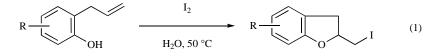
Selective 5-exo-trig Iodocyclization of N-tosyl-2-allylanilines in Water

Michalis Batistatos^a, Manolis A. Fousteris^{a,b}, Sotiris S. Nikolaropoulos^{*,a}, Jean Le Bras^b and Jacques Muzart^b

^aLaboratory of Medicinal Chemistry, Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Patras, Greece

^bInstitut de Chimie Moléculaire, UMR 6229, CNRS-Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France

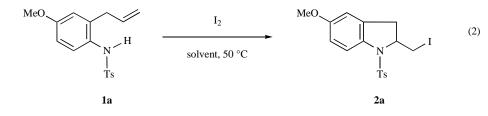

Received October 19, 2009: Revised March 25, 2010: Accepted April 19, 2010

Abstract: Various 2-iodomethyl-*N*-tosylindolines are obtained in high yields from the reaction of *N*-tosyl-2-allylanilines with iodine in water at 50 $^{\circ}$ C.

Keywords: Iodocyclization, indolines, iodine, water.

The indoline core is a prevalent structural component found in a variety of natural products and synthetic compounds with diverse biological activities [1]. Because of their promising pharmacological applications, indolines serve as attractive synthetic targets and a number of methodologies based on cyclization of aniline derivatives [2,3] or radical-mediated additions [4] have been reported. Also, domino Pd-catalyzed *ortho*-alkylation/amination [5] or Cu-catalyzed amidation/nucleophilic substitution reactions of substituted iodoarenes [6], Pd^{II}-catalyzed C-H activation In contrast, Pd^{II} -catalysis has been used with excesses of K_2CO_3 and CuX_2 (X = Cl or Br) to mediate the halocyclization of *N*-substituted-2-allylanilines [15]. These catalytic conditions led however to a mixture of 5-endo and 6-exo cyclisation products.

Preliminary experiments carried out with 2-allylaniline as substrate and various amounts of iodine led to complex mixtures containing low amounts of the expected 2iodomethyl-indoline. Strong improvements of the results have been obtained with the substitution of the nitrogen atom

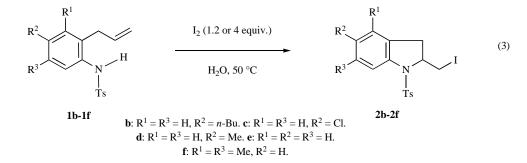

Equation 1.

reactions of arylethylamines [7], and intramolecular cyclizations of 2-*p*-tolylsulfinyl alkylbenzene derivatives [8] have been referred. Additional functionalization of the indoline core remains an open challenge for synthetic chemists on the way to the construction of more complex compounds [9].

Recently, we disclosed the water-promoted iodocyclization of 2-allylphenols (Eq. 1) [10]. The interest of this procedure has been highlighted by Tripathi and co-workers who have synthesized a range of 2-methylbenzofurans [11]. This urges us to exploit this methodology to synthesize 2iodomethyl-indolines. The iodocyclization of *N*-alkenylamides has been reported using MeCN as the solvent and excess of both *t*-BuOCl and NaI [12], I₂ under basic or acidic conditions [13], or a mixture of Chloramine T and I₂ [14], but, to the best of our knowledge, these methods have not been used with 2-allylaniline type compounds as substrates. of the substrate by a tosyl group [16]. Indeed, heating 4methoxy-*N*-tosyl-2-allylaniline (1a) with 4 equiv. of iodine in water (2 mL/mmol of 1a) at 50 °C for 2 h afforded 2-(iodomethyl)-5-methoxy-1-tosylindoline [17] (2a) that has been isolated in 81% yield after column chromatography (Eq. 2; Table 1, run 1). Lowering the amount of I₂ to 1.2 equiv. and increasing the reaction time to 3 h led to a similar yield (Run 2) while the decrease to 1 equiv. resulted in 72% yield (Run 3). Performing the iodocyclization in a 1:1 mixture of H₂O/MeCN, with or without NaHCO₃ as basic additive, was not beneficial to the process (Runs 4 and 5). A high yield can be obtained in the absence of water but an extended reaction time is thus required (Runs 6 and 7).

Encouraged by these results, the iodocyclization of *N*-tosyl-2-allylanilines **1b-1f** has been carried out using 1.2 and 4 equiv. of I_2 in water at 50 °C (Eq. 3) [18]. As shown in Table 2, the corresponding 2-iodomethyl-indolines (**2b-2f**) have been obtained, in up to 90% yield [19], with efficiency and a reaction rate depending on both the structure of the substrate and the amount of iodide. It should be noted that, in all aforementioned experiments, the alternative 6-*exo* cyclisation was never detected.

^{*}Address correspondence to this author at the Laboratory of Medicinal Chemistry, Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Patras, Greece; Tel: (+30) 2610969326; Fax: (+30) 2610310553; E-mail: snikolar@upatras.gr



Equation 2.

 Table 1.
 Iodocyclization of 1a Under Different Conditions

Run	Solvent	I2 (equiv.)	Time (h)	Yield %
1	H ₂ O	4	2	81
2	H ₂ O	1.2	3	82
3	H ₂ O	1	3	72
4	H ₂ O/MeCN (1:1)	1.2	3	69
5 ^a	H ₂ O/MeCN (1:1)	1.2	16	70
6	MeCN	1.2	3	62
7	MeCN	1.2	27	81

^aReaction carried out in the presence of NaHCO₃ (1.2 equiv.).

Equation 3.

Table 2.	Iodocyclization	of 1b-1f
----------	-----------------	----------

Substrate	I ₂ (equiv.)	Time (h)	Yield (%)
1b	1.2	3	68
"	4	1	90
1c	1.2	2	80
"	4	4	71
1d	1.2	4	79
"	4	1	73
1e	1.2	2.75	79
"	4	1	84
1f	1.2	0.5	88
"	4	0.3	79

In conclusion, 2-iodomethyl-*N*-tosylindolines can be obtained from *N*-tosyl-2-allylanilines using an inexpensive and efficient procedure requiring only iodine as reagent and water as solvent.

ACKNOWLEDGEMENTS

The nuclear magnetic resonance and the GC-MS spectra were carried out in the Center of Instrumental Analysis of the University of Patras, and the authors are indebted to Dr. D. Vachliotis for performing these measurements.

SUPPLEMENTARY MATERIAL

Supplementary material is available on the publishers Web site along with the published article.

REFERENCES AND NOTES

- [1] (a) Boger, D.L.; Boyce, C.W.; Garbaccio, R.M.; Goldberg, J.A. CC-1065 and the Duocarmycins: synthetic studies. Chem. Rev., 1997, 97, 787-828. (b) Zhao, He; He, X.; Thurkauf, A.; Hoffman, D.; Kieltyka, A.; Brodbeck, R.; Primus, R.; Wasley, J.W.F. Indoline and piperazine containing derivatives as a novel class of mixed D2/D4 receptor antagonists. Part 2: asymmetric synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2002, 12, 3111-3115. (c) Sunazuka, T.; Shirahata, T.; Tsuchiya, S.; Hirose, T.; Mori, R.; Harigaya, Y.; Kuwajima, I.; Ohmura, S. A concise stereoselective route to the indoline spiroaminal framework of Neoxaline and Oxaline. Org. Lett., 2005, 7, 941-943. (d) Chang, J.-Y.; Hsieh, H.-P.; Chang, C.-Y.; Hsu, K.-S.; Chiang, Yi-F.; Chen, C.-M.; Kuo, C.-C.; Liou, J.-P. 7-Aroyl-aminoindoline-1sulfonamides as a novel class of potent antitubulin agents. J. Med. Chem., 2006, 49, 6656-6659. (e) Noguchi, T.; Tanaka, N.; Nishimata, T.; Goto, R.; Hayakawa, M.; Sugidachi, A.; Ogawa, T.; Asai, F.; Ozeki, T.; Fujimoto, K. Indoline derivatives II: Synthesis and Factor Xa (FXa) inhibitory activities. Chem. Pharm. Bull., 2007, 55, 393-402. (f) Lacivita, E.; Leopoldo, M. Selective agents for serotonin_{2C} (5-HT_{2C}) receptor. Curr. Top. Med. Chem., 2006, 6, 1927-1970. (g) Sakashita, H.; Akahoshi, F.; Yoshida, T.; Kitajima, H.; Hayashi, Y.; Ishii, S.; Takashina, Y.; Tsutsumiuchid, R.; Onoa, S. Lead optimization of [(S)-\gamma-(arylamino)prolyl]thiazolidine focused on y-substituent: Indoline compounds as potent DPP-IV inhibitors. Bioorg. Med. Chem., 2007, 15, 641-655.
- (a) Sherman, E.S.; Chemler, S.R.; Tan, T.B.; Gerlits, O. Copper(II) [2] acetate promoted oxidative cyclization of arylsulfonyl-o-allylanilines. Org. Lett., 2004, 6, 1573-1575. (b) Lira, R.; Wolfe, J.P. Palladium-catalyzed synthesis of N-aryl-2-benzylindolines via tandem arylation of 2-allylaniline: Control of selectivity through in situ catalyst modification. J. Am. Chem. Soc., 2004, 126, 13906-13907. (c) Alexanian, E.J.; Lee, C.; Sorensen, E.J. Palladiumcatalyzed ring-forming aminoacetoxylation of alkenes. J. Am. Chem. Soc., 2005, 127, 7690-7691. (d) Liu, P.; Huang, L.; Lu, Y.; Dilmeghani, M.; Baum, J.; Xiang, T.; Adams, J.; Tasker, A.; Larsen, R.; Faul, M.M. Synthesis of heterocycles via ligand-free palladium catalyzed reductive Heck cyclization. Tetrahedron Lett., 2007, 48, 2307-2310. (e) Sherman, E.S.; Fuller, P.H.; Kasi, D.; Chemler, S.R. Pyrrolidine and piperidine formation via copper(II) carboxylate-promoted intramolecular carboamination of unactivated olefins: diastereoselectivity and mechanism. J. Org. Chem., 2007, 72, 3896-3905. (f) Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Palladium-catalyzed sp³ C-H activation of simple alkyl groups: Direct preparation of indoline derivatives from N-alkyl-2bromoanilines. Org. Lett., 2008, 10, 1759-1762.
- [3] (a) Nicolaou, K.C.; Roecker, A.J.; Pfefferkorn, J.A.; Cao, G.-Q. A novel strategy for the solid-phase synthesis of substituted indolines. J. Am. Chem. Soc., 2000, 122, 2966-2967. (b) Bailey, W.F.; Luderer, M.R.; Mealy, M.J. Preparation of differentially 1,3disubstituted indolines by intramolecular carbolithiation. Tetrahedron Lett., 2003, 44, 5303-5305. (c) Yin, Y.; Zhao, G. Synthesis of indolines and quinoline via cyclization of Narylsulfonyl-2-allylanilines catalyzed by Brønsted acid Heterocycles, 2006, 68, 23-31. (d) Correa, A.; Tellitu, I.; Dominguez, E.; SanMartin, R. A metal-free approach to the synthesis of indoline derivatives by a phenyliodine(III) bis(trifluoroacetate)-mediated amidohydroxylation reaction. J. Org. *Chem.*, **2006**, *71*, 8316-8319. (e) Groth, U.; Köttgen P.; Langenbach P.; Lindenmaier A.; Schütz T.; Wiegand, M. Enantioselective synthesis of 3,3-disubstituted indolines via asymmetric intramolecular carbolithiation in the presence of (-)sparteine. Synlett, 2008, 1301-1304. (f) Ichikawa, J.; Iwai, Y.; Nadano, R.; Mori, T.; Ikeda M. A new class of substrates for nucleophilic 5-endo-trig cyclization, 2-trifluoromethyl-1-alkenes:

synthesis of five-membered hetero- and carbocycles that bear fluorinated one-carbon units. *Chem. Asian J.*, **2008**, *3*, 393-406.

- [4] (a)Viswanathan, R.; Prabhakaran, E.N.; Plotkin, M.A.; Johnston, J.N. Free radical-mediated aryl amination and its use in a convergent [3+2] strategy for enantioselective indoline α -amino acid synthesis. J. Am. Chem. Soc., 2003, 125, 163-168. (b) Leroi, C.; Bertin, D.; Dufils, P.-E.; Gigmes, D.; Marque, S.; Tordo, P.; Couturier, J.-L.; Guerret, O.; Ciufolini, M.A. Alkoxyaminemediated radical synthesis of indolinones and indolines. Org. Lett., 2003, 5, 4943-4945. (c) Fuwa, H.; Sasaki, M. Strategies for the synthesis of 2-substituted indoles and indolines starting from acyclic α-phosphoryloxy enecarbamates. Org. Lett., 2007, 9, 3347-3350. (d) Viswanathan, R.; Smith, C.R.; Prabhakaran, E.N.; Johnston, J.N. Free radical-mediated aryl amination: Convergent two- and three-component couplings to chiral 2,3-disubstituted indolines. J. Org. Chem., 2008, 73, 3040-3046. (e) Prediger, I.; Weiss, T.; Reiser, O. Facile access to 2-arylindolines and 2arylindoles by microwave-assisted tandem radical cyclization. Synthesis, 2008, 2191-2198. (f) Wipf, P.; Maciejewski, J.P. Titanocene(III)-catalyzed formation of indolines and azaindolines. Org. Lett., 2008, 10, 4383-4386.
- [5] Thansandote, P.; Raemy, M.; Rudolph, A.; Lautens, M. Synthesis of benzannulated *N*-heterocycles by a palladium-catalyzed C-C/C-N coupling of bromoalkylamines. *Org. Lett.*, **2007**, *9*, 5255-5258.
- [6] Minatti, A.; Buchwald S. L. Synthesis of indolines via a domino Cu-catalyzed amidation/cyclization reaction. Org. Lett., 2008, 10, 2721-2724.
- [7] Li, J.-J.; Mei, T.-S.; Yu, J.-Q. Synthesis of indolines and tetrahydroisoquinolines from arylethylamines by Pd^{II}-catalyzed C-H activation reactions. *Angew. Chem., Int. Ed. Engl.*, 2008, 47, 6452-6455.
- [8] Garcia Ruano, J.L.; Alemán, J.; Catalán, S.; Marcos, V.; Monteagudo, S.; Parra, A.; del Pozo, C.; Fustero S. Anionicanionic asymmetric tandem reactions: One-pot synthesis of optically pure fluorinated indolines from 2-p-tolylsulfinyl alkylbenzenes Angew. Chem., Int. Ed. Engl., 2008, 47, 7941-7944.
- [9] Dunetz, J.R.; Danheiser, R.L. Synthesis of highly substituted indolines and indoles *via* intramolecular [4+2] cycloaddition of ynamides and conjugated enynes. J. Am. Chem. Soc., 2005, 127, 5776-5777.
- [10] Fousteris, M.; Chevrin, C.; Le Bras, J.; Muzart, J. Water-promoted iodocyclisation of 2-allylphenols. *Green Chem.*, 2006, 8, 522-523.
- [11] Yadav, A. K.; Singh, B. K.; Singh, N.; Tripathi, R. P. An elegant and unprecedented approach to 2-methylbenzofurans. *Tetrahedron Lett.* 2007, 48, 6628-6632.
- [12] (a) Minakata, S.; Kano, D.; Oderaotoshi, Y.; Komatsu, M. Unique ionic iodine atom transfer cyclization: a new route to iodomethylated pyrrolidine derivatives from γ-iodoolefin and chloramine-T. Org. Lett., 2002, 4, 2097-2099. (b) Minakata, S.; Morino, Y.; Oderaotoshi, Y.; Komatsu, M. Practical and convenient synthesis of N-heterocycles: stereoselective cyclization of N-alkenylamides with t-BuOI under neutral conditions. Org. Lett., 2006, 8, 3335-3337.
- [13] Amjad, M.; Knight, D. W. On the rapid synthesis of highly substituted proline analogues by 5-endo-trig iodocyclisation. *Tetrahedron Lett.*, 2006, 47, 2825-2828.
- [14] Morino, Y.; Hidaka, I.; Oderaotoshi, Y.; Komatsu, M.; Minakata, S. Electrophilic cyclization of *N*-alkenylamides using a chloramine-T/I₂ system. *Tetrahedron* 2006, 62, 12247-12251.
- [15] Manzoni, M.R.; Zabawa, T.P.; Kasi, D.; Chemler, S.R. Palladium(II)-catalyzed intramolecular aminobromination and aminochlorination of olefins. *Organometallics*, 2004, 23, 5618-5621.
- [16] This nitrogen substituent is commonly used for the halocyclization of *N*-alkenylamides [12-15].
- [17] Physical data for compound **2a**: Mp: 146.5-147.5 °C. IR (KBr) v cm⁻¹: 3009, 2920, 2837, 1597, 1487, 1350, 1161, 812, 704, 665, 606, 571, 540. ¹H NMR (CDCl₃, 400 MHz): δ 2.36 (s, 3H), 2.73-2.84 (m, 2H), 3.23 (t, J = 10.0 Hz, 1H), 3.62 (dd, J = 9.7, 3.6 Hz, 1H), 3.76 (s, 3H), 4.29-4.35 (m, 1H), 6.60 (d, J = 2.5 Hz, 1H), 6.76 (dd, J = 8.8, 2.6 Hz, 1H), 7.18 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 11.1, 21.5, 34.9, 55.6, 62.9, 110.9, 113.2, 118.2, 127.2, 129.7, 132.4, 134.3, 134.6, 144.1, 157.6 GC-MS (EI): $t_{R} = 14.08$; 443 (12) [M⁺], 288 (44), 161 (100), 146 (18), 130 (4), 118 (5), 105, 91

(6). Anal. Calcd. for $C_{17}H_{18}INO_3S;\ C,\ 46.06;\ H,\ 4.09;\ N,\ 3.16;$ Found: C, 45.98; H, 4.07; N, 3.14.

[18] Typical procedure for the synthesis of 2-iodomethyl-N-tosylindoline derivatives **2a-2f**. A mixture of **1** (0.25 mmol) and iodine (1.2 or 4 mmol) in water (0.5 ml) was stirred at 50 °C for the indicated time. The reaction mixture was diluted with dichloromethane (10 mL) and aqueous saturated $Na_2S_2O_3$ was added. The phases were separated and the aqueous layer was extracted with dichloromethane (3×10 mL). The combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude mixture was purified by silica gel column chromatography using hexanes-ethyl acetate mixtures as eluents to afford the corresponding 2-iodomethyl-*N*-tosyl-indoline **2**.

[19] For spectroscopic data of **2b-2f** see Supplementary Material.