(NO_3)_2 \cdot 6H_2O$, citric acid, glucose, and isopropanol were purchased from Sinopharm Chemical Reagent Co., Ltd. and used as received.

2.2. Preparation of $Co_x Fe_{1-x} Al_2 O_{4+\delta}$ SCMOs and related Pt catalysts

 $Co_x Fe_{1-x}Al_2O_{4+\delta}$ SCMOs were prepared by a modified sol-gel method. Taking the preparation of $Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ SCMOs as an example, the detailed preparation procedures are as follows: a solution containing 0.003 M Al(NO₃)₃·9H₂O, 0.0015 M Co(NO₃)₂· 6H₂O, and 0.0015 M Fe(NO₃)₃·9H₂O was mixed. Then, citric acid was added to the above solution to control the final citrate/transition metal ratio of 1/1. Subsequently, 5.0 M glucose aqueous solution was added to the above solution and stirred at RT for 3-4 h, followed by further stirring at 363 K till the sticky gel was formed. After that, the gel was dried at 393 K overnight. After grinding, the precursors were calcined in air at 773 K for 4 h, and then at 1223 K for additional 5 h to obtain the resultant $Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ SCMOs. The $Co_x Fe_{1-x}Al_2O_{4+\delta}$ SCMOs with other Co/(Fe + Co) molar ratios were prepared using the similar method as well. Because twice the amount of Co + Fe was adopted for the proposed $Co_xFe_{1-x}Al_2O_{4+\delta}$ composition, so there are redundant non-structural FeOx or CoOx simple oxides embedded in the $Co_xFe_{1-x}Al_2O_{4+\delta}$ SCMOs. In order to make sense and simplify the support designation, the SCMOs were denoted as CoxFe1-xAl2O4+6.

Nominal 5 wt% Pt/Co_xFe_{1-x}Al₂O_{4+ δ} catalysts were prepared via an impregnation method using an aqueous solution of H₂PtCl₆ as Pt precursor. The suspension was stirred at RT for 4–6 h and then evaporated to remove the excess solvent, followed by drying at 353 K overnight. Then, the catalyst precursors were calcined in static air at 473 K for 2 h before reduction in an aqueous solution of sodium formate at 363 K for 2 h (Scheme 1A).

2.3. Catalyst characterization

The powder X-ray diffraction (XRD) patterns of the samples were collected on a Bruker D8 ADVANCE instrument using Cu K α radiation (λ = 1.54178 Å) as X-ray source. Jade 6.0 software was used to match the crystalline phase of the materials with standard PDF cards. The N₂-physisorption of the samples were measured at 77 K on a Quantachrome Autosorb-3B system after the samples were evacuated at 473 K for 2 h. The Brunauer-Emmett-Teller (BET) specific surface area was calculated using the adsorption data in the relative pressure range from 0.05 to 0.35. The transmission electron microscopy (TEM) images were taken on an FEI Tecnai G2-TF30 microscope at an acceleration voltage of 300 kV. The

scanning electron microscopy (SEM) was performed using a Hitachi S-4800 microscope. The actual Pt loading of the samples were determined by Thermo Elemental IRIS Intrepid II XSP inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

Temperature-programmed reduction of hydrogen (H₂-TPR) was conducted with a Micromeritics AutoChem II Chemisorption Analyzer. Prior to H₂-TPR experiments, the samples were pretreated in flowing Ar at 423 K for 0.5 h and then cooled to RT in flowing Ar (99.999%, 30 mL·min⁻¹). After that, the sample was heated from RT to 1073 K with a ramp of 10 K·min⁻¹ under a mixture of 10% H₂-Ar (30 mL·min⁻¹). The rate of H₂ consumption was monitored by a gas chromatograph (GC) with a thermal conductivity detector (TCD).

Temperature-programmed desorption of hydrogen (H₂-TPD) was also carried out on Micromeritics AutoChem II Chemisorption Analyzer. The samples were pretreated at 473 K for 2 h under 10% H₂-Ar atmosphere and then cooled down to 323 K under flowing He atmosphere. After H₂ adsorption in 10% H₂-Ar mixture (50 mL \cdot min⁻¹) at 323 K for 1 h, the samples were purged with He for 2 h to remove the physically adsorbed species. The H₂ desorption was then conducted under He atmosphere with a temperature ramp of 10 K·min⁻¹ from 323 to 1073 K.

Temperature programmed desorption of ammonia (NH₃-TPD) was also performed on Micromeritics AutoChem II Chemisorption Analyzer to characterize the acidity of the samples. The samples were firstly outgassed in flowing He (50 mL·min⁻¹) at 673 K for 1 h, and then adsorption of ammonia was performed in a 10% NH₃-He (50 mL·min⁻¹) at 323 K for 0.5 h. After removal of the physisorbed NH₃ by flowing He (50 mL·min⁻¹), the chemisorbed NH₃ was analyzed with a TCD detector by heating from RT to 873 K at a ramp rate of 10 K·min⁻¹ and then maintained at 873 K for 0.5 h under the flowing He.

The FT-IR spectra was measured to confirm the structure of $Co_xFe_{1-x}Al_2O_{4+\delta}$ SCMOs using a Nexus 870 FT-IR spectrometer in the range of 400–4000 cm⁻¹ at a spectral resolution of 4 cm⁻¹ and 32 scans. The sample powders were mixed with KBr (1 wt%) and pressed into self-supported disks at RT. The FT-IR spectra of the samples using CO as probe molecules were measured with Nicolet iS50 FT-IR spectrometer in transmission-absorption mode. The samples were pressed into self-supported wafers and put into the IR cell. Prior to CO adsorption, the samples were *in situ* pre-treated under H₂ atmosphere at 473 K for 2 h and then cooled down to 308 K for CO adsorption. The IR spectra of the chemisorbed CO was recorded after physically adsorbed CO was evacuated. All of the FT-IR spectra were collected using 32 scans at a resolution of 4 cm⁻¹.

The X-ray photoelectron spectra (XPS) of the samples were measured with a Thermo Fisher Scientific ESCALAB 250Xi spectrometer with Al K α radiation (1486.6 eV) as incident beam with a monochromator. The samples were *in situ* pre-treated in flowing hydrogen at 473 K for 2 h in a reactor attachment of the XPS spectrometer for comparison. The binding energy (BE) was calibrated using C-C binding energy at 284.6 eV in order to compare the BE with data in the literature. The spectra shown in the figures have been corrected by subtraction of a Shirley background. Spectral fitting and peak integration were done using the XPS PEAK software.

2.4. Catalytic test

The catalysts were tested for the liquid-phase selective hydrogenation of CAL in a 100 mL autoclave. For a typical test, 25 mg of Pt catalyst was pretreated in a specially designed quartz tube under H₂ (99.999% purity, 30 mL·min⁻¹) at 473 K for 2 h before use. Then, the pretreated catalyst was immediately transferred into the autoclave without exposure to air and mixed with CAL and solvent (containing isopropanol and water with a volume ratio of 9:1). The reaction began when hydrogen (2.0 MPa, 99.999% purity) was introduced with stirring (1200 rpm) at 363 K. The reaction was stopped after a proper time and the products were analyzed using a GC (GC-2014, Shimadzu) equipped with a flame ionization detector (FID) and a capillary column (DM-WAX, $30 \text{ m} \times 0.32 \text{ mm} \times 0.25 \mu\text{m}$). The response factor of each component was calculated using standard samples and was used to calculate the conversion and selectivity.

It should be pointed out that the absence of internal and external mass transfer limitation in the reaction was verified by Weisz-Prater criterion and Mears criterion, respectively. The absence of heat transfer limitation in the reaction was verified by a Mears criterion [31,32]. At the maximum reaction rate, the $C_{WP} = 8.09 \times 10^{-6} < 1$ and the $C_M = 0.0633 < 0.15$, which assured the absence of mass transfer limitation. Mears criterion for external (interphase) heat transfer gave $|\frac{-\Delta H_r(-r'_A)P_bRE}{h_lT_B^*R_g}| < 0.15$, demonstrating no heat transfer limitations (see the Support Information for the details). Moreover, we also made the Madon-Boudart test to confirm that conditions of strict kinetic control were maintained in this case (see Fig. S1 in the Supporting Information for the details) [33].

For the recycling reactions, the catalyst was recovered by centrifugation, washed with isopropanol for several times to remove the residual substrate and product after each run and then submitted to the next run with fresh solvent and reactant.

3. Results and discussion

3.1. General characterization of the supports and related Pt catalysts

The $Co_xFe_{1-x}Al_2O_{4+\delta}$ SCMOs were synthesized via a modified sol-gel method using glucose as template. The structure of the Co_xFe_{1-x}Al₂O_{4+δ} SCMOs was first characterized using XRD. As shown in Fig. 1A, FeAl₂O_{4+ δ} and Co_{0.3}Fe_{0.7}Al₂O_{4+ δ} composites exhibited too complicated diffraction patterns to assign simply (see Fig. S2 in the Supporting Information). With increase of Co amount, $Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ and $Co_{0.7}Fe_{0.3}Al_2O_{4+\delta}$ displayed six representative sharp diffraction patterns at 20 of 31.0°, 36.5°, 44.4°, 55.1°, 58.8° and 64.6°, respectively, which match well with the PDF card of FeAl₂O₄. Nonetheless, highly dispersed CoO simple oxides may also exist although they cannot be detected due to high and uniform dispersion (see Fig. S3 in the Supporting Information). If x value further increased to 1, CoAl₂O₄ also showed six sharp diffraction patterns at 20 of 31.2°, 36.7°, 44.7°, 55.5°, 59.2°, and 65.0°, which can be ascribed to $CoAl_2O_4$ (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1) and (440) planes, respectively (see Fig. S4 in the Supporting Information). When compared with those of $Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ and $Co_{0.7}Fe_{0.3}Al_2O_{4+\delta}$, there is a little shift to higher angles for the diffraction angle of CoAl₂O₄. In addition, besides the Co_xFe_{1-x} $Al_2O_{4+\delta}$ composition presented in the catalyst, we cannot exclude the existence of simple oxides such as CoO, FeO, Fe₂O₃ because twice the amount of Co + Fe was adopted for the proposed Co_xFe_{1-x} $Al_2O_{4+\delta}$ composition. In order to verify the structure of Co_xFe_{1-x} $Al_2O_{4+\delta}$ SCMOs, FT-IR spectroscopy was adopted (Fig. 1B). For CoAl₂O₄, the spinel structure can be identified by two sharp bands at 685 and 559 cm^{-1} , which can be attributed to Al-O vibrations related to tetrahedral AlO₄ and octahedral AlO₆ groups in CoAl₂O₄ [34]. With decreasing *x* value while increasing the Fe amount in $Co_x Fe_{1-x}Al_2O_{4+\delta}$ SCMOs, those two IR bands red-shifted obviously, which might be caused by impure phase. That is, doping of Fe in $Co_xFe_{1-x}Al_2O_{4+\delta}$ SCMOs changed the crystal structure clearly. This is in good agreement with the XRD results.

The relevant Pt catalysts were also characterized using XRD. As also displayed in Fig. 1A, the $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts displayed the similar diffraction patterns to their supports, demonstrating

H. Xin et al./Journal of Catalysis xxx (xxxx) xxx

Fig. 1. (A) XRD patterns of (a) FeAl₂O_{4+δ}, (b) Pt/FeAl₂O_{4+δ}, (c) Co_{0.3}Fe_{0.7}Al₂O_{4+δ}, (d) Pt/Co_{0.3}Fe_{0.7}Al₂O_{4+δ}, (e) Co_{0.5}Fe_{0.5}Al₂O_{4+δ}, (f) Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+δ}, (g) Co_{0.7}Fe_{0.3}Al₂O_{4+δ}, (h) Pt/Co_{0.7}Fe_{0.3}Al₂O_{4+δ}, (h) Pt/Co_{0.7}Fe_{0.3}Fe_{0.5}Fe

that loading of Pt nanoparticles did not destroy the structure of the $Co_xFe_{1-x}Al_2O_{4+\delta}$ SCMOs. Moreover, the diffraction patterns attributed to Pt(1 1 1) planes are extremely weak despite of different Co/ (Co + Fe) molar ratios for the $Co_xFe_{1-x}Al_2O_{4+\delta}$ SCMOs, which can be a hint of high dispersion of Pt nanoparticles on $Co_xFe_{1-x}Al_2O_{4+\delta}$ surface. In addition, a part of Pt might be also in oxidized state that did not show intense metallic peaks.

The texture structures of $Co_xFe_{1-x}Al_2O_{4+\delta}$ SCMOs are critically important when they are used as supports. Therefore, $Co_xFe_{1-x}Al_2O_{4+\delta}$ SCMOs were characterized by nitrogen sorption to get the information about the specific surface area, pore volume and pore size distribution. All $Co_xFe_{1-x}Al_2O_{4+\delta}$ SCMOs showed typical type I isotherms with an insignificant H₃-type hysteresis loop in the region of relative pressure 0.8–1.0, which is associated with capillary condensation in mesopores (Fig. 2A). All $Co_xFe_{1-x}Al_2O_{4+\delta}$ SCMOs have a BET specific surface area of 10.7–22.2 m²·g⁻¹ and a pore volume of 0.03–0.08 cm³·g⁻¹. For comparison, the $Co_{0.5}Fe_{0.5}$ $Al_2O_{4+\delta}$ analogue was also prepared without using glucose as template, only having a BET specific surface area of 3.6 m²·g⁻¹ with a pore volume of 0.01 cm³·g⁻¹, which are much lower than those obtained with its analogue prepared using glucose as template. This confirms that preparation of $Co_x Fe_{1-x} Al_2 O_{4+\delta}$ SCMOs via a sol-gel method using glucose as template can indeed give rise to comparatively higher specific surface area and higher pore volume. After loading Pt nanoparticles, the BET specific surface areas of all Pt catalysts increased slightly in contrast with those of the supports, but the total pore volumes of all Pt catalysts remained almost the same. For clarity, the physicochemical parameters for all the samples are listed in Table 1. Elemental analysis results for Pt/Co_xFe_{1-x}Al₂O_{4+δ} catalysts based on ICP-AES characterization are also added in Table 1. The real Pt loadings for all the Pt/Co_xFe_{1-x} $Al_2O_{4+\delta}$ catalysts are in the range of 3.6–4.6 wt%, a little lower than

Fig. 2. N₂-physisorption isotherms of (A) $Co_xFe_{1-x}Al_2O_{4+\delta}$ SCMOs and (B) Pt/ $Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts. The isotherms of $Co_{0.3}Fe_{0.7}Al_2O_{4+\delta}$, $Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$, $Co_{0.7}Fe_{0.3}Al_2O_{4+\delta}$ and $CoAl_2O_4$ were vertically translated by 20, 40, 60 and 80, respectively.

H. Xin et al./Journal of Catalysis xxx (xxxx) xxx

Table 1 Physicochemical properties of $Co_x Fe_{1-x}Al_2O_{4+\delta}$ supported Pt catalysts.

Catalyst	$S_{BET}^{a}\left(m^2{\cdot}g^{-1}\right)$	V_p^{a} (cm ³ ·g ⁻¹)	Pt particle size ^b (nm)	Disp. ^c (%)	Pt ^d (wt%)	Al ^d (wt%)	Co ^d (wt%)	Fe ^d (wt%)
$FeAl_2O_{4+\delta}$	12.2	0.06	-	-	-	-	-	-
$Co_{0.3}Fe_{0.7}Al_2O_{4+\delta}$	10.7	0.06	_	-	-	-	-	-
$Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$	22.2	0.08	-	-	-	-	-	-
$Co_{0.7}Fe_{0.3}Al_2O_{4+\delta}$	12.8	0.05	-	-	-	-	-	-
CoAl ₂ O ₄	11.5	0.03	-	-	-	-	-	-
$Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$	3.6	0.01	-	-	-	-	-	-
$Pt/FeAl_2O_{4+\delta}$	20.4	0.06	2.2	51.4	3.8	14.8	-	31.9
$Pt/Co_{0.3}Fe_{0.7}Al_2O_{4+\delta}$	24.4	0.08	2.4	47.1	4.6	9.5	11.5	25.4
$Pt/Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$	29.3	0.08	3.4	33.2	3.6	15.1	15.0	16.7
$Pt/Co_{0.7}Fe_{0.3}Al_2O_{4+\delta}$	18.9	0.06	2.7	41.9	3.8	15.2	22.9	7.9
Pt/CoAl ₂ O ₄	11.8	0.02	3.3	34.2	4.1	14.4	31.6	-

^a The BET specific surface area and pore volume were calculated per g of sample.

^b Pt particle size was calculated according to TEM characterizations.

^c Dispersion was calculated according to D (%) \times d (Pt particle size in nm) = 1.13.

^d Determined by ICP-AES.

the nominal 5 wt%, because the Pt catalyst precursors were reduced in an aqueous solution of sodium formate at a reflux temperature, where some of Pt precursors were washed off from the support surface.

The morphology of the Pt/Co_xFe_{1-x}Al₂O_{4+ $\delta}$ catalysts was characterized by SEM (Fig. 3). Pt/FeAl₂O_{4+ $\delta}$ and Pt/CoAl₂O₄ displayed a coral-like morphology with an average size of about 100 nm; while for Pt/Co_xFe_{1-x}Al₂O_{4+ $\delta}$ (0 < *x* < 1), a morphology with irregular particles was observed and the average particle size was increased to about 100–200 nm.}}}

Some representative $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts were also characterized using TEM (Fig. 4). Small and uniformly distributed Pt particles were observed for $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$, with Pt particle sizes ranging within 2.0–4.0 nm, which is consistent with the XRD results. The $Pt/FeAl_2O_{4+\delta}$ catalyst had an average size of 2.2 nm. It is clear that addition of Co with a small content (x = 0.3) in the $Pt/Co_{0.3}Fe_{0.7}Al_2O_{4+\delta}$ catalyst led to slightly larger Pt particle size, which was centered at 2.4 nm. With further increase of Co amount, Pt particle size gradually increased. As a result, the average Pt particle size was 3.3 nm for $Pt/CoAl_2O_4$. Furthermore, HRTEM images were also taken for some representative samples. For instance, (2 2 0) facets with the d-space of 0.286 nm was detected for $CoAl_2O_4$ support with the spinel structure (Fig. 4g). Moreover, Pt(1 1 1) facets with the d-space of 0.226 nm were detected for $Pt/FeAl_2O_{4+\delta}$ (Fig. 4h). 3.2. The selective hydrogenation of CAL over the $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts

Firstly, the $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts were applied to the liquid-phase selective hydrogenation of CAL. Table 2 lists the detailed results obtained with different Pt/Co_xFe_{1-x}Al₂O_{4+δ} catalysts. In a control experiment, the $Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ SCMOs without loading Pt nanoparticles were adopted for the selective hydrogenation of CAL. As a result, the $Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ SCMOs alone did not work at all within 30 min (Table 2, entry 1). This demonstrates that the $Co_x Fe_{1-x} Al_2 O_{4+\delta}$ SCMOs are not active without Pt nanoparticles for the tested reaction. After Pt nanoparticles were loaded, the Pt/ $FeAl_2O_{4+\delta}$ catalyst gave about 78.6% CAL conversion and 90.8% selectivity toward COL within 30 min (Table 2, entry 2). When adding Co in SCMOs, the Pt/Co_{0.3}Fe_{0.7}Al₂O_{4+ δ} catalyst showed a comparatively higher CAL conversion of 90.3%, in accompany with 94.3% COL selectivity (Table 2, entry 3). With further increase of Co amount in SCMOs, the $Pt/Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ catalyst furnished excellent results including 94.2% CAL conversion and 95.0% COL selectivity under the same conditions (Table 2, entry 4). If the Co/(Fe + Co) molar ratio was further increased, the Pt/Co_{0.7}Fe_{0.3} $Al_2O_{4+\delta}$ catalyst was a little more efficient, furnishing a 98.2% conversion of CAL with 93.9% selectivity toward COL (Table 2, entry 5). When Pt nanoparticles were supported on CoAl₂O₄ SCMOs, the Pt/CoAl₂O₄ catalyst furnished nearly complete CAL conversion

Fig. 3. SEM images of (a) Pt/FeAl₂O₄₊₅, (b) Pt/Co_{0.3}Fe_{0.7}Al₂O₄₊₅, (c) Pt/Co_{0.5}Fe_{0.5}Al₂O₄₊₅, (d) Pt/Co_{0.7}Fe_{0.3}Al₂O₄₊₅, (e) Pt/CoAl₂O₄ and (f) used Pt/Co_{0.5}Fe_{0.5}Al₂O₄₊₅ after ten runs.

H. Xin et al./Journal of Catalysis xxx (xxxx) xxx

Fig. 4. TEM images and particle size distributions of (a) Pt/FeAl₂O_{4+ δ_7} (b) Pt/Co_{0.3}Fe_{0.7}Al₂O_{4+ δ_7} (c) Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ_7} (d) Pt/Co_{0.7}Fe_{0.3}Al₂O_{4+ δ_7} (e) Pt/CoAl₂O₄ and (f) used Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ_7} (d) Pt/Co_{0.7}Fe_{0.3}Al₂O_{4+ δ_7} (e) Pt/CoAl₂O₄ and (f) used Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ_7} (d) Pt/Co_{0.7}Fe_{0.3}Al₂O_{4+ δ_7} (e) Pt/CoAl₂O₄ and (f) used Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ_7} (d) Pt/Co_{0.7}Fe_{0.3}Al₂O_{4+ δ_7} (e) Pt/CoAl₂O₄ and (f) used Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ_7} (f) Pt/Co_{0.7}Fe_{0.3}Al₂O_{4+ δ_7} (f) Pt/CoAl₂O₄ and (f) used Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ_7} (f) Pt/Co_{0.7}Fe_{0.3}Al₂O_{4+ δ_7} (f) Pt/CoAl₂O₄ and (f) used Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ_7} (f) Pt/Co_{0.7}Fe_{0.3}Al₂O_{4+ δ_7} (f) Pt/CoAl₂O_{4+ δ_7} (f) Pt/CoAl₂O₄ (f) Pt/

Table 2 Hydrogenation of CAL with different Pt-based catalysts ^{a.}

Entry	Catalyst	Conv. (%)	MSA_{CAL}^{b} (mol·g _{Pt} ⁻¹ ·h ⁻¹)	Sel. (%)		
				COL	HCAL	HCOL
1	$Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$	2.8	-	87.2	12.8	0
2	$Pt/FeAl_2O_{4+\delta}$	78.6	6.2	90.8	5.8	3.4
3	$Pt/Co_{0.3}Fe_{0.7}Al_2O_{4+\delta}$	90.3	5.9	94.3	2.4	3.3
4	$Pt/Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$	94.2	7.9	95.0	1.1	3.9
5	$Pt/Co_{0.7}Fe_{0.3}Al_2O_{4+\delta}$	98.2	7.8	93.9	0.8	5.3
6	$Pt/CoAl_2O_4$	99.4	7.3	82.3	0.1	17.6
7	$Pt/Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}^{c}$	71.4	-	94.7	2.9	2.4
8	$Pt-Co_{0.25}/FeAl_2O_{4+\delta}^d$	60.1	-	94.3	3.7	2.0
9	Pt-Fe _{0.25} /CoAl ₂ O ₄ d	85.2	-	93.4	3.2	3.4

^a Reaction conditions: 25 mg Pt catalyst; 0.5 g CAL; 2.0 MPa H₂; 9 mL isopropyl alcohol +1 mL water; 1200 rpm; 363 K; 0.5 h.

^b MSR (mass specific rate) was defined as the converted CAL moles per gram of Pt per hour.

^c The $Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ without using glucose as a template was used for loading Pt nanoparticles.

^d Co or Fe was impregnated with the Pt precursor on FeAl₂O_{4+ $\delta}$ or CoAl₂O₄ and the molar ratio of Co or Fe to Pt is 0.25.}

under the same conditions, although a lower COL selectivity of 82.3% was obtained instead, which might be caused by the consecutive hydrogenation of COL to HCOL, because the HCOL selectivity (17.6%) was obviously higher than the others (Table 2, entry 6). The mass specific rate (MSR, defined as the converted CAL moles per gram of Pt per hour) was also calculated and listed in Table 2. Correspondingly, an MSR of 5.9–7.9 mol· g_{Pt}^{-1} ·h⁻¹ was achieved with different Pt/Co_xFe_{1-x}Al₂O_{4+ $\delta}$ catalysts.}

Furthermore, in order to verify the porous effect of $Co_xFe_{1-x}Al_2-O_{4+\delta}$ SCMOs prepared using glucose as template, the $Co_{0.5}Fe_{0.5}Al_2-O_{4+\delta}$ analogue prepared without using glucose as template was applied to load Pt nanoparticles as well. To our disappointment, only 71.4% CAL conversion was obtained, much lower than its analogue (to compare entries 4 and 7), although the COL selectivity was comparable, indicating that the porous structure of the $Co_xFe_{1-x}Al_2O_{4+\delta}$ SCMOs prepared using glucose as template is indeed beneficial for the mass transfer of the liquid-phase selective hydrogenation of CAL (Table 2, entry 7). In addition, to compare the contact effect of Pt with Fe or Co species on the selective hydrogenation of CAL, we also prepared Pt-Fe(Co)/Co(Fe)Al_2O_{4+\delta} catalysts with a Fe(Co)/Pt molar ratio of 0.25 by co-impregnating Pt

precursor and Fe (or Co) precursor simultaneously on CoAl₂O₄ (or FeAl₂O_{4+ δ}) SCMOs. Although the COL selectivity obtained over Pt-Fe_{0.25}/CoAl₂O₄ or Pt-Co_{0.25}/FeAl₂O_{4+ δ} was slightly improved, the CAL conversions were remarkably decreased when compared with Pt/CoAl₂O₄ and Pt/FeAl₂O_{4+ δ} under the same conditions. As a result, the CAL conversion decreased from 78.6% with Pt/FeAl₂O_{4+ δ} to 60.1% with Pt-Co_{0.25}/FeAl₂O_{4+ δ}; while the CAL conversion decreased from 98.4% with Pt/CoAl₂O₄ to 85.2% with Pt-Fe_{0.25}/CoAl₂O₄ (Table 2, entries 8 and 9). This implies that after adding Fe (or Co) to Pt/CoAl₂O₄ (or Pt/FeAl₂O_{4+ δ}), the overall catalytic performance was decreased instead, probably due to coverage of Pt active sites by Fe (or Co) species without good dispersion.

Moreover, although the catalyst was washed with plenty of deionized water to remove Na ions after reduced in an aqueous solution of sodium formate, we cannot guarantee there are no Na ions residues on the catalyst surface. To make clear whether the residual sodium ions have an influence on the reaction results, we added sodium formate with different amount to the reaction system. As listed in Table S1 in the Supporting Information, CAL conversion decreased obviously with increase of the sodium formate while COL selectivity slightly decreased, suggesting the

negative influence of sodium ions on this reaction. With regards of extra non-structural Co ions, they indeed can also polarize the C=O bond of CAL.

When compared the results obtained for the selective hydrogenation of CAL with different $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts, CAL conversion increased with the Co/(Fe + Co) molar ratio from 78.6% to 99.4% when *x* increased from 0 to 1. However, the selectivity toward COL almost remained a steady state in the range of 90.8–95.0% and the highest value was obtained with the Pt/Co_{0.5}-Fe_{0.5}Al₂O_{4+ $\delta}$ catalyst, with an exception encountered for the Pt/CoAl₂O₄ catalyst. Therefore, we chose the Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ $\delta}$ as a model catalyst for the further investigations.}}

To understand the evolution of the hydrogenation products, we investigated the kinetic behaviors of the selective hydrogenation of CAL with the Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ} catalyst at different temperatures. As shown in Fig. 5A, the CAL conversion increased smoothly with reaction time at whatever temperatures and obviously, for the reaction performed at 363 K, the CAL conversion increased faster than those at 333 K and at RT. Nevertheless, the COL selectivity almost kept the same level of around 95% till full conversion of CAL (Fig. 5B). Due to the sequential hydrogenation of COL to HCOL, the selectivity toward COL slightly decreased; while the HCOL selectivity increased rapidly after CAL was exhausted. With regards of the selectivity toward HCAL, it is always as low as 5%. According to the kinetic behaviors at different temperatures, we drew

ln(C₀/C_t) (where C₀ represents the initial molar concentration of CAL; while C_t represents the molar concentration of CAL varied with reaction time) *vs* time curves in Fig. 5C. The linear correlation definitely showed that the selective hydrogenation of CAL on the Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+δ} catalyst was the first order reaction with respect of CAL. The reaction rate constant *k* obtained at 363 K (0.0977 min⁻¹) was higher than that obtained at 333 K (0.0561 min⁻¹) or at RT (0.0243 min⁻¹). The apparent activation energy *Ea* (21.3 kJ·mol⁻¹) was also calculated according to Arrhenius equation (Fig. 5D). Furthermore, we also calculated the initial activity (in terms of TOF, defined as the converted CAL molecules per mole of surface Pt atoms per second) according to the CAL conversions within 5 min and the TOF reached 4.1 s⁻¹ over the Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+δ} catalyst at 363 K, furnishing an initial MSR of 24.5 mol_{CAL}·g⁻¹_{Pt}·h⁻¹.

For heterogeneous catalysts involved in a liquid-phase reaction, one of the important issue is to verify their stability and reusability. Hence, the recyclability of the $Pt/Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ catalyst towards the liquid-phase selective hydrogenation of CAL was also investigated. Consequently, the $Pt/Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ catalyst can be recycled for at least 10 times and only slight loss in CAL conversion was observed. As for the COL selectivity, it showed no distinct loss even after ten cycles and almost kept above 95% (Fig. 6A). To check the catalyst stability, the Pt leaching amount in the filtrate was detected using ICP-AES. To our delight, the amount of the

Fig. 5. (A) CAL conversion and (B) selectivity *vs* reaction time curves towards the liquid-phase selective hydrogenation of CAL with $Pt/Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ at RT, 333 K and 363 K, respectively. (C) lnC_0/C_t *vs* time curves at different temperatures, where C_0 represents the initial molar concentration of CAL while C_t represents the molar concentration of CAL varied with reaction time. (D) Apparent activation energy (*Ea*) for the selective hydrogenation of CAL on the $Pt/Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ catalyst. Reaction conditions: 25 mg Pt/ $Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ catalyst; 0.5 g CAL; 2.0 MPa; 9 mL isopropyl alcohol + 1 mL water; 1200 rpm.

H. Xin et al./Journal of Catalysis xxx (xxxx) xxx

Fig. 6. (A) Recycling of the $Pt/Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ catalyst in the liquid-phase selective hydrogenation of CAL at 363 K. Reaction conditions are identical to Table 2. (B) Hydrogenation of CAL with different $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts. Reaction conditions are identical to Table 2 except for 1.5 g CAL.

leached Pt was below the detection limit of ICP-AES. Furthermore, the used Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ} catalyst was also characterized in detail. The TEM image displayed in Fig. 4f shows that the Pt nanoparticles hardly aggregated after ten cycles and the Pt particle size distribution of the used Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ} is centered at 3.4 nm, comparable with the fresh one. The morphology of the used Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ} catalyst looks a little fluffier than the fresh one (Fig. 3f). As for the slight loss in CAL conversion, it might be caused by catalyst loss. We weighed the recovered catalyst after ten cycles, as a result, only a half of the fresh catalyst was washed off from the catalytic system during 10 reaction runs, which may be the key reason for the decreased CAL conversion during the recycling processes.

Moreover, to explore the superior catalytic performance of the Pt/Co_xFe_{1-x}Al₂O_{4+δ} catalysts to the greatest extent, the substrate/ catalyst molar ratio was increased to three times with the same catalyst dosage. The correlation between CAL conversion or COL selectivity and Co/(Co + Fe) molar ratio (*x* value) was also made (Fig. 6B). It is found the conversion of CAL increased obviously with the *x* value from 0 to 1. However, the selectivity to the desired COL only slightly declined from 94.8% to 91.8% with the *x* value. Correspondingly, the Pt/CoAl₂O₄ catalyst showed a 65.5% CAL conversion, reaching an average MSR of 14.4 mol_{CAL}·g_{Pt}⁻¹·h⁻¹, about twice of that obtained with the same catalyst performed at a lower substrate/catalyst molar ratio.

Additionally, in order to further understand the $Pt/Co_{x}Fe_{1-x}Al_{2}$ $O_{4+\delta}$ catalysts, we compared the Pt/Co_xFe_{1-x}Al₂O_{4+ δ} catalysts with other Pt-based catalysts reported in the literature for the selective hydrogenation of CAL. Table 3 summarizes the detailed comparison results. Clearly, the catalytic performance of the Pt-based catalysts for the selective hydrogenation of CAL was greatly affected by several factors, such as support materials, the second metal component and reaction parameters. By comparison with different materials (such as n-Al₂O₃ [35], SiC-C [36], CeZrO₂-1.5 [37], ZnFe-LDH [38], AlCo-MMO [14], FeFe-LDH [16], and YCo_{0.3}Fe_{0.7}O₃ perovskite composites [15]) supported monometallic Pt catalysts, 1D PtFe metal nanowires [17] and the second metal-promoted Pt catalysts (including PtFe_{0.25}/15AS [9], PtFe_{0.25}/15TS [10], Pt-Mo₂N/ SBA-15 [39], Pt₃Fe/CNT [40], Pt₃Co@Co(OH)₂ [41], even Co-MOF-74@(Pt@Fe₂O₃) [42]), the Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ} catalyst in this work furnished better results, in particular for activity (in terms of either TOF or MSR). Under the similar reaction conditions, the $Pt/Co_{0.5}$ $Fe_{0.5}Al_2O_{4+\delta}$ catalyst showed higher TOF values than most of the Pt-based catalysts, such as PtFe_{0.25}/15AS, PtFe_{0.25}/15TS, Pt-Mo₂N/ SBA-15 and Pt/FeFe-LDH. Of particular note is that the catalytic activity of the Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ} catalyst is comparable with that obtained over the Pt catalyst supported on YCo_{0.3}Fe_{0.7}O₃ perovskite composites, which also bears uniformly dispersed Fe and Co species and would have intimate contact with Pt nanoparticles. With regards of the selectivity to the desired product COL furnished by the Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ} catalyst, it is also one of the best values

Catalyst	T (K)	P _{H2} (MPa)	t (h)	Conv. (%)	COL Sel. (%)	TOF (h^{-1})	$\text{MSR}^{\text{a}} \left(\text{mol}{\cdot}g_{\text{Pt}}^{-1}{\cdot}h^{-1} \right)$	Ref.
Pt-1a/n-Al ₂ O ₃	303	1.0	3	99.0	91.0	3746	-	35
PtFe _{0.25} /15AS	363	2.0	1	77.4	76.9	5544	13.9	9
PtFe _{0.25} /15TS	363	2.0	0.5	68.0	86.4	11,016	12.2	10
Pt/SiC-C	298	2.0	1	84.9	80.0	2446	-	36
Pt/YCo _{0.3} Fe _{0.7} O ₃	363	2.0	0.5	98.9	94.9	15,163	31.1	15
Pt/CeZrO ₂ -1.5	333	1.0	0.5	95.0	94.0	10,423	-	37
Pt-Mo ₂ N/SBA-15	353	1.0	2	70.8	76.9	521	_	39
Pt/ZnFe-LDH	333	2.0	2.0	95.2	91.0	-	2.5	38
Pt/AlCo-MMO	343	2.0	2.0	93.1	75.9	-	3.9	14
Pt/FeFe-LDH	383	1.0	2.0	90.0	92.0	1026	-	16
PtFe NWs	343	0.1	2.5	95.7	95.5	100	-	17
Pt ₃ Fe/CNT	333	2.0	0.5	62.1	97.2	1200	-	40
Pt ₃ Co@Co(OH) ₂	343	0.5	2.0	99.6	90.3	40.9	_	41
Co-MOF-74@(Pt@Fe ₂ O ₃)	RT	1.0	1.0	63.0	100.0	245.7		42
$Pt/Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$	363	2.0	0.5	94.2	95.0	14,753	24.5	This work

^a MSR (mass specific rate) was defined as the converted CAL moles per gram of Pt per hour.

among all of the Pt-based catalysts reported in the literature up to now.

3.3. Further characterization of the $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts

In order to understand the superiority of the $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts, some representative catalysts were further characterized using a series of techniques. Firstly, the reduction behaviors of ascalcined $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ were studied using H₂-TPR technique (Fig. 7A). For as-calcined Pt/FeAl₂O_{4+ δ}, there are three reduction peaks, centered at 430, 629 and 868 K, respectively. The sharp peak at 430 K is assigned to reduction of isolated PtO_x [43]. The latter two peaks are attributed to reduction of Fe³⁺ to Fe⁰, including two steps, Fe^{3+} to Fe^{2+} (570–670 K) and Fe^{2+} to Fe^{0} (750–950 K) [44]. After adding a little Co with the Co/(Fe + Co) molar ratio of 0.3, the reduction peak of PtO_x shifted to 425 K, slightly lower than that for Pt/FeAl₂O_{4+ δ}. Correspondingly, the reduction peaks ascribed to the reduction of Fe³⁺ to Fe⁰ were also shifted to lower temperatures. With further increasing the *x* value in the $Co_{x}Fe_{1-x}Al_{2}O_{4+\delta}$ SCMOs to 0.5, the reduction temperature for PtO_x further decreased; while the reduction of FeO_x disappeared, indicating that the interaction between CoO_x and FeO_x is getting stronger and stronger to form spinel structure in $Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ SCMOs. When x value reaches 0.7, the hydrogen uptake split into two peaks, centered at 407 K and 431 K, respectively, which can be ascribed to reduction of PtO_x species with different interaction with $Co_{0.7}Fe_{0.3}Al_2O_{4+\delta}$ SCMOs. If x value further increases to 1, the hydrogen uptake reaches a maximum of 440 K for ascalcined Pt/CoAl₂O₄. As for all Co-containing SCMOs, there is also one reduction peak appearing at 1050 K, which can be attributed to the reduction of Co^{2+} to Co^{0} [45]. Apparently, among all the as-calcined $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts, the interaction between the Pt and CoAl₂O₄ support is the strongest.

Besides H₂-TPR, H₂-TPD analysis was also performed in order to study the hydrogen adsorption ability of different Pt/Co_xFe_{1-x} Al₂O_{4+ δ} catalysts. Previous studies have proved that hydrogen dissociation occurs on the surface of Pt atoms [46], and hydrogen desorption peaks at different temperatures indicate different modes of hydrogen chemisorption. For the Pt/Co_xFe_{1-x}Al₂O_{4+ δ} catalysts in this work, an obvious desorption peak at around 433–443 K is

Fig. 8. Infrared spectra of the CO adsorbed on the $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts.

observed, which is attributed to the adsorption of H₂ molecules on Pt atoms. As shown in Fig. 7B, Pt/Co_xFe_{1-x}Al₂O_{4+δ} shows a relatively increased total integral area of H₂-TPD curves with increase of Co molar ratio and reached a maximum in Pt/CoAl₂O₄. As already discussed in H₂-TPR section, the interaction of Pt and Co_xFe_{1-x}Al₂O_{4+δ} SCMOs would increase the reduction efficiency of Pt, which is then beneficial to hydrogen adsorption. This is consistent with the catalytic performance that the highest results were afforded by the Pt/CoAl₂O₄ catalyst.

In addition, the acidity of the Pt/Co_xFe_{1-x}Al₂O_{4+ δ} catalysts was determined by NH₃-TPD technique (Fig. 7C). An ammonia desorption peak centered at 500 K was detected for Pt/FeAl₂O_{4+ δ} with the total acid amount of 417.73 µmol·g⁻¹. After adding Co to Co_xFe_{1-x}Al₂O_{4+ δ} SCMOs, the signal for desorbed NH₃ is gradually weakened. With regards of NH₃ desorbed from Pt/CoAl₂O₄, it is negligible, demonstrating that the acidity of Pt/CoAl₂O₄ is extremely weak. Addition of Co to FeAl₂O_{4+ δ} SCMOs not only changed the SCMOs structure, but also weakened the acidic properties of

Fig. 7. (A) Temperature-programmed reduction with hydrogen (H₂-TPR) curves, (B) Temperature-programmed desorption of hydrogen (H₂-TPD) curves and (C) Temperature-programmed desorption of ammonia (NH₃-TPD) curves of the (a) Pt/FeAl₂O_{4+ δ}, (b) Pt/Co_{0.3}Fe_{0.7}Al₂O_{4+ δ}, (c) Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ}, (d) Pt/Co_{0.7}Fe_{0.3}Al₂O_{4+ δ}, (e) Pt/CoAl₂O₄.

FeAl₂O_{4+δ}. As a result, the weaker acidity of Co_xFe_{1-x}Al₂O_{4+δ} gave rise to larger Pt particle size because the acidity in FeAl₂O_{4+δ} is helpful for the dispersion of Pt nanoparticles. Therefore, the Pt/ FeAl₂O_{4+δ} catalyst has the smallest Pt particle size. When compared with Pt/FeAl₂O_{4+δ} with a comparatively larger amount of acidity, Pt/Co_xFe_{1-x}Al₂O_{4+δ} ($x \neq 0$) is more effective, suggesting that strong acidity is detrimental for the liquid-phase selective hydrogenation of CAL.

To study the electronic states of Pt, some representative catalysts were further characterized by FT-IR spectroscopy using CO as probe molecules, which is usually used to gain insight into electronic properties. To allow a direct comparison of those data with catalytic results, the Pt/Co_xFe_{1-x}Al₂O_{4+ δ} catalysts were pretreated in a hydrogen flow at 473 K for 2 h before IR measurements. As shown in Fig. 8, there is an asymmetric CO vibration band in the range of 2100–2000 cm⁻¹, which is ascribed to CO linearly bound to a single Pt atom. As clearly seen in Fig. 8, there is only a tiny red-shift for the linear CO adsorption from 2035 cm⁻¹ on Pt/ CoAl₂O₄ to 2029 cm⁻¹ on Pt/FeAl₂O_{4+ δ}. When correlating the CO-IR vibration band with the geometry of Pt/Co_xFe_{1-x}Al₂O_{4+ δ}, the CO vibration band at 2029–2035 cm⁻¹ can be attributed to linear CO adsorption on low coordinated Pt sites, such as steps, edges, corners, and defect sites [47,48]. Considering that the five Pt/Co_xFe_{1-x}Al₂O_{4+ δ} catalysts have similar Pt particle sizes of 2.2– 3.4 nm, the tiny influence of Pt particle size on the CO vibration band can be neglected. Thus, the lower CO vibration position reflects that the catalyst has higher electron density on Pt atoms, because an increase in the electron density on Pt atoms in turn increases the d- π back donation. This implies that Pt/FeAl₂O_{4+ δ} has higher electron density than Pt/CoAl₂O₄, which is well consistent with the H₂-TPR results. Such relatively electron-deficient Pt species of Pt/CoAl₂O₄ easily interact with the oxygen atom of carbonyl groups in CAL.

To further characterize the surface electronic properties, the Pt/ $Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts were probed by XPS after *in situ* pretreated in a hydrogen flow at 473 K for 2 h. The asymmetric peak

Fig. 9. XPS spectra of (A) O1s, (B) Co2p, (C) Fe2p, (D) Al2p + Pt4f and (E) Pt4d for (a) Pt/FeAl₂O_{4+δ}, (b) Pt/Co_{0.3}Fe_{0.7}Al₂O_{4+δ}, (c) Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+δ}, (d) Pt/Co_{0.7}Fe_{0.3}Al₂O_{4+δ} and (e) Pt/CoAl₂O₄.

Fig. 10. The correlation of CAL Conversion versus $Pt^{\delta *}$ amount on the $Pt/Co_xFe_{1-x}Al_2O_{4*\delta}$ catalyst according to XPS results.

of O1s could be deconvoluted to three peaks. For Pt/FeAl₂O_{4+ δ}, the main peak at BE of 530.8 eV can be assigned to the oxygen vacancy (V—O), while the other two peaks at 529.8 eV and 531.9 eV can be attributed to lattice oxygen (L—O) and surface oxygen (S—O), respectively (Fig. 9A) [15]. After Co was doped in the Co_{0.3}Fe_{0.7}Al₂-O_{4+ δ} composites, the core O1s shifts to lower BEs obviously, implying that the different chemical state of oxygen atoms, and the V—O species are predominant for the samples. With further increasing the Co ratio in the Co_xFe_{1-x}Al₂O_{4+ δ} composites (x = 0.5, 0.7, 1), L—O species became predominant, which can be interpreted by forming spinel structure.

The Co2p spectra (Fig. 9B) show the presence of the $2p_{3/2}$ and $2p_{1/2}$ states. The Co2p_{3/2} peaks for the four samples were found to be at 780.5 ± 0.1 eV, which reveals that Co is totally in the oxidized state in that only Co²⁺ species were detected [14,15].

However, in the Fe2p_{3/2} XPS spectra, BE for Fe³⁺ species was centered at 712.6 eV, accompanied by the Fe³⁺ shake up satellite peaks (716–722 eV). The other peak at about 709.9 eV can be deconvoluted, which can be assigned to Fe²⁺, and the proportion of Fe³⁺ and Fe²⁺ could change with Fe content in the Pt/Co_xFe_{1-x} Al₂O_{4+ δ} (Fig. 9C) [49]. Regarding the chemical state of Al, the peak centered at 74.0 eV, which is mainly in Al₂O₃ form. From Fig. 9D, the Pt4f_{7/2} peaks observed at 70.7 eV can be assigned to Pt⁰. The BE at 72.0 eV is lower than that for Pt4f_{7/2} of Pt²⁺ species, but higher than that for Pt4f_{7/2} of Pt⁰ species; therefore, it can be attributed to Pt4f_{7/2} of partially charged Pt^{δ +} species (0 < δ < 2). Since the BEs of Al2p and Pt4f are overlapped, the Pt4d spectra were taken as well to further distinguish the surface electronic properties of Pt atoms.

As shown in Fig. 9E, the Pt4d peak could be deconvoluted to two species. The Pt4d_{5/2} at BE of 314.2 eV is assigned to metallic Pt⁰, while the one at 316.0–317.1 eV could be assigned to positively charged Pt^{δ +} species (0 < δ < 2), because its BE is lower than that of typical Pt²⁺ (317.3 eV) [50]. Nevertheless, the Pt^{δ +} amount varies with different supports. For Pt/CoAl₂O₄, Pt^{δ +} amount is the highest among the five Pt catalysts, reaching 25.2%; while it is the lowest on the Pt/FeAl₂O_{4+ δ} catalyst (19.8%).

Based on the above discussion, the CoAl₂O₄ composites had the lowest V-O concentration, as revealed by XPS characterization. As well known, the V-O can serve as Lewis acid sites, and thus the electron density of the metal atoms (such as Fe or Co ions) adjacent to V-O would be increased, so that the supported Pt species become relatively electron-rich via the interaction of metalsupport. This has been proved by the FTIR spectra of CO adsorbed on the Pt/Co_xFe_{1-x}Al₂O_{4+ δ} catalysts. With increasing the Fe amount, the V-O concentration increased and the d- π feedback donation became strong, so that the IR band of linearly-adsorbed CO redshifted. As also mentioned in the NH₃-TPD characterization, FeAl₂O_{4+ δ} had the highest acidity. As a result, the higher V-O concentration, the higher acidity, the higher content of Pt atoms with the lower content of Pt^{δ^+}.

Fig. 11. The hypothesis of CAL adsorption and activation with the $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts.

12

H. Xin et al./Journal of Catalysis xxx (xxxx) xxx

Moreover, in order to better correlate the catalytic results with characterization, we also established a correlation between Pt^{δ^+} amount and the CAL conversion. As a result, there is a positive linear correlation (Fig. 10). In another word, the catalyst with the highest surface Pt^{δ^+} amount furnished the highest CAL conversion. This implies that there are abundant Pt^{δ^+} species on the surface, which can adsorb and activate CAL through the carbonyl group, so that the C=O bond can be preferentially activated and thus hydrogenated to COL. Additionally, the FeO_x and CoO_x species either in SCMOs or in non-structural simple oxides are also helpful for adsorbing and activating the CAL. According to the discussion, the related hypothesis of CAL adsorption and activation with the $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts was also proposed (Fig. 11). Both the positive Pt^{δ^+} species and the FeO_x (or CoO_x) species can adsorb and activate CAL by interaction with oxygen atoms in carbonyl groups, while hydrogen molecules are dissociated on Pt⁰ atoms and then transferred to attack the activated CAL to form COL.

4. Conclusion

 $Co_x Fe_{1-x}Al_2O_{4+\delta}$ spinel composite metal oxides were prepared using a sol-gel method using glucose as template. Although $Co_x Fe_{1-x}Al_2O_{4+\delta}$ SCMOs only had 10–20 m²g⁻¹ BET specific surface area, they were proved to be remarkable support for Pt nanoparticles. Pt nanoparticles were uniformly and highly dispersed on the surface of $Co_x Fe_{1-x}Al_2O_{4+\delta}$, even the Pt loading reaches about 5 wt% with an average Pt particle size of 2.2–3.4 nm. The Pt/Co_xFe_{1-x}Al₂O_{4+ δ} catalysts showed superior catalytic performance including activity and selectivity for the desired COL. With a Co/(Co+Fe) molar ratio of 0.5, the $Pt/Co_{0.5}Fe_{0.5}Al_2O_{4+\delta}$ catalyst furnished 95% selectivity to COL at 94.2% conversion of CAL, with an initial MSR of 24.5 mol \cdot g_{Pt}⁻¹·h⁻¹ and an initial activity of 4.1 s⁻¹ TOF. The Pt/Co_{0.5}Fe_{0.5}Al₂O_{4+ δ} catalyst can also be recycled for at least 10 times without distinct loss in activity or selectivity to the desired COL. Combined with the detailed characterization results, we can conclude that the intimate contact of Pt with FeO_x/CoO_x plays an important role in determining the catalytic performance of the $Pt/Co_xFe_{1-x}Al_2O_{4+\delta}$ catalysts. With increase of Co/(Co + Fe) molar ratio, the interaction between Pt and FeO_x (or CoO_x) species becomes stronger and thus the surface Pt^{δ^+} amount increased obviously. Therefore, the Pt species with appropriate positive charges and FeO_x (or CoO_x) species are beneficial for the preferential adsorption and activation of terminal C=O groups. The Pt/Co_xFe_{1-x}Al₂O_{4+ δ} catalysts are also promising catalysts for other hydrogenation reactions.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21872052 and 21872054).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcat.2019.09.042.

References

- W. Yu, Y. Wang, H. Liu, W. Zheng, Preparation and characterization of polymerprotected Pt/Co bimetallic colloids and their catalytic properties in the selective hydrogenation of cinnamaldehyde, J. Mol. Catal. A 112 (1996) 105– 113.
- [2] K. Sun, Y. Hong, G. Zhang, B. Xu, Synergy between Pt and Au in Pt-on-Au nanostructures for chemoselective hydrogenation catalysis, ACS Catal. 1 (2011) 1336–1346.
- [3] S. Chen, L. Meng, B. Chen, W. Chen, X. Duan, X. Huang, B. Zhang, H. Fu, Y. Wan, Poison tolerance to the selective hydrogenation of cinnamaldehyde in water

over an ordered mesoporous carbonaceous composite supported Pd catalyst, ACS Catal. 7 (2017) 2074–2087.

- [4] P. Bhanja, X. Liu, A. Modak, Pt and Pd nanoparticles immobilized on aminefunctionalized hypercrosslinked porous polymer nanotubes as selective hydrogenation catalyst for α,β -unsaturated aldehydes, ChemistrySelect 2 (2017) 7535–7543.
- [5] S. Lu, W.W. Lonergan, J.P. Bosco, S. Wang, Y. Zhu, Y. Xie, J.G. Chen, Low temperature hydrogenation of benzene and cyclohexene: A comparative study between γ-Al₂O₃ supported PtCo and PtNi bimetallic catalysts, J. Catal. 259 (2008) 260–268.
- [6] Z. Guo, Y. Chen, L. Li, X. Wang, G.L. Haller, Y. Yang, Carbon nanotube-supported Pt-based bimetallic catalysts prepared by a microwave-assisted polyol reduction method and their catalytic applications in the selective hydrogenation, J. Catal. 276 (2010) 314–326.
- [7] A.J. Plomp, D.M. van Asten, A.M. van der Eerden, P. Mäki-Arvela, D.Y. Murzin, K. P. Jong, J.H. Bitter, Catalysts based on platinum-tin and platinum-gallium in close contact for the selective hydrogenation of cinnamaldehyde, J. Catal. 263 (2009) 146–154.
- [8] L. Chen, H. Chen, Y. Li, One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents, Chem. Commun. 50 (2014) 14752–14755.
- [9] H. Pan, J. Li, J. Lu, G. Wang, W. Xie, P. Wu, X. Li, Selective hydrogenation of cinnamaldehyde with PtFe_x/Al₂O₃@SBA-15 catalyst: Enhancement in activity and selectivity to unsaturated alcohol by Pt-FeO_x and Pt-Al₂O₃@SBA-15 interaction, J. Catal. 354 (2017) 24–36.
- [10] Y. Xue, R. Yao, J. Li, G. Wang, P. Wu, X. Li, Efficient Pt-FeO_x/TiO₂@SBA-15 catalysts for selective hydrogenation of cinnamaldehyde to cinnamyl alcohol, Catal. Sci. Technol. 7 (2017) 6112–6123.
- [11] S. Bhogeswararao, D. Srinivas, Intramolecular selective hydrogenation of cinnamaldehyde over CeO₂-ZrO₂ supported Pt catalysts, J. Catal. 285 (2012) 31–40.
- [12] Z. Weng, F. Zaera, Sub-monolayer control of mixed-oxide support composition in catalysts via atomic layer deposition: Selective hydrogenation of cinnamaldehyde promoted by (SiO₂-ALD)-Pt/Al₂O₃, ACS Catal. 8 (2018) 8513–8524.
- [13] Q. Wu, C. Zhang, B. Zhang, X. Li, Z. Ying, T. Liu, W. Lin, Y. Yu, H. Cheng, F. Zhao, Highly selective Pt/ordered mesoporous TiO₂-SiO₂ catalysts for hydrogenation of cinnamaldehyde: The promoting role of Ti²⁺, J. Coll. Interf. Sci. 463 (2016) 75–82.
- [14] Z. Tian, Q. Li, J. Hou, L. Pei, Y. Li, S. Ai, Platinum nanocrystals supported on CoAl mixed metal oxide nanosheets derived from layered double hydroxides as catalysts for selective hydrogenation of cinnamaldehyde, J. Catal. 331 (2015) 193–202.
- [15] Y. Xue, H. Xin, W. Xie, P. Wu, X. Li, Pt nanoparticles supported on YCo_xFe_{1-x}O₃ perovskite oxides: highly efficient catalysts for liquid-phase hydrogenation of cinnamaldehyde, Chem. Commun. 55 (2019) 3363–3366.
- [16] Y. Zhang, S. Wei, Y. Lin, G. Fan, F. Li, Dispersing metallic platinum on green rust enables effective and selective hydrogenation of carbonyl group in cinnamaldehyde, ACS Omega 3 (2018) 12778–12787.
- [17] S. Bai, L. Bu, Q. Shao, X. Zhu, X. Huang, Multicomponent Pt-based zigzag nanowires as selectivity controllers for selective hydrogenation reactions, J. Am. Chem. Soc. 140 (2018) 8384–8387.
- [18] M. Zhu, B. Huang, Q. Shao, Y. Pi, Y. Qian, X. Huang, Highly networked platinumtin nanowires as highly active and selective catalysts towards the semihydrogenation of unsaturated aldehydes, ChemCatChem 10 (2018) 3214–3218.
- [19] C. Yang, S. Bai, Y. Feng, X. Huang, An on-demand, selective hydrogenation catalysis over Pt-Fe nanocatalysts under ambient condition, ChemCatChem 11 (2019) 2265–2269.
- [20] X. Wang, Y. He, Y. Liu, J. Park, X. Liang, Atomic layer deposited Pt-Co bimetallic catalysts for selective hydrogenation of α,β -unsaturated aldehydes to unsaturated alcohols, J. Catal. 366 (2018) 61–69.
- [21] Q. Wang, G. Wang, H. Xin, J. Liu, G. Xiong, P. Wu, X. Li, Sn-doped Pt catalyst supported on hierarchical porous ZSM-5 for the liquid-phase hydrogenation of cinnamaldehyde, Catal. Sci. Technol. 9 (2019) 3226–3237.
- [22] K. Yuan, T. Song, D. Wang, X. Zhang, X. Gao, Y. Zou, H. Dong, Z. Tang, W. Hu, Effective and selective catalysts for cinnamaldehyde hydrogenation: Hydrophobic hybrids of metal-organic frameworks, metal nanoparticles, and micro-and mesoporous polymers, Angew. Chem. Int. Ed. 57 (2018) 5708– 5713.
- [23] L. Chang, Y. Li, One-step encapsulation of Pt-Co bimetallic nanoparticles within MOFs for advanced room temperature nanocatalysis, Mol. Catal. 433 (2017) 77–83.
- [24] K.B. Vu, K.V. Bukhryakov, D.H. Anjum, V.O. Rodionov, Surface-bound ligands modulate chemoselectivity and activity of a bimetallic nanoparticle catalyst, ACS Catal. 5 (2015) 2529–2533.
- [25] K.R. Kahsar, D.K. Schwartz, J.W. Medlin, Control of metal catalyst selectivity through specific noncovalent molecular interactions, J. Am. Chem. Soc. 136 (2014) 520–526.
- [26] K.R. Kahsar, D.K. Schwartz, J.W. Medlin, Stability of self-assembled monolayer coated Pt/Al₂O₃ catalysts for liquid phase hydrogenation, J. Mol. Catal. A 396 (2015) 188–195.
- [27] P. Liu, E.J.M. Hensen, Highly efficient and robust Au/MgCuCr₂O₄ catalyst for gas-phase oxidation of ethanol to acetaldehyde, J. Am. Chem. Soc. 135 (2013) 14032–14035.
- [28] Y. Wang, A. Jia, M. Luo, J. Lu, Highly active spinel type CoCr₂O₄ catalysts for dichloromethane oxidation, Appl. Catal. B 165 (2015) 477–486.

H. Xin et al./Journal of Catalysis xxx (xxxx) xxx

- [29] F. Yan, C. Zhao, L. Yi, J. Zhang, B. Ge, T. Zhang, W. Li, Effect of the degree of dispersion of Pt over MgAl₂O₄ on the catalytic hydrogenation of benzaldehyde, Chin. J. Catal. 38 (2017) 1613–1620.
- [30] W. Hu, D. Li, Y. Yang, T. Li, H. Chen, P. Liu, Copper ferrite supported gold nanoparticles as efficient and recyclable catalyst for liquid-phase ethanol oxidation, J. Catal. 357 (2018) 108–117.
- [31] S.T. Oyama, X. Zhang, J. Lu, Y. Gu, T. Fujitani, Epoxidation of propylene with H₂ and O₂ in the explosive regime in a packed-bed catalytic membrane reactor, J. Catal. 257 (2008) 1–4.
- [32] A. Jia, G. Hu, L. Meng, Y. Xie, J. Lu, M. Luo, CO oxidation over CuO/Ce_{1-x}Cu_xO_{2-δ} and Ce_{1-x}Cu_xO_{2-δ} catalysts: Synergetic effects and kinetic study, J. Catal. 289 (2012) 199–209.
- [33] R.J. Madon, M. Boudart, Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions, Ind. Eng. Chem. Fundam. 21 (1982) 438–447.
- [34] P. Tarte, Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO₄ tetrahedra and AlO₆ octahedra, Spectrochim. Acta, Part A 23 (1967) 2127–2143.
- [35] H. Liu, Q. Mei, S. Li, Y. Yang, Y. Wang, H. Liu, L. Zheng, P. An, J. Zhang, B. Han, Selective hydrogenation of unsaturated aldehydes over Pt nanoparticles promoted by the cooperation of steric and electronic effects, Chem. Commun. 54 (2018) 908–911.
- [36] R. Yao, J. Li, P. Wu, X. Li, The superior performance of a Pt catalyst supported on nanoporous SiC-C composites for liquid-phase selective hydrogenation of cinnamaldehyde, RSC Adv. 6 (2016) 81211–81218.
- [37] S. Wei, Y. Zhao, G. Fan, L. Yang, F. Li, Structure-dependent selective hydrogenation of cinnamaldehyde over high-surface-area CeO₂-ZrO₂ composites supported Pt nanoparticles, Chem. Eng. J. 322 (2017) 234–245.
- [38] Z. Tian, Q. Li, J. Hou, Y. Li, S. Ai, Highly selective hydrogenation of α, βunsaturated aldehydes by Pt catalysts supported on Fe-based, Catal. Sci. Technol. 6 (2016) 703–707.
- [39] D. Wang, Y. Zhu, C. Tian, L. Wang, W. Zhou, Y. Dong, Q. Han, Y. Liu, F. Yuan, H. Fu, Synergistic effect of Mo₂N and Pt for promoted selective hydrogenation of cinnamaldehyde over Pt-Mo₂N/SBA-15, Catal. Sci. Technol. 6 (2016) 2403–2412.

- [40] Y. Dai, X. Gao, X. Chu, C. Jiang, Y. Yao, Z. Guo, C. Zhou, C. Wang, H. Wang, Y. Yang, On the role of water in selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on PtFe catalysts, J. Catal. 364 (2018) 192–203.
- **[41]** H. Wang, S. Bai, Y. Pi, Q. Shao, Y. Tan, X. Huang, A strongly coupled ultrasmall Pt₃Co nanoparticle-ultrathin Co(OH)₂ nanosheet architecture enhances selective hydrogenation of α, β-unsaturated aldehydes, ACS Catal. 9 (2019) 154–159.
- [42] L. Yang, H. Wu, H. Gao, J. Li, Y. Tao, W. Yin, F. Luo, Hybrid catalyst of a metalorganic framework, metal nanoparticles, and oxide that enables strong steric constraint and metal-support interaction for the highly effective and selective hydrogenation of cinnamaldehyde, Inorg. Chem. 57 (2018) 12461–12465.
- [43] N.E. Nunez, H.P. Bideberripe, M. Mizrahi, J.M. Ramallo-Lopez, M.L. Casella, G.J. Siri, CO selective oxidation using co-promoted Pt/γ-Al₂O₃ catalysts, Int. J. Hydrogen Energy 41 (2016) 19005–19013.
- [44] A.J.H.M. Kock, H.M. Fortuin, J.W. Geus, The reduction behavior of supported iron catalysts in hydrogen or carbon monoxide atmospheres, J. Catal. 96 (1985) 261–275.
- [45] P. Arnoldy, J.A. Moulijn, Temperature-programmed reduction of CoO/Al₂O₃ catalysts, J. Catal. 93 (1985) 38–54.
- [46] A.S. Lisitsyn, O.A. Yakovina, On the origin of high-temperature phenomena in Pt/Al₂O₃, Phys. Chem. Chem. Phys. 20 (2018) 2339–2350.
- [47] X. Lan, K. Xue, T. Wang, Combined synergetic and steric effects for highly selective hydrogenation of unsaturated aldehyde, J. Catal. 372 (2019) 49–60.
- [48] Q. Hu, S. Wang, Z. Gao, Y. Li, Q. Zhang, Q. Xiang, Y. Qin, The precise decoration of Pt nanoparticles with Fe oxide by atomic layer deposition for the selective hydrogenation of cinnamaldehyde, Appl. Catal. B 218 (2017) 591–599.
- [49] M. Vijayaraj, C.S. Gopinath, On the "active spacer and stabilizer" role of Zn in $Cu_{1-x}Zn_x$ Fe₂O₄ in the selective mono-N-methylation of aniline: XPS and catalysis study, J. Catal. 241 (2006) 83–95.
- [50] G. Corro, C. Cano, J.L.G. Fierro, A study of Pt-Pd/γ-Al₂O₃ catalysts for methane oxidation resistant to deactivation by sulfur poisoning, J. Mol. Catal. A 315 (2010) 35–42.