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ABSTRACT: An efficient iodide-catalyzed/hydrogen peroxide mediated
sulfenylation and selenylation of unprotected uracil and its derivatives with
simple thiols and diselenides was established. This coupling tolerates a broad
variety of functional groups to provide diverse 5-sulfur/selenium-substituted
uracil derivatives in good to excellent yields (up to 93%).

C-5 substituted nucleobases and nucleosides consist of an
important class of compounds that are valuable nucleotide-
derived tools in molecular genetics and have played very
important roles in many therapeutic areas.1 In particular, 5-
sulfur/selenium-substituted uracil bases and nucleosides have a
wide range of applications as part of antivirals and anticancer
agents and as biological probes in phototherapy and photo-
cross-linking applications (Figure 1).2 For example, 5-phenyl-

thiouracil (NSC210778) was identified as an effective inhibitor
for FUDR phosphorylase, mammalian thymidine phosphor-
ylase, DHUDase, and UrdPase,3 while its analogue 5-
(phenylthio)acyclouridine (AC1NA056) has been designed
to improve oral uridine bioavailability with excellent
pharmacokinetic properties for the treatment of cancer and
AIDS.4 Furthermore, selenocyanic acid with the selenide
functional group at the C5-position of pyrimidine has been
recognized as a potential hypoxic radiosensitizer and genomic
DNA label in vitro.5

In the literature, a substantial number of useful C−S/Se
bond formation methods have been described through base-
promoted coupling reactions of thiols,6 disulfides,7 Bunte
salts,8 selenols,9 or diselenides10 with prefunctionalized uracil
(eq (a), Scheme 1). Apart from this, Brönsted acid promoted
cross coupling of uracil with sulfenyl chloride is another
pathway for the C−S bond construction (eq (b)).11 Although

these methods are useful, most of them suffer from several
limitations. For example, protection groups at the N-1 and N-3
positions of uracil were required in the prefunctionalization
strategy; thus, unprotected uracil targets, like 5-phenyl-
thiouracil in Figure 1, were not rapidly prepared through this
approach.12 In addition, most of these methods involved toxic
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Figure 1. Selected examples of biologically active 5-sulfur/selenium-
substituted uracil derivatives.

Scheme 1. Previous Protocols for the Generation of 5-
Sulfur/Selenium-Substituted Uracil Derivatives (a, b) and
Our Approach (c)

Letter

pubs.acs.org/OrgLettCite This: Org. Lett. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society A DOI: 10.1021/acs.orglett.9b02183
Org. Lett. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

N
O

T
T

IN
G

H
A

M
 T

R
E

N
T

 U
N

IV
 o

n 
A

ug
us

t 1
5,

 2
01

9 
at

 1
3:

57
:1

3 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

pubs.acs.org/OrgLett
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.orglett.9b02183
http://dx.doi.org/10.1021/acs.orglett.9b02183


basic/acidic reagents and harsh reaction or inert atmosphere
conditions. We were determined to improve current protocols
by delivering a C−S/Se bond construction transformation for
the facile preparation of 5-sulfur/selenium-substituted uracil
derivatives with environmentally benign starting materials and
reagents. Herein, we report our progress in the development of
an efficient oxidative dehydrogenative C−S/Se coupling with
uracil. It is worth noting that environmentally benign hydrogen
peroxide was used as the oxidant. Both thiols and diselenides
were effectively coupled with unprotected uracil and its
derivatives to afford the desired products in good to excellent
yields (eq (c)).
Inspired by our previous work on iodide-catalyzed C−C/C−

N bond formation and chemical modulation of nucleic acids,13

we initiated an investigation with the coupling between uracil
1a with 4-methylphenylthiol 2a (Table 1). To our delight, the

initial attempt with 3 equiv of NaI and TBHP as the oxidant
afforded the desired product 5-p-tolylthiouracil 3a in an
isolation yield of 81% (entry 1), indicating that this iodide-
catalyzed C−S bond formation was indeed applicable.
Switching the iodide source or oxidant led to inferior results
(entries 2−5). However, when hydrogen peroxide was used as
the oxidant, the coupling product 3a was obtained in a good
yield (75%) (entry 6). Contrary to other commonly employed
chemical oxidants, hydrogen peroxide does not produce
residues or gases and is an ideal oxidant for large-scale
production. Thus, we became determined to improve this
process, and further optimization led to the isolation of 3a in
80% yield upon performing the reaction with 50% of NaI
(entry 10). However, further decreasing the loading of NaI
impeded the coupling (entry 11). By comparison, the identical
reaction without iodide source or hydrogen peroxide resulted
in trace product (entries 12 and 13), indicating that both were
essential for this coupling reaction.
After the establishment of the C−S coupling reaction

conditions, the substrate scope and functional group tolerance

of this procedure were explored (Scheme 2). A variety of
substituted arylthiols 2a−i, fused aryl thiol 2j, and hetero-

arylthiol 2k were treated with simple uracil 1a. The desired 5-
sulfururacils 3a−k were efficiently obtained through this
coupling reaction in good to excellent yields, although
electron-withdrawing groups (F/Cl/Br, 3g−i) did result in
moderate yields. X-ray crystal structure of the product 3e
confirmed the C−S construction (see the Supporting
Information for details). Notably, the 6-substituted products
were not detected in all cases. Additionally, this protocol was
applicable not only to natural uracil but also to its substituted
derivatives. For example, good yields of the 5-sulfur-substituted
products 3l−p were obtained with the N1/3- and/or C6-
substituted uracil. However, when 4-nitro- or trifluoromethyl-
substituted phenylthiols 2q−r or pyridinyl thiol 2s were used,
trace products were observed. Alkyl thiols 2t−u were also not
applicable for this transformation.
With this useful sulfenylation protocol of uracil in hand, we

further investigated the possibility of C−Se bond formation
with diselenides. It turned out that the NaI/H2O2 system could

Table 1. Optimization of the C−S Coupling Reaction
Conditionsa

entry [I] (equiv) oxidant (equiv) temp (°C) yield (%)

1 NaI (3) TBHP (3) 100 81
2 KI (3) TBHP (3) 100 51
3 TBAI (3) TBHP (3) 100 66
4 NaI (3) DTBP (3) 100 32
5 NaI (3) O2 (1 atm) 100 NRb

6 NaI (3) H2O2 (3) 100 75
7 NaI (3) H2O2 (6) 50 83
8 NaI (3) H2O2 (9) 100 92
9 NaI (1) H2O2 (9) 100 89
10 NaI (0.5) H2O2 (9) 100 80
11 NaI (0.1) H2O2 (9) 100 21
12 NaI (0.5) 100 trace
13 H2O2 (9) 100 trace

aReaction conditions: uracil 1a (0.2 mmol, 22.4 mg, 1 equiv), 4-
methylphenylthiol 2a (0.3 mmol, 37.5 mg, 1.5 equiv), iodide source,
oxidant in DMSO (3 mL) at the designated temperature under open
air for 15 h. Isolated yields of 3a are given. bNR: no reaction.

Scheme 2. Substrate Scope of Thiols and Uracil Derivatives
in the Sulfenylation
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also successfully install selenium groups at the C5 position
(Scheme 3). With a catalytic loading of NaI (10%), aryl (4a−

j), fused aryl (4k), and alkyl (4l−m) diselenides were
efficiently coupled with natural uracil 1a and diverse
substituted uracil derivatives 1b−e, generating the correspond-
ing products 5a−s in excellent yields. Notably, the electronic
effects of the functional groups on the phenyl ring did not have
a significant impact to the yields. Gratifyingly, C6-substituted
uracils 1e−g upon reacting with diphenyl diselenide 4a
furnished the corresponding selenide derivatives 5q−r in
excellent yields. Significantly, this selective functionalization
could also be applied to sugar-substituted uracil, from which
the selenylation product 5s was obtained in an isolated yield of
72%.
The scale-up experiments were later conducted. To our

delight, the reaction afforded the products 3a and 5a in
moderate to good yield (Scheme 4, eqs (a, b)). Furthermore,
treatment of the compound 5o with magnesium monoperox-
yphthalate (MMPP) gave the selenone product 6 in high yield
(eq (c)).14

For the elucidation of the reaction mechanism, some
preliminary controlled experiments were performed (Scheme
5). When the sulfenylation was proceeded with 1,2-

diphenyldisulfane 7 under standard conditions, a comparable
yield of 3a was obtained (eq (a)), which implied that the
sulfenylation and selenylation may undergo a similar
mechanism. A slight decrease of 5a was isolated in the
presence of TEMPO (eq (b)), indicating that a nonradical
pathway might be involved in the reaction. We also conducted
the standard selenylation in the presence of iodine and the
product 5a was isolated in a comparable yield, which suggested
that the generation of iodine may be involved in this
transformation (eq (c)).
While the exact mechanism awaits further elucidation, on

the basis of previous research and preceding experiments, a
plausible mechanism using diselenide as example is outlined in
Scheme 6. It is considered that the iodide was first oxidized by
H2O2 to iodine, which then activated the thiol or diselenide to

Scheme 3. Substrate Scope of Diselenides and Uracil
Derivatives in the Selenylation

Scheme 4. Scale-up Experiments and Post-Functionalization
of Sulfenyl and Selenyl Uracil Products

Scheme 5. Control Experiments
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afford the highly electrophilic sulfonium or selenium cation
intermediate I.15 An electrophilic addition of uracil to these
cationoid reagents resulted in relatively unstable seleranium
cation II and/or iminium ion intermediate III,16 followed by
elimination of hydrogen iodide HI to afford the C-5-
substituted uridine products. It is reasonable to expect that
C-5 would be more nucleophilic than C-6 so that the
substitution afforded the C-5-substituted product exclusively.17

In conclusion, we have established a direct iodide/hydrogen
peroxide mediated sulfenylation/selenylation of natural uracil
and its derivatives. This operationally simple and scalable
approach showed excellent substrate scope and tolerance of a
diverse of functional groups and produced the corresponding
5-sulfur/selenium-substituted uracil derivatives in good to
excellent yields. Mechanistic studies have suggested that an
electrophilic substitution pathway may be involved in this
process.

■ ASSOCIATED CONTENT
*S Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.or-
glett.9b02183.

Complete experimental details, characterization data for
the prepared compounds (PDF)

Accession Codes

CCDC 1934844 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
via www.ccdc.cam.ac.uk/data_request/cif, or by emailing
data_request@ccdc.cam.ac.uk, or by contacting The Cam-
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

■ AUTHOR INFORMATION
Corresponding Author

*E-mail: chengl@iccas.ac.cn.
ORCID

Liang Cheng: 0000-0001-7427-2939
Author Contributions
§X.-D.L. and Y.-T.G. contributed equally to this work.

Notes

The authors declare the following competing financial
interest(s): Institute of Chemistry, Chinese Academy of
Sciences (ICCAS) has filed a patent on the discovery and
development of this method that are described in the paper
presented on January 29, 2019, at the National Intellectual
Property Administration (Chinese provisional patent applica-
tion no. 2019100843077).

■ ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program
of China (2017YFA0208100 and 2016YFA0602900), National
Natural Science Foundation of China (91853124, 21778057,
and 21420102003), and Chinese Academy of Sciences.

■ REFERENCES
(1) Ahmadian, M.; Bergstrom, D. E. 5- Substituted Nucleosides in
Biochemistry and Biotechnology. In Modified Nucleosides: in
Biochemistry, Biotechnology and Medicine; Herdewijn, P., Eds.; Wiley-
VCH, 2008.
(2) (a) Pollum, M.; Martínez-Fernańdez, L.; Crespo-Hernańdez, C.
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