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Abstract: A method for generating anomeric radicals of nucleosides was developed based on a 1,5-translocation 
strategy. A vinyl radical derived from uracil nucleosides having a fl,~-dibromovinyl group at the C6 position under- 
goes the 1,5-translocation to form an anomeric radical, which then cyclizes with the resulting CH=CHBr group in 
a 5-endo-trig manner. The whole sequence has disclosed a facile access to anomeric spiro derivatives. A similar reac- 
tion of a 6-ctdoro-9-(/J-D-ribofuranosyl)purine derivative was also briefly examined. 
Copyright © 1996 Elsevier Science Ltd 

The finding that anomeric radicals of carbohydrates prefer a-facial reaction, l) irrespective of the C2- 

configuration, has offered a great advantage over conventional ionic processes especially in constructing the 13- 

glycosidic linkage. 2) These anomeric radicals were generated from carbohydrate derivatives having a suitable 

Cl-radical source (halogen, SePh, etc.). Since the anomeric position of nucleosides is preoccupied by a base 

moiety, which sometimes acts as a leaving group, them has been no method available for the preparation of such 

Cl'-substituted radical precursors. Therefore, different chemistry has to be developed for generating nucleoside 

anomeric radicals. Quite recently, we and Chatgilialoglu et al. independently reported the f'n'st example of a 

nucleoside anomeric radical in which a compound like 1 was used as a precursor. 3) O 

In this instance, initially formed C2'-radical undergoes 1,2-translocation with Ntl~l. 
migration of the pivaloyl group to yield an anomeric radical. This communication . \  

describes an alternative approach for generating the anomeric radicals, which is " - ~ / S i O ' ] / O \  F O 

based on the 1,5-translocation strategy. 4) 

Our whole idea is visualized in Scheme 1. Reaction of a tin radical with A \ -~ ~OCOGMes -t-si6 
having a structure CH=CX2 at the C6 position of pyrimidine nucleoside (or C8 of / 1 

purine nucleoside) gives a vinyl radical B, which then forms C through radical inversion. 

Provided that the 1,5-translocation of C takes place, a new method of generating an anomeric radical (D and E) 

can be developed. Although the subsequent intramolecular reaction leading to anomeric spiro nucleosides H and 

I is formally a disfavoured 5-endo-trig cyclization,5,6) there would be a good chance in this particular case to 

effect such a reaction pathway: conjugation of the CH=CHX group with an enone structure of uracil ring (or an 
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imine system of a purine base) would facilitate the formation of incipient radicals F and G which are stabilized 

by the resonance effect. It should be mentioned that the anomeric I$-spironucleoside H serves as a conforma- 

tionally fixed model of naturally occurring nucleosides. 7) 

The [~,l~-dibromovinyl group was selected as a vinyl radical source, and 2-8 were synthesized by way of 

lithiation 8) (for introduction of a formyl group) followed by the Wittig reaction. 9) Radical reaction of these 

compounds was carded out by adding a mixture of Bu3SnH (2.5 equiv) and AIBN (0.5 equiv) over 3 h by a 

syringe pump to a refluxing benzene solution of each substrate. The results are summarized in Table 1 with only 

cyclized products being listed. When 2 was used (entry I), the spiro 13-nucleoside 9 was isolated as the major 

product along with I0 and 11 after HPLC separation (hexane/EtOAc = 1/1-1/2). The 7,8-dihydro-8-phenyl 

derivative 10 was obtained as a single isomer. The C8-configuration of 10 was assumed to be R, based on its 

1H NMR spectrum: a high field shift of H-4' (5 3.44 ppm), which is located above the phenyl ring, was 

observed (cf. H-4' of 9:8 4.29 ppm). When this reaction was repeated using Bu3SnD, no deuterium incorpo- 

ration was observed in 9. In entry 2, the major product 12 was accompanied with four 7,8-dihydro derivatives 

(13-16). Similar results are seen in entry 3 wherein 17-21 were obtained (compound 19 consists of (8S)- and 

(SR)-isomers). Since the glycosidic conformation of these products is fixed in the syn-range, their anomeric 

0 0 CI 
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2 Rl&R2-isopropylidene, R3-TBDMS 5 R1 -R2-H, R3&R4-TIPDS* 8 R1 -R2-R3-TBDMS 
3 R 1 - R 2 = R 3 - TBDMS " 1,1,3,3-tetraisopropyidisiloxan- 

1,3-diyl 4 R'-R2- R3-Ac 
6 R 1 =OAc, R2=H, R3-R4-AC 
7 91 -OH, R2 - H, R3-R4-'I'BDMS 
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sugar = 5-O-TBDMS-2,3-O-isopropylidene-D-ribofuranosyl 
sugar = 2,3,5-tris-O-TBDMS-D-ribofuranosyl 
sugar - 2,3,5-tri-O-acatyI-D-ribofuranosyl 
sugar - 2-deoxy-3,5-O-TIPDS-D-ribofuranosyl 
sugar - 2,3,5-tri-O-acatyI-D-arabinofuranosyl 
sugar = 3,5-bis-O-TBDMS-D-arabinofuranosyl 

sugar - 5-O-TBDMS-2,3-O-isopropylldena-D-ribofuranosyl, R - Ph 
sugar - 2,3,5-tds-O-TBDMS-D-ribofuranosyl, R - H 
sugar - 2,3,5-tris-O-TBDMS-D-ribofuranosyl, R - Ph 
sugar - 2,3,5-tri-O-acatyI-D-ribofuranosyl, R - H 
sugar - 2,3,5-tri-O-acetyI-D-ribofuranosyl, R - Ph 
sugar - 2-deoxy-3,5-O-TIPDS-D-ribofuranosyl, R - H 
sugar - 2,3,5-tri-O-acetyI-D-arabinofuranosyl, R = Ph 
sugar - 3,5-bis-O-TBDMS-D-arabinofuranosyl, R - H 
sugar - 3,5-bis-O-TBDMS-D-arabinofuranosyl, R - Ph 

11 sugar - 5-O-TBDMS-2,3- O-isopropylldane-D-ribofuranosyl 
20 sugar = 2,3,5-tri-O-acetyI-D-ribofuranosyl 
24 sugar .  2-deoxy-3,5-O-TIPDS-D-ribofuranosyl 
28 sugar - 2,3,5-tri-O-acetyI-D-arabinofuranosyl 
33  sugar - 3,5-bis-O-TBDMS-D-arabinofuranosyl 

15 sugar - 2,3,5-tris-O-TBDMS-D-ribofuranosyl, R - H 
16 sugar - 2,3,5-tris-O-TBDMS-D-ribofuranosyl, R - Ph 

21 sugar = 2,3,5-tri-O-acetyI-D-ribofuranosyl, R - Ph 
25 sugar = 2-deoxy-3,5-O-TIPDS-D-ribofuranosyl, R - H 
29 sugar - 2,3,5-tri-O-acetyI-D-arabinofuranosyl, R - Ph 
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Table 1. Radical-Mediated Cyclization of 2-8. 

Combined Ratio of [~- and 
Entry Substrata Cyclized product (% yield by HPLC isolation) yield (%) o~-isomars (6 / c¢) 

1 2 9 (40), 10 (3), 11 (3) 46 ca. 14/1 

2 3 12 (50), 13 (3),14 (5), 15 (4), 18 (3) S5 ca. 8 /1  

3 4 17 (40), 18 (1), l g  (13), 20 (7), 21 (1) 62 ca. 7 /1  

4 5 22 (23), 23 (7), 24 (16), 25 (1) 47 ca. 2 / 1  

5 6 26 (10), 27 (7), 28 (21), 29 (14) 52 1 / 2  

6 7 30 (11), 31 (8 ) ,32(12) ,33(26)  57 ca. 1 /1  

7 8 34 (18), 35 (14), 36 (5) 37 ca. 1/1 

stereochemislry is readily assignable based on an anisotropic effect of C2-carbonyl group to H-2' which is 

observable only in 13-isomers (chemical shifts of H-2' in CDCI 3 8 ppm: 17, 6.44; 18, 6.39; 19, 6.19 and 6.40; 

20, 5.53; 21, 5.28). 10 ) 

It is conceivable that ribofuranosyl anomeric radicals prefer a-orientation as depicted in D, irrespective of 

the hydroxy protecting group, presumably due to unfavourable disposition of the bulky base moiety in E caused 

by the 2'-O-substituent. 11) As shown in entry 4 by the formation of 22-25, when the a-face is less crowded, a 

significant decrease in the I]/ct ratio was an actual issue. 

As can be anticipated from static hindrance of the 2'-O-substituent, proportion of 13-isomers decreases 

when the arabinofuranosyl derivatives 6 and 7 were employed (enwies 5 and 6). There may be a trend that 

increase in bulkiness of the 2'-O-protecting group results in decrease of the 13/~t ratio. 12) Finally, reaction of the 
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ribofuranosylpurine derivative 8 was examined (entry 7). Although we have no clear explanation about the 

decreased I~/ct ratio, the observed comparatively lower combined yield would be a reflection of the fact that the 

vinyl group is bound to a 5-membered imidazole ring and thus the distance between vinyl radical and H-I' is 

slightly longer than that of uracil cases. This assumption would be supported by the formation of 36 which is 

assumed to have resulted from 1,6-translocation 13) of a vinyl radical. 
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