Tetrahedron Letters 52 (2011) 6228-6233

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Palladium-catalyzed direct 5-arylation of 1,3-dimethyluracil with aryl bromides: an electrophilic metalation–deprotonation with electrophilic arylpalladium intermediate

Ko Hoon Kim, Hyun Seung Lee, Jae Nyoung Kim*

Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Republic of Korea

ARTICLE INFO

Article history: Received 23 August 2011 Revised 9 September 2011 Accepted 9 September 2011 Available online 22 September 2011

Keywords: Palladium Uracil Direct arylation Electrophilic metalation-deprotonation

ABSTRACT

An efficient method of palladium-catalyzed direct 5-arylation of 1,3-dimethyluracil was developed with a various range of aryl bromides including electron-deficient aryl bromides. 5-Aryluracil derivatives were obtained in moderate to good yields regioselectively most likely via an electrophilic metalation-deprotonation process.

© 2011 Elsevier Ltd. All rights reserved.

5-Aryluracil and its nucleoside derivatives have received much attention due to their wide range of biological activities¹ and applications in bioanalysis or chemical biology.² Most frequently, these compounds were prepared by palladium-catalyzed cross-coupling reactions of 5-halouracils with arylboronic acids³ or arylstannanes.⁴ However, the yields of 5-aryluracil derivatives were moderate and highly toxic stannane impurities would be a problem for the biological study with the product obtained from arylstannane. Recently, Hocek and co-workers reported an elegant palladium-catalyzed direct arylation of N–H protected uracils with aryl halides.^{5,6} However, the yields of 5-aryluracils were moderate and the selectivity between 5- and 6-aryluracils was not satisfactory. In addition, aryl halides bearing an electron-withdrawing substituent failed in the reaction.

In these respects, we decided to develop a more efficient protocol for the 5-arylation of 1,3-dimethyluracil (**1a**). At the outset of this study, we focused our attention to a palladium-catalyzed direct arylations of indole derivatives, which have been studied deeply by many research groups.^{7.8} As shown in Scheme 1, the reactivity of 1,3-dimethyluracil (**1a**) toward an electrophile would be very similar with that of indole, in that both compounds have an enamine moiety and attack an electrophile at the 3-position of indole and the 5-position of uracil. Thus most of the reported palladium-catalyzed arylations of indole used an electrophilic palladium intermediate,⁷ while the concept has not been examined with uracil derivatives, to the best of our knowledge.⁹ Actually, however, the palladium intermediate I of indole was converted to a more stable benzylic carbocation intermediate II via a 1,2-palladium migration⁸ and eventually provided 2-arylindole. A similar 1,2-migration of palladium in the case of uracil (III to IV) would be difficult because the carbocation intermediate IV is not stable due to the presence of nearby electron-deficient carbon atom of carbonyl moiety. In addition, the hydrogen at the 5-position of intermediate III is acidic, thus the intermediate III could be converted to an aryluracilpalladium intermediate V readily, and eventually to 1,3-dimethyl-5-aryluracil (3a) via a reductive elimination of Pd⁰. Thus the formation 3a would be a major pathway when the electrophilic palladation of 1a operates effectively.

Thus we expected that we could increase the yield of **3a** and improve the ratio of **3a/4a** at the same time, by using an electrophilic arylpalladium species. The use of a relatively poorly coordinating carboxylate as the counterion could allow the dissociation of ArPdBr into more electrophilic arylpalladium species ArPd⁺[OCOR]⁻.⁷⁴ Subsequently, a proportion of an electrophilic palladation process could be increased while a Heck-type carbopalladation process (vide infra) decreased. Based on the assumption we decided to use pivalic acid (PivOH) as a carboxylate ion source, and examined the reaction of **1a** as summarized in Table 1.

Initially, the reaction of **1a** and bromobenzene (**2a**) was examined under three typical palladium-catalyzed reaction conditions (entries 1–3). When we use Cs_2CO_3 , **3a** was isolated in low yield (18%) along with **4a** (8%). In the reaction, biphenyl was produced in appreciable amounts by Ullmann type aryl–aryl reductive

^{*} Corresponding author. Tel.: +82 62 530 3381; fax: +82 62 530 3389. *E-mail address:* kimjn@chonnam.ac.kr (J.N. Kim).

^{0040-4039/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.09.066

Scheme 1. Similarity and difference between indole and 1,3-dimethyluracil (1a) in their Pd-catalyzed arylation.

Table 1		
Optimization of reaction conditions	for the synthesis of	1,3-dimethyl-5-phenyluracil (3a)

Entry	Conditions ^a	3a (%)	4a (%)
1	PPh ₃ (20 mol %), Cs ₂ CO ₃ (3.0 equiv), DMF, 130 °C, 12 h	18	8
2	PPh ₃ (20 mol %), K ₂ CO ₃ (3.0 equiv), DMF, 130 °C, 12 h	42	8
3	TBAC (1.0 equiv), K ₂ CO ₃ (3.0 equiv), DMF, 130 °C, 12 h	29	10
4 ^b	PPh3 (20 mol %), K2CO3 (3.0 equiv), PivOH (30 mol %), DMF, 130 °C, 12 h	79	10
5	PPh3 (20 mol %), K2CO3 (3.0 equiv), PivOH (100 mol %), DMF, 130 °C, 12 h	71	8
6	PPh ₃ (20 mol %), K ₂ CO ₃ (3.0 equiv), PivOH (30 mol %), DMF, 100 °C, 12 h	73	8
7 ^c	PPh3 (10 mol %), K2CO3 (3.0 equiv), PivOH (30 mol %), DMF, 100 °C, 12 h	70	10
8 ^d	TBAC (1.0 equiv), K ₂ CO ₃ (3.0 equiv), PivOH (30 mol %), DMF, 130 °C, 12 h	77	9
9	PPh3 (20 mol %), Na2CO3 (3.0 equiv), PivOH (30 mol %), DMF, 130 °C, 12 h	14	25
10	PPh ₃ (20 mol %), AgNO ₃ (1.0 equiv), K ₂ CO ₃ (3.0 equiv), DMF, 130 °C, 12 h	42	6
11	PPh3 (20 mol %), Ag2O (1.0 equiv), K2CO3 (3.0 equiv), PivOH (30 mol %), DMF, 130 °C, 12 h	44	6

^a PhBr (2.0 equiv) and Pd(OAc)₂ (10 mol %) are common, unless otherwise noted.

^b Selected as condition A.

^c Pd(OAc)₂ (5 mol %) was used.

^d Selected as condition B.

coupling reaction.¹⁰ Replacing the base to K₂CO₃¹¹ increased the yield of **3a** to 42%; however, the result was not satisfactory (entry 2). The use of ligandless conditions employing TBAC (tertabutylammonium chloride) was not effective (entry 3). The use of PivOH dramatically improved the yield of **3a**, as shown in entries 4–8, as compared to the reactions carried out without PivOH (entries 1-3). When we use K₂CO₃/PivOH combination (entry 4), the yield of **3a** increased to 79%; however, 4a was also formed albeit in low yield (10%).¹² Increasing the amounts of PivOH (entry 5) was not effective. Lowering the reaction temperature did not improve the selectivity (entry 6). Lower loading of Pd/PPh₃ decreased the yield of **3a** slightly (entry 7). The use of TBAC in the presence of PivOH (entry 8) showed a similar result with that of entry 4. The use of Na_2CO_3 was not effective even in the presence of PivOH (entry 9). In order to abstract a bromide ion effectively from ArPdBr and generate a more electrophilic arylpalladium intermediate,^{7a} the addition of silver salts such as AgNO₃ or Ag₂O was examined; however, it was not helpful (entries 10 and 11). With the optimization experiments, we found that the conditions employing K₂CO₃/PivOH in the presence of PPh₃ (entry 4: condition A) or TBAC (entry 8: condition B) were the best. Although the selectivity was not high enough, we could certainly increase the yield of 3a.^{5,13}

In order to examine the generality, we performed the reactions of **1a** with various aryl bromides **2a–j**, and the results are summarized in Table 2. The reactions with 4-bromotoluene (2b), 2-bromotoluene (2c), 2-bromonaphthalene (2d), and 1-bromonaphthalene (2e) afforded the corresponding 5-aryl products 3b-e in good yields (66-71%) along with low yields of 6-aryl derivatives **4b-d** (8-10%). The reaction with 4-bromoanisole (2f), however, showed a guite different result. Under the conditions employing PPh₃ (entry 4 in Table 1: condition A), 5-aryl 3f, and 6-aryl 4f were isolated in 38% and 40%, respectively. We thought that the moderate combined vield (78%) and low selectivity between **3f/4f** (almost 1:1) might be ascribed to the low electrophilicity of 4-MeOPhPdX species which renders the electrophilic palladation difficult. An electrondonating methoxy group made the arylpalladium intermediate less electrophilic. In addition, the presence of electron-rich PPh₃ ligand could make the arylpalladium species less electrophilic.^{7b} Thus we examined a ligandless condition (entry 8 in Table 1: condition B), and we could improve both the yield and selectivity (3f: 65% and

Table 2

Palladium-catalyzed direct 5-arylation of 1,3-dimethyluracil

^a 5-Aryl derivatives **3a**-**j** are shown in Table, and the yields of **3** and **4** are isolated.

^b Failed to isolate.

4f: 25%), as shown in entry 6. Similarly, the reaction with 3-bromoanisole (**2g**) provided **3g** in good yield (75%). The reactions with aryl bromides bearing an electron-withdrawing group showed sluggish reactivity. Methyl 4-bromobenzoate (**2h**), methyl 3-bromobenzoate (**2i**), and 3-bromopyridine (**2j**) produced the desired compounds **3h–j** in low to moderate yields (35–43%). We could obtain the corresponding 5-aryluracil derivatives from aryl bromides bearing an EWG group, albeit in moderate yields, in contrast to the paper of Hocek.⁵

The reaction mechanism for the selective formation of 5-aryluracils **3a**–**j** could be postulated as shown in Scheme 2. Heck-type carbopalladation (vide supra) of 5,6-double bond of **1a** with ArPdBr species could occur in two ways to form **VII** and **VIII**. Epimerization of **VII** and **VIII** at the 5-position could provide **IX** and **X** via the corresponding enol or palladium enolate, respectively, and a following syn β -H elimination would produce **3** and **4**, respectively. However, another important pathway must be involved for the exclusive formation of **3**. The pathway could be an electrophilic metalation– deprotonation (EMD) mechanism. The ionization of arylpalladium bromide ArPdBr to a cationic palladium intermediate ArPd⁺ could be facilitated in the presence of PivOK,^{7a} especially in a polar solvent such as DMF, as Sharp and co-workers reported in their regioselective arylation of furan.¹⁴ A subsequent electrophilic palladation could occur easily and regioselectively at the electron-rich 5-position of **1a** to form aryluracilpalladium intermediate **VI**, and a following re-aromatization provided **3** after a reductive elimination of Pd⁰.

As another entry, we examined 5-phenylation of 1-(tetrahydrofuran-2-yl)-3-benzyluracil (**1b**)¹⁵ with bromobenzene (**2a**) under the same reaction conditions; however, a severe decomposition was observed at 130 °C. By lowering the reaction temperature to 100 °C, we could isolate **3k** in 55%,¹² as shown in Scheme 3. In the reaction, the corresponding 6-phenyl derivative was not formed in any trace amount presumably due to the steric hindrance caused by tetrahydrofuranyl moiety.

As we started the 5-arylation of **1a** by deep consideration of indole derivatives, we decided to examine the feasibility of selective synthesis of 6-aryl derivative **4a** by applying the reported method of oxidative arylation of indoles. Fagnou^{16a,b} and DeBoef^{16c,d} have reported oxidative arylations of indoles with arenes. As shown in Scheme 4, the reaction of **1a** was examined in the presence of

Pd(TFA)₂, AgOAc, and PivOH in benzene (reflux, 20 h). To our delight, **4a** was obtained in high yield (85%) along with a trace amount of **3a** (6%). The mechanism for the selective formation of **4a** could be proposed as follows based on the works of Fagnou and DeBoef.¹⁶ A regioselective palladation occurred at the 6-position of **1a** to form **XI**, most likely via a concerted metalationdeprotonation (CMD) process by Pd^{II}(L)(OPiv) species involving a deprotonation of more acidic hydrogen atom at the 6-position.⁵ A subsequent arylation of uracilpalladium intermediate **XI** with benzene via a second CMD process produced **4a** after reductive elimination of Pd⁰, which was oxidized to Pd^{II} by AgOAc.¹⁷ Similarly, the reactions of **1a** and three xylene isomers under the similar conditions¹⁸ afforded the corresponding 6-xylyluracil derivatives **4I-n** in moderate to good yields (52–80%), as also shown in Scheme 4.

In summary, we disclosed a palladium-catalyzed direct 5arylation of 1,3-dimethyluracil with various range of aryl

Scheme 4.

bromides including electron-deficient aryl bromides. 5-Aryluracils were formed exclusively most likely via an electrophilic metalation-deprotonation process while the 6-aryl derivatives via a Heck-type mechanism as minor products. In addition, 1,3-dimethyl-6-phenyluracil (**4a**) was also synthesized in high yield by oxidative arylation with benzene via a CMD mechanism. Further studies on the reaction mechanism and the scope of this reaction are currently underway including an intramolecular version.

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (2011-0002570). Spectroscopic data were obtained from the Korea Basic Science Institute, Gwangju branch.

References and notes

- For the biological activities of 5-aryluracil derivatives, see: (a) Regan, C. F.; Guo, Z.; Chen, Y.; Huang, C. Q.; Chen, M.; Jiang, W.; Rueter, J. K.; Coon, T.; Chen, C.; Saunders, J.; Brown, M. S.; Betz, S. F.; Strutheres, R. S.; Yang, C.; Wen, J.; Madan, A.; Zhu, Y.-F. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 4503–4507; (b) Chen, C.; Wu, D.; Guo, Z.; Xic, Q.; Reinhart, G. J.; Madan, A.; Wen, J.; Chen, T.; Huang, C. Q.; Chen, M.; Chen, Y.; Tucci, F. C.; Rowbottom, M.; Pontillo, J.; Zhu, Y.-F.; Wade, W.; Saunders, J.; Bozigian, H.; Struthers, R. S. J. *Med. Chem.* **2008**, *51*, 7478–7485; (c) Guo, Z.; Chen, Y.; Huang, C. Q.; Gross, T. D.; Pontillo, J.; Rowbottom, M. W.; Saunders, J.; Struthers, S.; Tucci, F. C.; Xie, Q.; Wade, W.; Zhu, Y.-F.; Wu, D.; Chen, C. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 2519–2522; (d) Chen, C.; Chen, Y.; Pontillo, J.; Guo, Z.; Huang, C. Q.; Wu, D.; Madan, A.; Chen, T.; Wen, J.; Xie, Q.; Tucci, F. C.; Rowbottom, M.; Zhu, Y.-F.; Wade, W.; Saunders, J.; Bozigian, H.; Struthers, R. S. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 3301–3305; (e) Yamamoto, Y.; Seko, T.; Nemoto, H. *J. Org. Chem.* **1989**, *54*, 4734–4736.
 For the applications of 5-aryluracil derivatives in bioanalysis or chemical
- For the applications of 5-aryluracil derivatives in bioanalysis or chemical biology, see: (a) Cahova, H.; Havran, L.; Brazdilova, P.; Pivonkova, H.; Pohl, R.; Fojta, M.; Hocek, M. Angew. Chem., Int. Ed. 2008, 47, 2059–2062; (b) Fukuda, M.; Nakamura, M.; Takada, T.; Yamana, K. Tetrahedron Lett. 2010, 51, 1732–1735; (c) Jacobsen, M. F.; Ferapontova, E. E.; Gothelf, K. V. Org. Biomol. Chem. 2009, 7, 905–908; (d) Wanninger-Weib, C.; Wagenknecht, H.-A. Eur. J. Org. Chem. 2008, 64–71; (e) Ehrenschwender, T.; Wagenknecht, H.-A. Synthesis 2008, 3657–3662; (f) Amann, N.; Pandurski, E.; Fiebig, T.; Wagenknecht, H.-A. Chem. Eur. J. 2002, 8, 4877–4883; (g) Okamoto, A.; Tainaka, K.; Unzai, T.; Saito, I. Tetrahedron 2007, 63, 3465–3470; (h) Capobianco, M. L.; Cazzato, A.; Alesi, S.; Barbarella, G. Bioconjugate Chem. 2008, 19, 171–177; (i) Srivatsan, S. G.; Tor, Y. J. Am. Chem. Soc. 2007, 129, 2044–2053; (j) Greco, N. J.; Tor, Y. J. Am. Chem. Soc. 2005, 127, 10784–10785.
- For the palladium-catalyzed synthesis of 5-aryluracil derivatives with arylboron reagents, see: (a) Kalachova, L; Pohl, R.; Hocek, M. Synthesis 2009, 105–112; (b) Western, E. C.; Daft, J. R.; Johnson, E. M., II; Gannett, P. M.; Shaughnessy, K. H. J. Org. Chem. 2003, 68, 6767–6774; (c) Crisp, G. T.; Macolino, V. Synth. Commun. 1990, 20, 413–422; (d) Pomeisl, K.; Holy, A.; Pohl, R.; Horska, K. Tetrahedron 2009, 65, 8486–8492; (e) Pomeisl, K.; Holy, A.; Pohl, R. Tetrahedron Lett. 2007, 48, 3065–3067; (f) Coelho, A.; Sotelo, E. J. Comb. Chem. 2005, 7, 526–529; For recent 6-arylation of uracil derivatives, see: (g) Shih, Y.-C.; Chien, T.-C. Tetrahedron 2011, 67, 3915–3923.
- For the palladium-catalyzed synthesis of 5-aryluracil derivatives with arylstannane reagents, see: (a) Gutierrez, A. J.; Terhorst, T. J.; Matteucci, M. D.; Froehler, B. C. J. Am. Chem. Soc. **1994**, *116*, 5540–5544; (b) Sadler, J. M.; Ojewoye, O.; Seley-Radtke, K. L. Nucleic Acids Symp. Ser. **2008**, *52*, 571–572; (c) Wigerinck, P.; Pannecouque, C.; Snoeck, R.; De Clercq, E.; Herdewijn, P. J. Med. Chem. **1991**, *34*, 2383–2389; (d) Herdewijn, P.; Kerremans, L.; Wigerinck, P.; Vandendriessche, F.; Aerschot, A. V. Tetrahedron Lett. **1991**, *32*, 4397–4400.
- (a) Cernova, M.; Pohl, R.; Hocek, M. *Eur. J. Org. Chem.* **2009**, 3698–3701; (b) Cernova, M.; Cerna, I.; Pohl, R.; Hocek, M. *J. Org. Chem.* **2011**, 76, 5309–5319.
- Palladium-catalyzed intramolecular arylations of uracil derivatives have been reported in some cases, see: (a) Majumdar, K. C.; Sinha, B.; Maji, P. K.; Chattopadhyay, S. K. *Tetrahedron* **2009**, *65*, 2751–2756; (b) Majumdar, K. C.; Debnath, P.; Taher, A.; Pal, A. K. *Can. J. Chem.* **2008**, *86*, 325–332.
- For the palladium-catalyzed arylation of indole derivatives, see: (a) Lebrasseur, N.; Larrosa, I. J. Am. Chem. Soc. 2008, 130, 2926–2927; (b) Wang, X.; Gribkov, D. V.; Sames, D. J. Org. Chem. 2007, 72, 1476–1479; (c) Lane, B. S.; Sames, D. Org. Lett. 2004, 6, 2897–2900; (d) Toure, B. B.; Lane, B. S.; Sames, D. Org. Lett. 2006, 8, 1979–1982; (e) Nadres, E. T.; Lazareva, A.; Daugulis, O. J. Org. Chem. 2011, 76, 471–483.
- For the 1,2-palladium migration, see: (a) Kirchberg, S.; Frohlich, R.; Studer, A. Angew. Chem., Int. Ed. 2009, 48, 4235–4238; (b) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050–8057.
- In the papers of Hocek,⁵ an electron-deficient tris(pentafluorophenyl)phosphine might be helpful for the increase of the electrophilicity of an arylpalladium intermediate.

- 10. For our recent example of palladium-catalyzed benzoin-mediated Ullmann type coupling of aryl bromides to biaryls Park, B. R.; Kim, K. H.; Kim, T. H.; Kim, J. N. *Tetrahedron Lett.* **2011**, *52*, 4405–4407. and further references were cited therein. In the reaction, biaryls and trace amount of arenes were formed but the yields of these compounds were not determined.
- The use of K₂CO₃ afforded higher yield of product in many palladium-catalyzed reactions with aryl bromides than Cs₂CO₃, see: (a) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. **1998**, 71, 467–473; (b) Watanabe, M.; Nishiyama, M.; Yamamoto, T.; Koie, Y. Tetrahedron Lett. **2000**, 41, 481–483; (c) Safin, D. A.; Babashkina, M. G.; Klein, A. Catal. Lett. **2009**, 129, 363–366; (d) Safin, D. A.; Babashkina, M. G. Catal. Lett. **2009**, 130, 679–682.
- 12. Typical procedure for the synthesis of 1,3-dimethyl-5-phenyluracil (3a): A stirred mixture of 1,3-dimethyluracil (1a, 140 mg, 1.0 mmol), bromobenzene (2a, 315 mg, 2.0 equiv), Pd(OAc)₂ (22 mg, 10 mol %), PPh₃ (52 mg, 20 mol %), PivOH (30 mg, 30 mol %), K₂CO₃ (415 mg, 3.0 equiv) in DMF (1.5 mL) was heated to 130 °C for 12 h under nitrogen atmosphere. After the usual aqueous extractive workup with chloroform and column chromatographic purification process (hexanes/THF, 4:1) compounds 3a (171 mg, 79%) and 4a (21 mg, 10%) were obtained as white solids.⁵ Other compounds were synthesized analogously, and the known compounds 3a-d^{5,19a} and 3f,^{5,19a} 4a-d,^{5,19a} 4g,^{5,19a} 4g^{19a} were identified by comparison their mp, IR, ¹H NMR and/or mass data with the reported. The selected spectroscopic data of 3e and 3g-k are as follows. *Compound* 3e^{:19b} 71%; white solid, mp 203-204 °C; IR (KBr) 2945, 1700, 1646,

Compound **3e**:^{19b} 71%; white solid, mp 203–204 °C; IR (KBr) 2945, 1700, 1646, 1450, 1346 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.43 (s, 3H), 3.44 (s, 3H), 7.25 (s, 1H), 7.33 (dd, *J* = 6.9 and 1.2 Hz, 1H), 7.44–7.50 (m, 3H), 7.68–7.71 (m, 1H), 7.85–7.88 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 28.22, 36.90, 113.54, 125.18, 125.25, 125.90, 126.22, 128.12, 128.36, 128.97, 130.57, 132.29, 133.58, 142.13, 151.72, 162.57; ESIMS *m*/*z* 267 [M+H]^{*}, Anal. Calcd for C₁₆H₁₄N₂O₂: C, 72.16; H, 5.30; N, 10.52. Found: C, 72.43; H, 5.57; N, 10.29.

Compound **3g**: ^{19a} 75%; white solid, mp 122–124 °C; IR (KBr) 2946, 1702, 1656, 1603, 1491, 1451, 1350 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.42 (s, 3H), 3.47 (s, 3H), 3.83 (s, 3H), 6.88 (d, *J* = 7.2 Hz, 1H), 7.00–7.12 (m, 2H), 7.22–7.36 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 28.25, 37.10, 55.29, 113.57, 113.96, 114.16, 120.50, 129.41, 134.20, 140.53, 151.42, 159.56, 162.23; ESIMS *m/z* 247 [M+H]*. Anal. Calcd for C₁₃H₁₄N₂O₃: C, 63.40; H, 5.73; N, 11.38. Found: C, 63.75; H, 5.96; N, 11.13.

Compound 3h: 40%; white solid, mp 180-181 °C; IR (KBr) 1707, 1651, 1607, T279, 1112 cm⁻¹; ¹ H MR (CDCl₃, 300 MHz) δ 3.43 (s, 3H), 3.50 (s, 3H), 3.92 (s, 3H), 7.40 (s, 1H), 7.60 (d, J = 8.4 Hz, 2H), 8.04 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) & 28.25, 37.21, 52.10, 113.21, 127.97, 129.25, 129.64, 137.54, 141.13, 151.24, 161.89, 166.72; ESIMS m/z 275 [M+H]*. Anal. Calcd for C14H14N2O4: C, 61.31; H, 5.14; N, 10.21. Found: C, 61.39; H, 5.45; N, 10.06. Compound 3i: 43%; white solid, mp 158-159 °C; IR (KBr) 2953, 1713, 1652, 1253 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.42 (s, 3H), 3.49 (s, 3H), 3.92 (s, 3H), 7.39 (s, 1H), 7.46 (dd, *J* = 7.8 and 7.8 Hz, 1H), 7.79 (ddd, *J* = 7.8, 1.8 and 1.2 Hz, 1H), 7.99 (ddd, J = 7.8, 1.8 and 1.2 Hz, 1H), 8.10-8.11 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 28.17, 37.08, 52.13, 113.13, 128.42, 128.75, 128.86, 130.28, 132.91, 133.19, 140.86, 151.26, 162.05, 166.72; ESIMS *m/z* 275 [M+H]⁺. Anal. Calcd for C14H14N2O4: C, 61.31; H, 5.14; N, 10.21. Found: C, 61.64; H, 5.45; N, 10.13. *Compound* **3***j*:^{19c} 35%; white solid, mp 198–200 °C; IR (KBr) 1693, 1650, 1483, 1350 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.43 (s, 3H), 3.51 (s, 3H), 7.28–7.38 (m, 1H), 7.39 (s, 1H), 7.95 (d, J = 8.1 Hz, 1H), 8.57 (br s, 1H), 8.65 (br s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 28.25, 37.24, 111.02, 123.14, 129.00, 136.07, 140.68, 148.30, 148.88, 151.26, 162.03; ESIMS m/z 218 [M+H]⁺. Anal. Calcd for C₁₁H₁₁N₃O₂: C, Compound **3k**: 55%; sticky oil; IR (film) 3060, 2960, 2892, 1702, 1658, 1494, 1458, 1440, 1291, 1076 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.85–2.14 (m, 3H) 2.37-2.49 (m, 1H), 3.95-4.02 (m, 1H), 4.17-4.23 (m, 1H), 5.14 (d, J = 13.5 Hz,

1H), 5.23 (d, J = 13.5 Hz, 1H), 6.08 (dd, J = 6.3 and 3.3 Hz, 1H), 7.22–7.42 (m, 6H), 7.44 (s, 1H), 7.46–7.57 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ 23.90, 33.11, 44.54, 70.19, 88.05, 114.14, 127.62, 127.78, 128.36, 128.41 (2C), 129.41, 133.39, 134.71, 136.85, 150.43, 161.83; ESIMS m/z 349 [M+H]⁺. Anal. Calcd for C₂₁H₂₀N₂O₃: C, 72.40; H, 5.79; N, 8.04. Found: C, 72.23; H, 5.96; N, 7.89.

- 13. We also examined the reaction of **1a** under the modified condition Å, by simply replacing PPh₃ with tris(pentafluorophenyl)phosphine;⁵ however, the results were not satisfactory (**3a**: 73% and **4a**: 18%). Replacement of PPh₃ with an electron-poor triethyl phosphite ligand was also examined in order to make the arylpalladium intermediate more electrophilic, however, the yield and selectivity were similar (**3a**: 74% and **4a**: 16%) with those of (C₆F₅)₃P. In addition, the reaction of **1a** and iodobenzene produced biphenyl as a major product along with a low yield of **3a** (<15%).
- 14. Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko, M. F. Org. Lett. 2003, 5, 301–304.
- 15. For the synthesis and synthetic applications of N¹-protected uracil derivatives with a tetrahydrofuranyl moiety, see: (a) Maruyama, T.; Kozai, S.; Demizu, Y.; Witvrouw, M.; Pannecouque, C.; Balzarini, J.; Snoecks, R.; Andrei, G.; De Clercq, E. *Chem. Pharm. Bull.* **2006**, *54*, 325–333; (b) Dolman, N. P.; More, J. C. A.; Alt, A.; Knauss, J. L.; Pentikainen, O. T.; Glasser, C. R.; Bleakman, D.; Mayer, M. L.; Collingridge, G. L.; Jane, D. E. *J. Med. Chem.* **2007**, *50*, 1558–1570; (c) Dolman, N. P.; More, J. C. A.; Alt, A.; Knauss, J. L.; Troop, H. M.; Bleakman, D.; Collingridge, G. L.; Jane, D. E. *J. Med. Chem.* **2007**, *50*, 1558–1570; (c) Rephaeli, A.; J. *Med. Chem.* **2006**, *49*, 2579–2592; (d) Engel, D.; Nudelman, A.; Tarasenko, N.; Levovich, I.; Makarovsky, I.; Sochotnikov, S.; Tarasenko, I.; Rephaeli, A. *J. Med. Chem.* **2008**, *51*, 314–323.
- For the palladium-catalyzed oxidative arylation of indoles, see: (a) Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072–12073; (b) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172–1175; (c) Potavathri, S.; Pereira, K. C.;

Gorelsky, S. I.; Pike, A.; LeBris, A. P.; DeBoef, B. J. Am. Chem. Soc. 2010, 132, 14676-14681; (d) Dwight, T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137-3139.

- The yields of 4a and 3a were 60% and 16%, respectively, when we used 17. Pd(OAc)₂ instead of Pd(TFA)₂.
- 18. The reaction at 80 °C was so sluggish that we raised the temperature to 110 °C. The yield of 41 was moderate due to steric crowdedness during the second CMD process between uracilpalladium intermediate **XI** and p-xylene, as reported in the oxidative arylation of indoles.¹⁶ The corresponding 5-xylyl derivative was not observed at all. When we used o-xylene, compound 4m was obtained in 66% along with a low yield of the corresponding 5-xylyl derivative (17%). In the case of *m*-xylene, **4n** was obtained in high yield (80%) along with a

- low yield of the corresponding 5-xylyl derivative (11%). *Compound* **4I**:^{19a} 52%; colorless oil; IR (film) 2952, 1706, 1662, 1438, 1367 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.19 (s, 3H), 2.35 (s, 3H), 3.08 (s, 3H), 3.42 (s, 3H), 5.64 (s, 1H), 6.96 (s, 1H), 7.19 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 18.70, 20.79, 27.95, 33.17, 101.95, 128.34, 130.48, 130.78, 131.97, 132.78, 136.17, 152.52, 154.35, 162.60; ESIMS *m/z* 245 [M+H]* Anal. Calcd for C₁₄H₁₆N₂O₂: C, 68.83; H, 6.60; N, 11.47. Found: C, 68.96; H, 6.89: N 11.23 6.89; N, 11.23.
- 19. (a) Seki, K.; Matsuda, K.; Bando, Y.; Ohkura, K. Chem. Pharm. Bull. 1988, 36, 4737-4748; (b) Ohkura, K.; Sugaoi, T.; Nishijima, K.; Kuge, Y.; Seki, K. *Tetrahedron Lett.* **2002**, 43, 3113-3115; (c) Keen, B. T.; Paudler, W. W. *J. Org.* Chem. 1975, 40, 3717-3720.