A Facile Synthesis of 1,5-Diphenyl-3-(substituted oxy)-1*H*-1,2,4triazoles

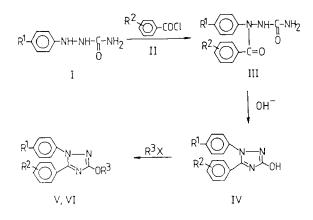
László Czollner*, Géza Szilágyi †, József Langó and Judit Janáky

Institute for Drug Research, P.O. Box 82, H-1325 Budapest, Hungary

Received April 7, 1989

A series of 1,5-diphenyl-3-alkoxy (or acyloxy)-1H-1,2,4-triazoles were synthesized and assayed in the rat adjuvant induced arthritis model. Some compounds show significant anti-inflammatory activity.

1,2,4-Triazole, 5. Mitt.¹⁾:


Einfache Synthese von 1,5-Diphenyl-3-(O-substituierten)-1H-1,2,4-triazolen

Eine Serie von 1,5-Diphenyl-3-alkoxy (oder acyloxy)-1H-1,2,4-triazolen wurde synthetisiert und auf ihre antiphlogistische Aktivität an Ratten im Adjuvans-Arthritis-Test untersucht. Einige dieser Verbindungen zeigen günstige entzündungshemmende Aktivität.

The potent and long-lasting anti-inflammatory activity of some diarylheterocycles^{2,3)} encouraged us the investigation of modified analogues. In the case of triazoles various 3-substituted derivatives with alkylthio²⁾, $CF_3^{(4)}$, and $NH^{(5)}$ groups have been synthesized, but only a few of them possess high biological activity. Compounds with RO groups had received little attention. This paper reports the synthesis and anti-inflammatory activity of new 1,5-diphenyl-3-alkoxy (or acyloxy)-1*H*-1,2,4-triazoles.

Using of our experiences with thio ether compounds²⁾ the intermediate hydroxy compounds VI were prepared from 1-phenyl-semicarbazides^{6,7)} I (obtained from phenylhydrazines with KOCN) by acylation with benzoyl chlorides II followed by cyclization of III under base conditions.

3-Methoxy-derivatives V were obtained by alkylation of VI with Me_2SO_4 , the 3-alkoxy-ones with basic side chains V from IV with alkylchlorides in dioxane/K₂CO₃. Acylation of IV with Ac₂O, benzoyl chloride and sulfonyl chlorides lead to 3-(O-acylated)-derivatives VI (Scheme).

 $R^1 = Cl, F,$ $R^2 = 4$ -Cl, 4-F, 2-SMe $R^3 = Me$, basic side chain, Ac, C₆H₅CO, R'SO₂ The structures of 1-31 were characterized by satisfactory microanalyses and by IR- and ¹H-NMR-spectral data. Chemical data of the compounds are summarized in Tables 2 and 3.

Adjuvant-induced arthritis (Newbould's preventive test⁸⁾)

Adult Long Evans male rats weighing 200-250 g were used. Arthritis was induced in rats by injecting heat-killed *Mycobacterium tuberculosis ravenel* (*Freund* adjuvant) in 0.1 ml of liquid paraffin suspension into the left hind paw on day 1. Compounds (dissolved in water containing Tween 80) were administered orally at low doses (6.25 and 12.5 mg/kg for 21 days starting on day 1). Control animals were given vehiculum.

Plethysmographic measurements of the primary lesion (injected paw) and the secondary lesion (non-injected paw) were made by mercury displacement on day 0, 3, 6, 10, 13, 17, 20, and 22 after injection of phlogist compared with controls.

Results

Table 1 contains the biological data of the most active compounds.

Important structure-activity relationships can be summarized as follows.

- Active compounds contain halogen substituents (as previously found^{2,5)} in the para position on the phenyl rings (MeS-ones are inactive).
- 2. the highest effect resides in the methoxy and other alkoxy compounds having basic side chain
- 3. the hydroxy, benzoylated and sulfonylated derivatives exhibit no biological activity.

Conclusion

12 proved to be the most active compound in comparison with naproxen but the representatives of other series^{2,5)} (SR, SO₂R, NHR) were superior to 12 in detailed studies.

Table 1: Anti-inflammatory activity

Comp.	Inhibition of adjuvant induced arthritis in rats [*] (preventive adm.) % in 6.25 mg/kg po	Comp.	Inhibition of adjuvant induced arthritis in rats (preventive adm.) % in 6.25 mg/kg po.		
7	33	17	30+		
8	33	18	37		
12	67	22	42		
14	31	Naproxen	44		
15	49+				

• The % inhibitory effect shows the decrease of the hind-paw volumen after treatment in comparison with the increase of the hind-paw volume of controls

+ In 12.5 mg/kg po.

Szilagyi and coworkers

The authors thank Mrs. K. Kenyeres for useful technical assistance, and the Alkaloida Chemical Factory/Tiszavasvári for financial support of this work.

Experimental Part

Mp: Boetius apparatus, uncorr. - Analyses: C, H, N, S, and halogen were within \pm 0.5 % of the theoretical values. - IR: Bruker IFS 85. - ¹H-NMR: Varian XL-100 FT. - TLC: Kieselgel 60 F₂₅₄ (Merck), benzene/methanol 10:1.

General procedure for the preparation of 1,5-diphenyl-3-hydroxy-1,2,4-triazoles IV (1-6)

A mixture of 25 mmole of I, 28 mmole of II, and 2.4 ml of pyridine in 63 ml of benzene was heated for 3 h. After cooling the product was filtered off, washed with water and heated in a mixture of 62 ml 10 % KOH (aqueous) and 31 ml of ethanol at 60°C under N₂ for 1 h. The warm solution was acidified to pH 4, and after cooling the product was washed with water and recrystallized from dioxane. Products (R^1 ; R^2 ; mp. °C; yield %): 1: Cl, 4-Cl, 278-280, 95; 2: F, 4-Cl, 260-263, 87; 3: Cl, 4-F, 303-305, 70; 4: F, 4-F, 297-300, 85; 5: Cl, 2-SMe, 267-270, 93; 6: F, 2-SMe, 267-270, 86.

Table 2: Chemical data of compounds V

Comp. V	R ¹	R ²	R ³	Мр (°С)	Yield (%)	Molecular formula	Mol.W.
7	Cl	4-Cl	Ме	120-122	67	C ₁₅ H ₁₁ Cl ₂ N ₃ O	320.1
8	F	4-Cl	Ме	85-87	30	C ₁₅ H ₁₁ ClFN ₃ O	303.7
9	F	4-F	Ме	93-95	50	C15H11F2N3O	287.2
10	C 1	2-SMe	Ме	98-100	44	C ₁₆ H ₁₄ ClN ₃ OS	331.8
11	F	2-SMe	Ме	118-120	41	C ₁₆ H ₁₄ FN ₃ OS	315.3
12*	Cl	4-C1	$-(CH_2)_2NMe_2$	255-257	30	C18H19Cl3N4O	410.7
13*	F	4- C l	$-(CH_2)_2NMe_2$	233-236	28	C ₁₈ H ₁₉ Cl ₂ FN ₄ O	397.2
14	CI	4-Cl	-(CH ₂) ₃ -Mf	109-111	70	$C_{21}H_{22}Cl_2N_4O_2$	433.3
15	F	4-Cl	-CH ₂) ₃ -Mf	88-89	83	C ₂₁ H ₂₂ ClFN ₄ O ₂	416.8
16	Cl	4-F	-(CH ₂) ₃ -Mf	87-89	70	C21 H22 CIFN4 O2	416.8
17	F	4-F	-(CH ₂) ₃ -Mf	71-74	68	$C_{21}H_{22}F_2N_4O_2$	400.42
18+	Cl	4-Cl	-(CH ₂) ₃ -Mp	237-240	41	C22H27Cl4N5O	519.2
19+	F	4-Cl	-(CH ₂) ₃ -Mp	227-230	86	C22H27Cl3FN5O	502.8
20+	Cl	4-F	-(CH ₂) ₃ -Mp	221-224	68	C22H27Cl3FN5O	502.8

Mf = morpholino; Mp = 1-Me-4-piperazino; * = mono HCl salt; + = di-HCl salt

Table 3: Chemical data of compounds VI

Comp. VI	R ¹	R ²	R ³	Мр (°С)	Yield (%)	Molecular formula	Mol.W.
21	Cl	4-Cl	MeCO	139-141	82	C ₁₆ H ₁₁ Cl ₂ N ₃ O ₂	348.1
22	F	4-C1	MeCO	84-86	70	C16H11CIFN3O2	331.7
23	Cl	4-F	MeCO	113-114	80	C ₁₆ H ₁₁ CIFN ₃ O ₂	331.7
24	F	4-F	MeCO	113-115	66	$C_{16}H_{11}F_2N_3O_2$	315.2
25	Cl	4-Cl	C ₆ H ₅ -CO	160-162	89	C ₂₁ H ₁₃ Cl ₂ N ₃ O ₂	410.2
26	F	4-C1	C ₆ H ₅ -CO	145-148	73	C21H13CIFN3O2	393.7
27	Cl	4-F	C ₆ H ₅ -CO	124-126	90	C ₂₁ H ₁₃ ClFN ₃ O ₂	393.7
28	F	4-F	C ₆ H ₅ -CO	104-106	81	$C_{21}H_{13}F_2N_3O_2$	377.3
29	Cl	4-Cl	2-MeS-C ₁ H₄-CO	177-179	67	C22H15Cl2N3O5S	456.32
30	CI	4-C1	MeSO ₂	137-139	63	C ₁₅ H ₁₁ Cl ₂ N ₃ O ₃ S	384.16
31	Cl	4-Cl	3,4-(MeO)2-C6H3-SO2	163-165	69	C22H17Cl2N3O5S	506.3

1,2,4-Triazoles

General procedure for the preparation of 1,5-diphenyl-3-alkoxy-1,2,4-triazoles V (7-11)

Method for 7-11: A mixture of 10 mmole of IV, 11 mmole of Me_2SO_4 and 1.6 g K_2CO_3 in 60 ml of acetone was refluxed under stirring for 8 h. After evaporation the residue was poured into water, extracted with CH_2Cl_2 , dried over Na_2SO_4 and chromatographed on Kieselgel (benzene/methanol 10:1). After evaporation the first fractions gave V from a mixture of ethanol-petrolether.

Method for 12-20: A stirred mixture of 10 mmole of IV, 12 mmole of alkylchloride and 4.0 g of K_2CO_3 in 50 ml of dioxane was refluxed for 6-8 h, then poured into water and extracted with CH₂Cl₂, finally dried. 14-17 were isolated as base, 12, 13 as HCl-salts in crystalline form.

General procedure for the preparation of 1,5-diphenyl-5-acyloxy-1,2,4-triazoles VI

Method for 21-24: A solution of 10 mmole of IV in 5 ml of Ac₂O was heated for 30 min, then poured into water giving the products (recryst. from ethanol).

Method for 25-29: A stirred mixture of 10 mmole of IV, 12 mmole (substituted) benzoyl chloride and 4.0 g of K_2CO_3 in 40 ml od dioxane was heated for 8-10 h. The mixture was poured into water, filtered and recrystallized from MeCN.

References

- 1 Part IV: É.K. Bozó, G. Szilágyi, J. Langó and I. Pelczer, Heterocycles, under publication
- 2 G. Szilágyi, T. Somorai, É. Bozó, J. Langó, G. Nagy, J. Reiter, J. Janáky, and F. Andrási, Eur. J. Med. Chem., in press.
- 3 T.R. Sharpe, S.C. Cherkofsky, W.C. Howes, D.H. Smith, W.A. Gregory, S.B. Haber, M.R. Leadbetter, and J. Whitney, J. Med. Chem. 28, 1188 (1985).
- 4 L. Czollner, G. Szilágyi, J. Langó and J. Janáky, Monatsh. Chemie 119, 349 (1988).
- 5 É. Bozó, G. Szilágyi, and J. Janáky, Arch. Pharm. (Weinheim) 322, 583 (1989).
- 6 G. Hevitt, J. Chem. Soc. 1893, 872.
- 7 O. Danek und S. Nouzova, Coll. Czech. Chem. Comm. 33, 425 (1968).
- 8 B.B. Newbould, Brit. J. Pharm. 21, 127 (1963).

[Ph694]