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a b s t r a c t

An efficient method of palladium-catalyzed direct 5-arylation of 1,3-dimethyluracil was developed with a
various range of aryl bromides including electron-deficient aryl bromides. 5-Aryluracil derivatives were
obtained in moderate to good yields regioselectively most likely via an electrophilic metalation–
deprotonation process.

� 2011 Elsevier Ltd. All rights reserved.
5-Aryluracil and its nucleoside derivatives have received much
attention due to their wide range of biological activities1 and appli-
cations in bioanalysis or chemical biology.2 Most frequently, these
compounds were prepared by palladium-catalyzed cross-coupling
reactions of 5-halouracils with arylboronic acids3 or arylstann-
anes.4 However, the yields of 5-aryluracil derivatives were moder-
ate and highly toxic stannane impurities would be a problem for
the biological study with the product obtained from arylstannane.
Recently, Hocek and co-workers reported an elegant palladium-
catalyzed direct arylation of N–H protected uracils with aryl ha-
lides.5,6 However, the yields of 5-aryluracils were moderate and
the selectivity between 5- and 6-aryluracils was not satisfactory.
In addition, aryl halides bearing an electron-withdrawing substitu-
ent failed in the reaction.

In these respects, we decided to develop a more efficient proto-
col for the 5-arylation of 1,3-dimethyluracil (1a). At the outset of
this study, we focused our attention to a palladium-catalyzed di-
rect arylations of indole derivatives, which have been studied dee-
ply by many research groups.7,8 As shown in Scheme 1, the
reactivity of 1,3-dimethyluracil (1a) toward an electrophile would
be very similar with that of indole, in that both compounds have an
enamine moiety and attack an electrophile at the 3-position of
indole and the 5-position of uracil. Thus most of the reported
palladium-catalyzed arylations of indole used an electrophilic pal-
ladium intermediate,7 while the concept has not been examined
ll rights reserved.

: +82 62 530 3389.
with uracil derivatives, to the best of our knowledge.9 Actually,
however, the palladium intermediate I of indole was converted
to a more stable benzylic carbocation intermediate II via a 1,2-pal-
ladium migration8 and eventually provided 2-arylindole. A similar
1,2-migration of palladium in the case of uracil (III to IV) would be
difficult because the carbocation intermediate IV is not stable due
to the presence of nearby electron-deficient carbon atom of car-
bonyl moiety. In addition, the hydrogen at the 5-position of inter-
mediate III is acidic, thus the intermediate III could be converted to
an aryluracilpalladium intermediate V readily, and eventually to
1,3-dimethyl-5-aryluracil (3a) via a reductive elimination of Pd0.
Thus the formation 3a would be a major pathway when the elec-
trophilic palladation of 1a operates effectively.

Thus we expected that we could increase the yield of 3a and im-
prove the ratio of 3a/4a at the same time, by using an electrophilic
arylpalladium species. The use of a relatively poorly coordinating
carboxylate as the counterion could allow the dissociation of ArPdBr
into more electrophilic arylpalladium species ArPd+[OCOR]�.7a Sub-
sequently, a proportion of an electrophilic palladation process could
be increased while a Heck-type carbopalladation process (vide infra)
decreased. Based on the assumption we decided to use pivalic acid
(PivOH) as a carboxylate ion source, and examined the reaction of
1a as summarized in Table 1.

Initially, the reaction of 1a and bromobenzene (2a) was exam-
ined under three typical palladium-catalyzed reaction conditions
(entries 1–3). When we use Cs2CO3, 3a was isolated in low yield
(18%) along with 4a (8%). In the reaction, biphenyl was produced
in appreciable amounts by Ullmann type aryl–aryl reductive
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Scheme 1. Similarity and difference between indole and 1,3-dimethyluracil (1a) in their Pd-catalyzed arylation.

Table 1
Optimization of reaction conditions for the synthesis of 1,3-dimethyl-5-phenyluracil (3a)

Entry Conditionsa 3a (%) 4a (%)

1 PPh3 (20 mol %), Cs2CO3 (3.0 equiv), DMF, 130 �C, 12 h 18 8
2 PPh3 (20 mol %), K2CO3 (3.0 equiv), DMF, 130 �C, 12 h 42 8
3 TBAC (1.0 equiv), K2CO3 (3.0 equiv), DMF, 130 �C, 12 h 29 10

4b PPh3 (20 mol %), K2CO3 (3.0 equiv), PivOH (30 mol %), DMF, 130 �C, 12 h 79 10
5 PPh3 (20 mol %), K2CO3 (3.0 equiv), PivOH (100 mol %), DMF, 130 �C, 12 h 71 8
6 PPh3 (20 mol %), K2CO3 (3.0 equiv), PivOH (30 mol %), DMF, 100 �C, 12 h 73 8

7c PPh3 (10 mol %), K2CO3 (3.0 equiv), PivOH (30 mol %), DMF, 100 �C, 12 h 70 10
8d TBAC (1.0 equiv), K2CO3 (3.0 equiv), PivOH (30 mol %), DMF, 130 �C, 12 h 77 9
9 PPh3 (20 mol %), Na2CO3 (3.0 equiv), PivOH (30 mol %), DMF, 130 �C, 12 h 14 25

10 PPh3 (20 mol %), AgNO3 (1.0 equiv), K2CO3 (3.0 equiv), DMF, 130 �C, 12 h 42 6
11 PPh3 (20 mol %), Ag2O (1.0 equiv), K2CO3 (3.0 equiv), PivOH (30 mol %), DMF, 130 �C, 12 h 44 6

a PhBr (2.0 equiv) and Pd(OAc)2 (10 mol %) are common, unless otherwise noted.
b Selected as condition A.
c Pd(OAc)2 (5 mol %) was used.
d Selected as condition B.
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coupling reaction.10 Replacing the base to K2CO3
11 increased the

yield of 3a to 42%; however, the result was not satisfactory (entry
2). The use of ligandless conditions employing TBAC (tertabuty-
lammonium chloride) was not effective (entry 3). The use of PivOH
dramatically improved the yield of 3a, as shown in entries 4–8, as
compared to the reactions carried out without PivOH (entries 1–3).
When we use K2CO3/PivOH combination (entry 4), the yield of 3a
increased to 79%; however, 4a was also formed albeit in low yield
(10%).12 Increasing the amounts of PivOH (entry 5) was not effec-
tive. Lowering the reaction temperature did not improve the selec-
tivity (entry 6). Lower loading of Pd/PPh3 decreased the yield of 3a
slightly (entry 7). The use of TBAC in the presence of PivOH (entry
8) showed a similar result with that of entry 4. The use of Na2CO3

was not effective even in the presence of PivOH (entry 9). In order
to abstract a bromide ion effectively from ArPdBr and generate a
more electrophilic arylpalladium intermediate,7a the addition of
silver salts such as AgNO3 or Ag2O was examined; however, it
was not helpful (entries 10 and 11). With the optimization exper-
iments, we found that the conditions employing K2CO3/PivOH in
the presence of PPh3 (entry 4: condition A) or TBAC (entry 8:
condition B) were the best. Although the selectivity was not high
enough, we could certainly increase the yield of 3a.5,13

In order to examine the generality, we performed the reactions
of 1a with various aryl bromides 2a–j, and the results are summa-
rized in Table 2. The reactions with 4-bromotoluene (2b), 2-bromo-
toluene (2c), 2-bromonaphthalene (2d), and 1-bromonaphthalene
(2e) afforded the corresponding 5-aryl products 3b–e in good yields
(66–71%) along with low yields of 6-aryl derivatives 4b–d (8–10%).
The reaction with 4-bromoanisole (2f), however, showed a quite
different result. Under the conditions employing PPh3 (entry 4 in
Table 1: condition A), 5-aryl 3f, and 6-aryl 4f were isolated in 38%
and 40%, respectively. We thought that the moderate combined
yield (78%) and low selectivity between 3f/4f (almost 1:1) might
be ascribed to the low electrophilicity of 4-MeOPhPdX species
which renders the electrophilic palladation difficult. An electron-
donating methoxy group made the arylpalladium intermediate less
electrophilic. In addition, the presence of electron-rich PPh3 ligand
could make the arylpalladium species less electrophilic.7b Thus we
examined a ligandless condition (entry 8 in Table 1: condition B),
and we could improve both the yield and selectivity (3f: 65% and
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Palladium-catalyzed direct 5-arylation of 1,3-dimethyluracil
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4f: 25%), as shown in entry 6. Similarly, the reaction with 3-bromo-
anisole (2g) provided 3g in good yield (75%). The reactions with aryl
bromides bearing an electron-withdrawing group showed sluggish
reactivity. Methyl 4-bromobenzoate (2h), methyl 3-bromobenzo-
ate (2i), and 3-bromopyridine (2j) produced the desired compounds
3h–j in low to moderate yields (35–43%). We could obtain the cor-
responding 5-aryluracil derivatives from aryl bromides bearing an
EWG group, albeit in moderate yields, in contrast to the paper of
Hocek.5

The reaction mechanism for the selective formation of 5-arylura-
cils 3a–j could be postulated as shown in Scheme 2. Heck-type car-
bopalladation (vide supra) of 5,6-double bond of 1a with ArPdBr
species could occur in two ways to form VII and VIII. Epimerization
of VII and VIII at the 5-position could provide IX and X via the corre-
sponding enol or palladium enolate, respectively, and a following
syn b-H elimination would produce 3 and 4, respectively. However,
another important pathway must be involved for the exclusive for-
mation of 3. The pathway could be an electrophilic metalation–
deprotonation (EMD) mechanism. The ionization of arylpalladium
bromide ArPdBr to a cationic palladium intermediate ArPd+ could
be facilitated in the presence of PivOK,7a especially in a polar solvent
such as DMF, as Sharp and co-workers reported in their regioselec-
tive arylation of furan.14 A subsequent electrophilic palladation
could occur easily and regioselectively at the electron-rich 5-posi-
tion of 1a to form aryluracilpalladium intermediate VI, and a follow-
ing re-aromatization provided 3 after a reductive elimination of Pd0.

As another entry, we examined 5-phenylation of 1-(tetrahydro-
furan-2-yl)-3-benzyluracil (1b)15 with bromobenzene (2a) under
the same reaction conditions; however, a severe decomposition
was observed at 130 �C. By lowering the reaction temperature to
100 �C, we could isolate 3k in 55%,12 as shown in Scheme 3. In
the reaction, the corresponding 6-phenyl derivative was not
formed in any trace amount presumably due to the steric hin-
drance caused by tetrahydrofuranyl moiety.

As we started the 5-arylation of 1a by deep consideration of in-
dole derivatives, we decided to examine the feasibility of selective
synthesis of 6-aryl derivative 4a by applying the reported method
of oxidative arylation of indoles. Fagnou16a,b and DeBoef16c,d have
reported oxidative arylations of indoles with arenes. As shown in
Scheme 4, the reaction of 1a was examined in the presence of
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Pd(TFA)2, AgOAc, and PivOH in benzene (reflux, 20 h). To our de-
light, 4a was obtained in high yield (85%) along with a trace
amount of 3a (6%). The mechanism for the selective formation of
4a could be proposed as follows based on the works of Fagnou
and DeBoef.16 A regioselective palladation occurred at the 6-posi-
tion of 1a to form XI, most likely via a concerted metalation–
deprotonation (CMD) process by PdII(L)(OPiv) species involving a
deprotonation of more acidic hydrogen atom at the 6-position.5 A
N
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subsequent arylation of uracilpalladium intermediate XI with ben-
zene via a second CMD process produced 4a after reductive elimi-
nation of Pd0, which was oxidized to PdII by AgOAc.17 Similarly, the
reactions of 1a and three xylene isomers under the similar condi-
tions18 afforded the corresponding 6-xylyluracil derivatives 4l–n
in moderate to good yields (52–80%), as also shown in Scheme 4.

In summary, we disclosed a palladium-catalyzed direct 5-
arylation of 1,3-dimethyluracil with various range of aryl
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bromides including electron-deficient aryl bromides. 5-Arylura-
cils were formed exclusively most likely via an electrophilic
metalation–deprotonation process while the 6-aryl derivatives
via a Heck-type mechanism as minor products. In addition,
1,3-dimethyl-6-phenyluracil (4a) was also synthesized in high
yield by oxidative arylation with benzene via a CMD mechanism.
Further studies on the reaction mechanism and the scope of this
reaction are currently underway including an intramolecular
version.
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