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Abstract 

A novel series of pyridyl nitrofuranyl isoxazolines were synthesized and evaluated for their 

antibacterial activity against multiple drug resistant (MDR) Staphylococcus strains. 

Compounds with piperazine linker between the pyridyl group and isoxazoline ring showed 

better activity when compared to compounds without the piperazine linker. 3-pyridyl 

nitrofuranyl isoxazoline with a piperazine linker was found to be more active than 

corresponding 2-and 4-pyridyl analogues with MICs in the range of 4-32 µg/mL against 

MDR Staphylococcus strains. The eukaryotic toxicity of the compounds was tested by MTT 

assay and were found to be non-toxic against both non-tumour lung fibroblast WI-38 and 

cervical cancer cell line HeLa.  The most active pyridyl nitrofuranyl isoxazoline compound 

showed improved activity against a panel Staphylococcus strains compared to nitrofuran 

group containing antibiotic nitrofurantoin.   

Key words: Antimicrobial Resistance, Nitrofuran Isoxazoline, MRSA, Medicinal 

Chemistry, Antibacterial Activity, Structure Activity Relationship 
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1.0 Introduction 

The development of novel antibacterial agents that are capable of killing resistant bacteria is 

urgent due to the challenges posed by a number of, both Gram-positive and Gram-negative, 

pathogens with multi- and sometimes pan-drug resistance [1-4]. An acronym, ESKAPEE has 

been derived from the organisms recognised as the major threats (Enterococcus faecalis, 

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 

aeruginosa, Enterobacter spp and Escherichia coli) although there are a number of other 

organisms that may become equally challenging to treat in the clinic [2-7]. The pipeline of 

antibiotics is essentially empty and very few compounds are in the early stages of clinical trials 

[2, 3, 8-10].  Of the Gram-positive pathogens, increasing resistance in S. aureus has become a 

major clinical problem, particularly in the hospital environment, causing significant morbidity 

and mortality in both healthy hosts and those with underlying comorbidities [11-13]. S. aureus is 

found commensally on nasal passages, skin and mucous membranes. The emergence of resistant 

strains of S. aureus has been reported since the mid-1900s. More recently MRSA has become the 

number one cause of hospital-associated infections, and a large proportion of these infections are 

caused by MRSA [14]. Approximately 150,000 infections are caused by MRSA in the Europe 

and the mortality rate is estimated between 15-25%[15] . Therefore, development of novel 

antimicrobial agents for the treatment of infections caused by MDR S. aureus is an urgent 

priority.  

 

Classical antimicrobial drug discovery involves in vitro screening for antimicrobial candidates, 

Structure Activity Relationship (SAR) analysis, followed by in vivo testing for toxicity and 

efficacy. However, the high cost of drug development, coupled with a relatively short window of 

use to gain a return on investment for new antibiotics, have resulted in a waning interest in 
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antibiotic discovery among many pharmaceutical companies[16]. Lack of novel chemical 

scaffolds with antibiotic activity has further compounded the problem[2], and no new classes of 

antibiotics have been found since daptomycin, leading to a discovery void[17].  One of the key 

approaches in discovering new antibacterial drugs is the modification of existing chemical 

scaffolds, almost all the antibacterial drugs that reached the market after the 1960s are synthetic 

derivatives of core-scaffolds discovered between 1930 and 1950. Modifications and 

introductions of novel chemical moieties on the core-scaffold resulted in new generations of 

molecules typically characterized by greater potency, a broader spectrum of activity and 

capability of avoiding the mechanism of resistance[2]. In a bid to identify a new chemical 

scaffold with activity against MDR Gram-positive bacteria, we explored nitrofuran-isoxazoline 

scaffold that has been previously reported for notable activity against Mycobacterium  

tuberculosis[18-21]. Incorporation of a pyridyl side chain with a piperazine spacer has resulted in 

compounds (Fig 1a) with significant activity against MDR Staphylococcus species including 

MRSA strains. Interestingly, the position of the nitrogen atom in the pyridine ring appears to be 

very important for antibacterial activity with 3-pyridyl analogue showed the most notable 

activity followed by the 2-pyridyl analogue while the 4-pyridyl analogue is either inactive or 

active only at a very high concentration.  Incorporation of electron withdrawing or donating 

groups in the terminal pyridine ring retained activity of the 3-pyridyl compounds. The piperazine 

spacer appeared to have a notable effect on the antimicrobial efficacy as compounds without the 

piperazine spacers (Fig 1b) were found to be less active compared to their counterparts with 

piperazine spacers, except the 4-pyridyl analogues which showed some gain of activity after the 

removal of the piperazine spacer. The activity range of the eight compounds synthesized 
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provides SAR information about this modified chemical scaffold and its antimicrobial profile 

that can be further explored to develop more potent analogues. 

 

Fig 1. Structures of isomeric pyridyl nitrofuran isoxazolines with a piperazine spacer, 8a-e, 

and without a piperazine spacer, 10a-c.  

 

2.0 Materials and Methods 

2.1 Chemistry 

All solvents and reagents for the synthesis were obtained from commercial available sources 

including Sigma-Aldrich, Fisher Scientific, Fluorochem and Alfa Aesar. Thin-layer-

chromatography (TLC) analysis was performed on silica gel plates (E. Merck silica gel 60 F254 

plates) and visualized by ultra-violet (UV) radiation at 254 nm. Flash chromatography for the 

purification of compound was performed with silica gel as a stationary phase (Merck 60, 230-

400 mesh). 1H and 13C nuclear magnetic resonance (NMR) analyses were performed on a Bruker 

Spectrospin 400 Hz spectrometer.  LC-MS analyses were performed on a Waters Alliance 2695 

system, eluting in gradient with a flow rate of 0.5 mL/min according to the condition reported 
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herein in Table S1: The analyses were performed on a Monolithic C18 50 X 4.60 mm column by 

Phenomenex. UV detection was performed on a Diode Array Detector. Mass spectra were 

registered in both ESI+ and ESI- mode. 

 

Synthesis of novel pyridyl nitrofuranyl isoxazolines with piperazine spacer, 8a-e 

Synthesis of tert-butyl 4-(4-vinylphenyl)piperazine-1-carboxylate (3) 

A mixture of 1 (1.06 g, 5.80 mmol, 1 eq.), NaOtBu (2.4 eq.), PdCl2[P(o-Tol)3]2 (0.06 eq.) and 2 

(2 eq.) dissolved in toluene (50 mL) was left at reflux at 100°C with stirring in N2 atmosphere for 

3 hours. The crude of reaction was filtered on Celite eluting with DCM and then concentrated 

under reduced pressure. Purification by column chromatography on silica gel (mobile phase: 9/1, 

v/v, hexane/EtOAc) provided 3 (1.19 g, 73%) as a yellow solid. 1H NMR (400 MHz, CDCl3 ) 

7.35 (d, J = 8.56 Hz, 2H), 6.89 (d, J = 8.56 Hz, 2H), 6.67 (dd, J = 10.83, 17.63 Hz, 1H), 5.63 

(d, J = 17.63 Hz, 1H), 5.13 (d, J = 10.83 Hz, 1H), 3.52 - 3.65 (m, 4H), 3.09 - 3.21 (m, 4H), 1.53 

(s, 9H). 

13C NMR (100 MHz, CDCl3) 28.43, 31.44, 36.51, 49.14, 79.95, 111.22, 116.27, 127.13, 

129.66, 136.23, 150.80, 154.72, 162.55. m/z (+EI) calc. for C17H24N2O2 (M)+ 288.30 found 

289.10 ([M]+H)+. 

 

Synthesis of N-hydroxy-5-nitrofuran-2-carbimidoyl chloride (5) 

5-nitro-2-furaldoxime 4 (1.5 g, 10 mmol, 1 eq.) was dissolved in a solution of HCl 0.5M (1.1 eq., 

916 µl) in DMF (10.55 mL) and subsequently oxone (1.1 eq.) was added. The reaction mixture 

was left under magnetic stirrer at room temperature until TLC showed total consumption of the 

starting material. The reaction mixture was diluted with water (100 mL) and extracted with 
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EtOAc (3 x 40 mL). The organic layer was then washed with HCl 0.5 M aqueous solution (100 

mL) and brine (100 mL). The collected organic phase was dried on MgSO4, filtered and 

concentrated under reduced pressure providing 5 (1.87 g, yield was assumed 100%) as a yellow 

solid.  

 

Synthesis of tert-butyl 4-(4-(3-(5-nitrofuran-2-yl)-4,5-dihydroisoxazol-5-

yl)phenyl)piperazine-1-carboxylate (6) 

Triethylamine (1.20 eq) was added to a solution of 3 (500 mg, 1.70 mmol 1 eq.) and 5 (1.20 eq.) 

in CHCl3 (5 mL).  The reaction mixture was left stirring in N2 atmosphere for 20 hours until TLC 

showed total consumption of the starting material. At that point CHCl3 (11 mL) was added to the 

reaction mixture and the organic phase was washed with brine (4 x 10 mL) and then dried on 

MgSO4, filtered and concentrated under reduced pressure. The obtained crude product was 

purified by column chromatography on silica gel (mobile phase: 7:3, v/v, diethyl ether-hexane) 

provided 6 (558.60 mg 74.3%) as a deep red solid. 

 

1H NMR (400 MHz, CDCl3) 7.29 (d, J = 3.78 Hz, 1H), 7.16 (d, J = 8.56 Hz, 2H), 6.90 (d, J = 

4.03 Hz, 1H), 6.82 (d, J = 8.56 Hz, 2H), 5.64 (dd, J = 8.94 Hz, 10.95 Hz, 1H), 3.64 (dd, J = 

11.08 Hz, 17.12 Hz, 1H), 3.41 - 3.53 (m, 4H), 3.27 (dd, J = 8.81 Hz, 17.12 Hz, 1H), 2.94 - 3.10 

(m, 4H), 1.39 (s, 9H). 

13C NMR (100 MHz, CDCl3) 28.43, 41.23, 49.01, 80.02, 83.99, 112.48, 113.15, 116.48, 

127.21, 130.17, 147.50, 147.85, 151.60, 154.70. m/z (+EI) calc. for C22H26N4O6 (M)+ 442.4 

found 443.1 ([M]+H)+. 
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2.2 General procedure for synthesis of final products (8a-e) 

Concentrated hydrochloric acid solution (14 mL) was added to a solution of 6 (430 mg, 0.97 

mmol, 1 eq.) in MeOH (15 mL) and the reaction mixture was left under magnetic stirrer at room 

temperature for 15 minutes until TLC showed total removal of the protecting group. The solution 

was then concentrated under reduced pressure to provide 7 (348 mg, 100%) as white solid. 

Finally, the corresponding bromomethyl pyridine hydrobromide or chlorometyl pyridine 

hydrochloride derivatives or bromomethyl 4-substitited pyridine derivatives (1.5 eq.) was added 

to a solution of 7 (from 61 mg to 177 mg, 1 eq.) in DMF (8 mL) in the presence of K2CO3 (3 

eq.). The reaction mixture was stirred at 50°C under N2 atmosphere for 16 hours. The reaction 

was quenched by addition of water (20 mL) and subsequently extracted with EtOAc (3 x 20 mL). 

The collected organic phases were washed with brine (3X15 mL), dried on MgSO4, filtered and 

concentrated under reduced pressure. The crude product was purified by column chromatography 

on silica gel (mobile phase: from 98:2, v/v, DCM-MeOH to 95:5, v/v, DCM-MeOH) obtaining 

the final products 8a-e. 

 

3-(5-nitrofuran-2-yl)-5-(4-(4-(pyridin-2-ylmethyl)piperazin-1-yl)phenyl)-4,5-

dihydroisoxazole (8a).  

Obtained 68 mg (98%), as a dark yellow solid. 1H NMR (400 MHz, CDCl3) 8.57 (d, J = 4.78 

Hz, 1H), 7.59 - 7.71 (m, 1H), 7.43 (d, J = 7.81 Hz, 1H), 7.37 (d, J = 3.78 Hz, 1H), 7.12 - 7.25 

(m, 3H), 7.00 (d, J = 4.03 Hz, 1H), 6.90 (d, J = 8.81 Hz, 2H), 5.72 (dd, J = 8.94 Hz, 10.95 Hz, 

1H), 3.64 - 3.79 (m, 3H), 3.37 (dd, J = 8.94 Hz, 17.25 Hz, 1H), 3.14 - 3.28 (m, 4H), 2.58 - 2.71 

(m, 4H).  
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13C NMR (100 MHz, CDCl3) 41.15, 48.67, 53.14, 64.55, 84.12, 112.44, 113.15, 115.91, 

122.23, 123.40, 127.16, 129.44, 136.51, 147.56, 147.85, 149.40, 151.68. HRMS (EI, m/z): calc. 

for C23H24N5O4 ([M]+H)+ 434.1823 found 434.1819. 

 

 

 

3-(5-nitrofuran-2-yl)-5-(4-(4-(pyridin-3-ylmethyl)piperazin-1-yl)phenyl)-4,5-

dihydroisoxazole (8b). 

Obtained 44 mg (33.3%) as a yellow solid. 1H NMR (400 MHz, CDCl3)  8.51 (s, 1H), 8.46 (d, 

J = 4.78 Hz, 1H), 7.65 (d, J = 7.81 Hz, 1H), 7.31 (d, J = 3.78 Hz, 1H), 7.12 - 7.25 (m, 3H), 6.94 

(d, J = 3.78 Hz, 1H), 6.83 (d, J = 8.56 Hz, 2H), 5.66 (dd, J = 8.94 Hz, 10.95 Hz, 1H), 3.66 (dd, J 

= 11.08, 17.12 Hz, 1H), 3.50 (s, 2H), 3.30 (dd, J = 9.06 Hz, 17.12 Hz, 1H), 3.04 - 3.20 (m, 4H), 

2.42 - 2.59 (m, 4H).  

13C NMR (100 MHz, CDCl3) 41.17, 48.71, 52.90, 60.17, 84.09, 112.45, 113.16, 115.95, 

123.42, 127.18, 129.56, 133.32, 136.79, 147.54, 147.85, 148.81, 150.51, 151.60. HRMS (EI, 

m/z): calc. for C23H24N5O4 ([M]+H)+ 434.1823 found 434.1863. 

 

3-(5-nitrofuran-2-yl)-5-(4-(4-(pyridin-4-ylmethyl)piperazin-1-yl)phenyl)-4,5-

dihydroisoxazole (8c). 

Obtained 104 mg (51%) as a yellow solid. 1H NMR (400 MHz, CDCl3)  8.51 - 8.61 (m, 2H), 

7.39 (d, J = 3.78 Hz, 1H), 7.31 (d, J = 5.54 Hz, 2H), 7.23 - 7.27 (m, J = 8.81 Hz, 2H), 7.02 (d, J 

= 3.78 Hz, 1H), 6.86 - 6.95 (m, J = 8.56 Hz, 2H), 5.75 (dd, J = 9.06 Hz, 11.08 Hz, 1H), 3.74 (dd, 
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J = 11.20 Hz, 17.25 Hz, 1H), 3.57 (s, 2H), 3.39 (dd, J = 8.94 Hz, 17.25 Hz, 1H), 3.19 - 3.28 (m, 

4H), 2.57 - 2.67 (m, 4H). 

13C NMR (100 MHz, CDCl3) 41.15, 48.72, 53.04, 61.67, 84.08, 112.52, 113.16, 115.91, 

123.88, 127.19, 129.58, 147.34, 147.51, 147.83, 149.87, 151.58, 152.10. HRMS (EI, m/z): calc. 

for C23H24N5O4 ([M]+H)+ 434.1823 found 434.1820. 

 

5-(4-(4-((6-fluoropyridin-3-yl)methyl)piperazin-1-yl)phenyl)-3-(5-nitrofuran-2-yl)-4,5-

dihydroisoxazole (8d). 

Obtained 11 mg (10.6%) as a yellow solid. 1H NMR (400 MHz, CDCl3) δ: 8.16 (d, J = 1.89 Hz, 

1H), 7.83 (td, J = 7.96 Hz, 1.95 Hz, 1H), 7.40 (d, J = 3.78 Hz, 1H), 7.25 (d, J = 8.69 Hz, 2H), 

7.03 (d, J = 3.90, 1H), 6.87 – 6.97 (m, 3H), 5.75 (dd, J = 11.02 Hz, 9.00 Hz, 1H), 3.75 (dd, J = 

17.12 Hz, 11.08 Hz, 1H), 3.57 (s, 2 H), 3.39 (dd, J = 17.18 Hz, 8.88 Hz, 1H), 3.18 – 3.26 (m, 

4H), 2.56 – 2.66 (m, 4H). 13C NMR (100 MHz, CDCl3) δ: 41.13, 48.62, 52.76, 59.06, 84.02, 

109.15, 109.53, 112.44, 113.13, 115.94, 127.14, 129.63, 141.99, 142.07, 147.47, 147.73, 147.81, 

147.86, 151.47, 161.91.  

 

5-(4-(4-((6-methoxypyridin-3-yl)methyl)piperazin-1-yl)phenyl)-3-(5-nitrofuran-2-yl)-4,5-

dihydroisoxazole (8e) 

Obtained 37 mg (34.6%) as a yellow solid. Obtained 37 mg (34.6%) as a yellow solid.  

1H NMR (400 MHz, CDCl3) δ: 8.08 (d, J =2.14 Hz, 1H), 7.58-7.67 (m, 1H), 7.40 (d, J = 3.90 

Hz, 1H), 7.25 (d, J = 8.69 Hz, 2H), 7.04 (d, J = 3.78 Hz, 1H), 6.91 (d, J = 8.81 Hz, 2H), 6.74 (d, 

J = 8.44 Hz, 1H), 5.75 (dd, J = 11.02 Hz, 9.00 Hz, 1H), 3.94 (s, 3H), 3.75 (dd, J = 17.25 Hz, 
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11.08 Hz, 1H), 3.51 (br. s., 2H), 3.40 (dd, J = 17.25 Hz, 8.94 Hz, 1H), 3.22 (br. s., 4H), 2.60 (br. 

s., 4H). 13C NMR (100 MHz, CDCl3) δ: 41.11, 48.60, 52.65, 53.41, 59.47, 84.04, 110.69, 112.41, 

113.11, 115.87, 125.65, 127.11, 129.45, 139.87, 147.08, 147.48, 147.80, 151.55, 152.03, 163.64. 

 

Synthesis of novel pyridyl nitrofuranyl isoxazolines without the piperazine spacer, 10a-c 

Synthesis of 5-(4-bromophenyl)-3-(5-nitrofuran-2-yl)-4,5-dihydroisoxazole (9).  

To a solution of 4-bromostyrene (400 mg, 2.18 mmol, 1 eq.) in CHCl3 (10 mL), 0.36 mL (1.20 

eq) trimethylamine and 5 (500 mg, 2.62 mmol, 1.20 eq) were added. The reaction mixture was 

stirred overnight under N2 atmosphere. The organic phase was extracted with CHCl3 (3 x 10 

mL), washed with brine and dried over MgSO4, filtered and concentrated under reduced 

pressure. The obtained crude product was purified by column chromatography on silica gel 

(mobile phase: 1:1, v/v, diethyl ether-hexane) provided 9 (515 mg 70%) as a cream coloured 

solid. 

 

1H NMR (400 MHz, CDCl3)  7.52 (d, J = 8.31 Hz, 2H), 7.39 (d, J = 3.78 Hz, 1H), 7.24 (d, J = 

8.56 Hz, 2H), 7.04 (d, J = 4.03 Hz, 1H), 5.79 (dd, J = 8.18 Hz, 11.20 Hz, 1H), 3.84 (dd, J = 11.33 

Hz, 17.12 Hz, 1H), 3.35 (dd, J = 8.18 Hz, 17.25 Hz, 1H).  

13C NMR (100 MHz, CDCl3)  147.58, 146.85, 138.44, 131.98, 127.40, 122.59, 112.98, 112.81, 

82.91, 41.70, 29.61. m/z (+EI) calc. for C13H9BrN2O4 (M)+ 335.9 found 336.9 ([M]+H)+. 

 

Synthesis of 3-(5-nitrofuran-2-yl)-5-(4-(pyridin-2-yl)phenyl)-4,5-dihydroisoxazole (10a). 

Tetrakis(triphenylphosphine)palladium(0) (69.2 mg, 0.06 mmol, 0.08 eq.), K2CO3 (290.20 mg, 

2.10 mmol, 3 eq.) and pyridine-2-boronic acid (129.04 mg, 1.05 mmol, 1.50 eq.) were added to a 
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solution of 9 (262.95 mg, 0.70 mmol, 1 eq.) in dioxane (5 mL) and water (0.50 mL). The 

reaction mixture was stirred at reflux under an N2 atmosphere for 72 hrs. The reaction was not 

completed, but it was decided to work up the reaction mixture to prevent formation of further 

impurities. The reaction was filtered on a Celite pad, with the solvent evaporating under reduced 

pressure and the crude reaction mixture dissolving in ethyl acetate (10 mL). This solution was 

washed with water and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The 

combined organic layer was dried over MgSO4 and evaporated in vacuo. The obtained crude 

product was then purified by column chromatography on silica gel (mobile phase: from 100% 

DCM to 95/5, v/v, DCM/acetone), obtaining the final product 10a as a yellow-red solid. 

1H NMR (400 MHz, CDCl3) 8.74 (d, J = 5.54 Hz, 1H), 8.04 (d, J = 8.31 Hz, 2H), 7.73 - 7.83 

(m, 2H), 7.49 (d, J = 8.31 Hz, 2H), 7.41 (d, J = 3.78 Hz, 1H), 7.30 (d, J = 6.04 Hz, 1H), 7.07 (d, J 

= 3.78 Hz, 1H), 5.91 (dd, J = 8.31 Hz, 11.33 Hz, 1H), 3.88 (dd, J = 11.08 Hz, 17.12 Hz, 1H), 

3.45 (dd, J = 8.56 Hz, 17.12 Hz, 1H). HRMS (EI, m/z): calc. for C18H13N3O4 (M)+ 336.0979 

found 336.0979([M]+H)+. 

 

2.3 General procedure for the synthesis of pyridyl isoxazolines without the piperazine linker 

(10b-c) 

[Pd2(dba)3] (48.9 mg, 0.053 mmol, 0.067 eq.), Tricyclohexylphosphine (131.24 mg, 0.47 mmol, 

0.6 eq.),  K3PO4 (496.71 mg, 2.34 mmol, 3 eq.) and the desired pyridine boronic acid (143.80 

mg, 1.17 mmol, 1.5 eq.)  were added to a solution of 9 (262.95 mg, 0.70 mmol, 1 eq.) in dioxane 

(5 mL) and water (0.50 mL). The reaction mixture was stirred at reflux under N2 atmosphere for 

20h at which point LC-MS monitoring showed complete consumption of the starting material. 

The reaction was then filtered on a Celite pad, the solvent evaporated under reduced pressure and 

the evaporated crude reaction mixture was dissolved in ethyl acetate (10 mL). This solution was 
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washed with water and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The 

combined organic layer was dried over MgSO4 and evaporated in vacuo. The obtained crude 

product was then purified by column chromatography on silica gel (mobile phase: from 100% 

DCM to 95/5, v/v, DCM/acetone) obtaining the final products 10b-c. 

 

3-(5-nitrofuran-2-yl)-5-(4-(pyridin-3-yl)phenyl)-4,5-dihydroisoxazole (10b). 

Obtained 24 mg as a yellow solid. 1H NMR (400 MHz, CDCl3) 8.85 (d, J = 2.27 Hz, 1H), 8.62 

(dd, J = 1.51 Hz, 4.78 Hz, 1H), 7.89 (td, J = 1.92 Hz, 7.99 Hz, 1H), 7.62 (d, J = 8.31 Hz, 2H), 

7.49 (d, J = 8.31 Hz, 2H), 7.35 - 7.44 (m, 2H), 7.07 (d, J = 4.03 Hz, 1H), 5.90 (dd, J = 8.31 Hz, 

11.33 Hz, 1H), 3.88 (dd, J = 11.20 Hz, 17.25 Hz, 1H), 3.45 (dd, J = 8.31 Hz, 17.12 Hz, 1H).  

 

13C NMR (100 MHz, CDCl3)  148.97, 148.42, 148.04, 147.41, 139.73, 138.57, 136.24, 134.78, 

128.02, 126.89, 123.98, 113.34, 113.05, 83.66, 42.14, 30.00. HRMS (EI, m/z): calc. for 

C18H13N3O4 (M)+ 336.0979 found 336.0976 ([M]+H)+. 

 

3-(5-nitrofuran-2-yl)-5-(4-(pyridin-4-yl)phenyl)-4,5-dihydroisoxazole (10c). 

Obtained 17.40 mg as a yellow glassy solid. 1H NMR (400 MHz, CDCl3)  8.68 (d, J = 5.54 Hz, 

2H), 7.68 (d, J = 8.31 Hz, 2H), 7.46 - 7.55 (m, 4H), 7.41 (d, J = 3.78 Hz, 1H), 7.08 (d, J = 3.78 

Hz, 1H), 5.91 (dd, J = 8.18 Hz, 11.20 Hz, 1H), 3.89 (dd, J = 11.33 Hz, 17.12 Hz, 1H), 3.45 (dd, J 

= 8.06 Hz, 17.12 Hz, 1H). HRMS (EI, m/z): calc. for C18H13N3O4 (M)+ 335.3 found 336.0977 

([M]+H)+. 13C NMR (100 MHz, CDCl3) 150.44, 148.03, 147.35, 140.79, 138.83, 127.93, 

126.89, 121.95, 113.34, 113.08, 83.54, 42.19, 30.00. HRMS (EI, m/z): calc. for C18H13N3O4 

(M)+ 336.0979 found 336.0977 ([M]+H)+. 
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2.3 Toxicity evaluation of the compounds against eukaryotic cells 

2.3.1 Cell Culture 

HeLa (human cervical cancer) cell line and non-tumour WI38 cell line was obtained from the 

American Type Culture Collection. The HeLa cell-line was maintained in monolayer culture in 

75 cm2 flasks (TPP, Switzerland) under a humidified 5% CO2 atmosphere at 37°C. The HeLa 

cell line was maintained in Dulbecco’s Modified Eagles Media (DMEM; Invitrogen) 

supplemented with foetal bovine serum (10% v/v; Invitrogen), L-glutamine (2 mM; Invitrogen), 

non-essential amino acids (1x; Invitrogen) and Penicillin-Streptomycin (1% v/v, Invitrogen). For 

WI 38 cell line, Dulbecco’s MEM, supplemented with L-glutamine (2mM; Invitrogen), non-

essential amino acids (1x; Invitrogen), penicillin-streptomycin (1% v/v, Invitrogen) and foetal 

bovine serum (15%, Biosera UK) was used. For seeding, cells were counted using a Neubauer 

haemocytometer (Assistant, Germany) by microscopy (Nikon, USA) on a non-adherent 

suspension of cells that were washed in PBS, trypsinised, centrifuged at 4°C at 4000 rpm for 5 

min and re-suspended in fresh medium. 

2.3.2 MTT Assay 

The cells were grown in normal cell culture conditions at 37 ºC under a 5% CO2 humidified 

atmosphere using appropriate medium. The cell count was adjusted to 105 cells/mL and 10,000 

cells were added per well. The cells were incubated for 24 hours and 1 μl of the appropriate 

ligand concentrations were added to the wells in triplicates. After 96 hours of continuous 

exposure to each compound, the cytotoxicity was determined using the 3-(4,5-Dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Lancaster Synthesis Ltd, UK) colorimetric 
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assay.[34  Absorbance was quantified by spectrophotometry at λ = 570 nm (Envision Plate 

Reader, PerkinElmer, USA).  IC50 values were calculated by a dose-response analysis using the 

Prism GraphPad Prism® software.  

2.4 Microbiological Evaluation of the Compounds 

2.4.1 Determination of minimum inhibitory concentration 

MICs were determined using the broth microdilution method as outlined in the CLSI guidelines 

[22]. Cell growth in Muller Hinton Broth (MHB) was determined by measuring optical density 

(600 nm) using a FLUOstar Omega microplate reader (BMG Labtech). The MIC was determined 

as the lowest concentration of drug at which growth was below an optical density of 0.10 at 600 

nm after 20 hours growth. Tests were conducted in triplicate. 

 

2.4.2 Determination of minimum bactericidal concentration 

To determine the minimum bactericidal concentration (MBC), 10ul was taken from all wells of 

the MIC plate at and above the MIC and spotted onto a tryptic soy agar plate. The agar plates 

were incubated at 37 C for 24 hours and the MBC was defined as the concentration at which no 

colonies were seen. The ratio MBC/MIC that was used to evaluate if the compound is 

bactericidal (MBC/MIC = 1 or 2) or bacteriostatic (MBC/MIC = 4 or 16). 

 

2.4.3 Time kill assays. 

Flasks of MHB were inoculated with test organism at a concentration ~106 cfu/mL in a total 

volume of 50 mL. The antimicrobial agents were then added at a concentration of 4 x MIC and 

incubated at 37 C in a shaking incubator at 200 rpm. Samples (0.10 mL) were taken from each 
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sample every hour for 8 hours and at 24 hours following inoculation. The effect on bacterial 

growth was determined using a modification of the Miles Misra dilution methods to estimate 

viable counts.  

 
3.0 Results 
 
3.1 Chemistry 

The synthetic scheme for the pyridyl nitrofuranyl isoxazoline compounds with piperazine spacer 

(8a-e) is shown in Fig 2. First, the piperazine spacer was installed on  p-bromo styrene  by a 

palladium-catalyzed aromatic amination reaction[23] on 1 with N-Boc piperazine in 73% yield. 

Next, the 5-nitro-2-furaldoxime 4 was converted to the corresponding hydroximoyl chloride 5 

using Oxone and HCl[24] in DMF which upon treatment with olefin 3, underwent a [3 + 2] 

regioselective cycloaddition[25] under inert condition to give the reference Boc-protected 

isoxazoline 6 in 74.3% yield. The Boc-deprotection of 6 was carried out in a methanolic solution 

of HCl in room temperature in quantitative yield. Finally, the free amine 7 was treated with 2- 

and 3-bromomethyl pyridine, 4-chloromethyl pyridine, 5-(bromomethyl)-2-fluoropyridine, 5-

(bromomethyl)-2-methoxypyridine, in the presence of K2CO3 to afford 8a, 8b 8c, 8d and 8e 

with between 98%, 51%, 33%, 10.6% and 34.6% yield, respectively. Compounds 8a-c were 

initially synthesized and evaluated for their antimicrobial activity. 8d and 8e are structural 

analogues of 8b with an electron withdrawing F and electron donating methoxy group at 2-

position of the pyridine ring. The aim of this modification was to explore the role of electronic 

environment in the terminal pyridyl group on the antimicrobial activity of this class of 

compounds.  
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Fig 2. Synthesis of pyridyl nitrofuranyl isoxazolines with piperazine spacer 8a-e. Reagent 

and conditions: a) PdCl2[P(o-Tol)3]2, NaOtBu, toluene, reflux, 3 hrs; b) Oxone, HCl 0.5M 

aqueous solution, DMF, r.t., 24 hrs; c) Et3N, chloroform, r.t., 20 hrs; d) HCl 37% aqueous 

solution, MeOH, r.t., 2 hrs; e) K2CO3, DMF, 50 oC, overnight. 

 

 

To explore the role of the piperazine spacer between the phenyl ring and the terminal pyridyl 

ring, three more compounds were designed in which the piperazine spacer was removed and the 

phenyl ring was directly coupled to the pyridyl ring using Suzuki coupling. These compounds 

(10a-c) were synthesized according to synthetic scheme reported in Fig 3. First, the 5-nitro-2-
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furaldoxime 4 was converted to the corresponding hydroximoyl chloride 5 using Oxone and 

HCl[24] in DMF which underwent a [3 + 2] regioselective cycloaddition[25] with p-bromo 

styrene under inert condition to afford the Suzuki substrate 9 in 70% yield. Finally, the Suzuki 

cross-coupling reactions between 9 and the pyridyl-3-boronic acid and pyridyl-4-boronic acid 

were carried out using Pd2(dba)3 as a catalyst under inert condition in  the presence of  

tricyclohexylphosphine and K3PO4 to afford 10b, and 10c. The Suzuki reaction between 9 and 

pyridyl-2-boronic acid did not proceed under same condition, and was carried out using tetrakis 

palladium as the catalyst with a modest 10% yield to afford 10a.    

 

 

Fig 3. Synthesis of pyridyl nitrofuranyl isoxazolines without the piperazine spacer 10a-c. 

Reagent and conditions: a) Oxone, HCl 0.5M aqueous solution, DMF, r.t., 24 hrs; b) 

bromostyrene,  Et3N, chloroform, r.t., 20 hrs; c)  [Pd2(dba)3], K3PO4, P(Cy)3, Dioxane, H2O 

100 °C, d) Pd(PPh3)4, K2CO3, Dioxane/H2O, 100 °C    
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3.2 Microbiological Evaluation 

3.2.1 MIC and MBC Determination 

The  antibacterial evaluation of compound 6, 8a—c and 10a-c were carried out using the broth 

microdilution method as outlined in the CLSI guidelines[22]. Initially, the compounds were 

tested against a panel of ESKAPEE pathogens consisting of three Gram-positive Staphylococcus 

and six Gram-negative bacteria with a variety of antibiotic resistance mechanisms. The reference 

isoxazoline 6, was found to be broadly inactive against both Gram-positive and Gram-negative 

panel while newly synthesized pyridyl nitrofuranyl  isoxazolines with piperazine spacer 8a-b 

showed a wide range of activity against the Gram-positive panel with MICs between 16  to >128 

µg/mL (Table 1), and 8c showed activity similar to that of 6 (Table 1). None of the compounds 

showed any activity against the Gram-negative pathogens tested (Klebsiella pneumoniae strains 

NCTC 13368 and M6[26], Acinetobacter baumannii strains ATCC BAA-1710 and ATCC 

17978, Pseudomonas aeruginosa strains PAO1 and NCTC 13437; MIC values all >128 µg/mL; 

results not shown). The initial Gram-positive panel included; methicillin sensitive (MSSA) S. 

aureus MSSA4144, and methicillin resistant S. aureus (MRSA) isolates representative of 

EMRSA-15 and EMRSA-16[27].   

Table 1. Activity of 8a-e against the initial Staphylococcus panel.  

 MIC (µg/ml) 

Bacteria 6 8a 8b 8c 8d 8e Nitrofur
- antoin 

Cipro 
Vancomyc

in 
Amoxicil

lin 

MSSA 
9144 

32 16 16 16 
32 32 16 

0.125 0.5 0.1-2 

EMRSA 
-15 

>128 32 16 >128 
128 128 16 

32 2 128 

EMRSA
-16 

>128 32 32 128 
16 32 16 

32 2 >128 
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Compound 8b gave MIC values of 16-64 µg/mL for MSSA/MRSA strains.  8b showed 

comparable activity against the MSSA 9144 and EMRSA 15 strains compared to the nitrofuran 

group containing control antibiotic nitrofurantoin (MIC 16 µg/mL) which is expected to share a 

similar mechanism of action (i.e., nitrocompound toxicity).  This prompted us to synthesize two 

additional analogues of 8b with weakly electron withdrawing F containing 8d and electron 

donating methoxy group containing 8e. 8d showed an improvement in MIC value against 

EMRSA-16 (MIC 16 µg/mL) compared to 8b, comparable activity against MSSA9144  but 

notably lost activity against  EMRSA-15. Compound 8e also showed a similar profile except an 

improvement against EMRSA-16 wasn’t observed for this analogue.    The MIC values of the 

shortened pyridyl nitrofuranyl  isoxazolines without the piperazine spacer are reported in Table 

2. Compound 10a was found to be inactive against the Staphylococcus panel. Compound 10b 

showed activity against all three Staphylococcus strains with MIC values between 16 to 128 

µg/mL. Compound 10c also showed activity against all three Staphylococcus strains but the MIC 

values were slightly higher (MIC range 64 to 128 µg/mL) than 10b. It appeared that the removal 

of the piperazine spacer had a detrimental effect on the MIC values of 8a and 8b, but had a small 

positive effect on the MIC values of 8c. Compound 10b maintained comparable activity against 

methicillin resistant Staphylococcus EMRSA 16 compared to nitrofurantoin.   
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Table 2. Activity of 10a-c against the initial Staphylococcus panel.  

 MIC (µg/ml) 
Bacteria 10a 10b 10c Nitrofurantoin Cipro Vancomycin Amoxicillin 
MSSA 
9144 

>128 32 64 16 0.125 0.5 0.1-2 

EMRSA -
15 

>128 64 128 16 32 2 128 

EMRSA-16 >128 16 64 16 32 2 >128 

 

Compounds 8a and 8b were tested for their minimum bactericidal concentration (MBC) and the 

ratio of MBC to MIC was calculated to determine the bactericidal vs bacteriostatic mode of 

action the compounds. Both 8a and 8b showed MBC of ≥128 µg/mL against the MSSA 9144 

strain with an MBC to MIC ratio of 8 suggesting a bacteriostatic mode of action as compounds 

are usually regarded bactericidal if the MBC is no more than four times MIC. Both compounds 

showed MBC values of  >128 µg/mL against the EMRSA strains with MBC to MIC ratio of 

greater than 4 in each cases.  

 

Compounds 8a and 8b were tested against an extended panel of S. aureus and S. epidermidis 

strains from a range of different lineages (Table 3). Both 8a and 8b showed good activity against 

the extended Staphylococcus panel with MICs ranging from 8 to 32 µg/mL for 8a and 4-16 

µg/mL for 8b. Both compound 8a and 8b showed either improved or comparable activities  

(MICs 4-16 µg/mL) against the extended Staphylococcus panel compared to nitrofurantoin 

(MICs 16 µg/mL). The levels of activity against different strains were unaffected by molecular 

mechanisms which mediate resistance to ciprofloxacin and amoxicillin in Staphylococcus spp 

(e.g. strains EMRSA-15 and EMRSA-16).  
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Table 3. Activity of 8a and 8b against extended Enterococcus and Staphylococcus panels.  

  MIC (µg/ml) 
 Bacteria 8a 8b Nitrofurantoin Cipro Vancomycin Amoxicillin 

Ex
te

nd
ed

 S
ta

ph
yl

oc
oc

cu
s p

an
el

 S. epidermidis 
ATCC 35984 

8-16 4-8 16 
0.125-

0.5 
4 128 

S. aureus A1988 16 8 16 0.25 2 >128 
S. aureus BGW541 8-16 8 16 0.5 2 0.25-0.5 

MRSA NCTC 
12493 

8 4-8 16 0.5 1 >128 

S. aureus 13142 8-16 8-16 16 0.25 2 0.25 

S. aureus 6571 PVL 16-32 16 16 
0.25-
0.5 

2 0.25 

S. aureus 8325 PVL 16 16 16 
0.125-
0.25 

2 0.25-0.5 

 

 

3.2.2 Time Kill Assay 

Compound 8b was selected for time kill analysis against the EMRSA-15 strain  to determine 

whether 8b was bactericidal or bacteriostatic. 8b appeared to be bacteriostatic against with 

activity against EMRSA-15 comparable to that of ciprofloxacin which was used as a control 

(Fig4). There was no evidence of resistant colonies being selected for during the time-kill assays, 

but there were viable cells which survived the treatment process with 8b for EMRSA-15 with no 

significant reduction in the viable count between approximately 5 hours post treatment and the 

end of the time course at 24 hours (Fig 4). The data suggests a bacteriostatic mode of action 

which is consistent with the MBC to MIC ratio reported in Table 3.  
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Fig 4. Time kill analysis of compound 8b against Staphylococcus strain EMRSA-15. 

EMRSA-15 was treated with 8b or ciprofloxacin at 4X MIC for 24 hours at 37C. Results are 

the average of at least three replicate experiments and error bars show the standard error of the 

mean. 

 

3.2.3 Cytotoxicity Screening 

Finally, the compounds were tested for their cytotoxic potential against the cervical cancer cell 

line HeLa using the MTT assay[28] and the non-tumour lung fibroblast cell line WI-38 and the 

results are shown in Fig 5 and S1Table. Doxorubicin was used as a positive control in the MTT 

assay for comparison purpose.  Doxorubicin showed notable cytotoxicity with an IC50 of 71 nM 

(Fig 5), but none of the compounds demonstrated a measurable IC50 at the concentrations tested 



  

24 
 

and this lack of toxicity against the mammalian cells was encouraging from the anti-infective 

point of view as this chemical scaffold offers selective toxicity against prokaryotic cells.  

 

Fig 5. MTT cell-viability assay profile in HeLa and WI-38 cells treated with 8b, 10b and 

control compound doxorubicin. HeLa and WI-38 cells were treated with selected compounds 

for 96 hours. Results are the average of at least three replicate experiments. 

 

4.0 Discussion 

Eight new pyridyl nitrofuranyl isoxazolines were successfully synthesized using solution phase 

linear chemistry. The compounds were derived from a reported molecule that has shown 

antitubercular activity but was found to be broadly inactive against both Gram-positive and 

Gram-negative bacteria. Compounds generated by modifying the terminal phenyl ring and 

heterocyclic spacer (8a-b, d, e, 10a-c) showed significant activity against MDR Gram-positive 

pathogens and no notable toxicity against eukaryotic cell lines tested. Although the presence of 

the piperazine spacer wasn’t crucial for activity of these compounds against Gram-positive 
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bacteria, compounds with piperazine spacer showed slightly better activity compared to 

analogues without the piperazine spacer. The position of the N-atom within the terminal pyridine 

ring played a crucial role in conferring activity to these molecules and 3-pyridyl analogues (8b 

and 10b) were significantly more potent compared to 2-pyridyl and 4-pyridyl analogues for both 

sets of compounds (i.e., compounds with and without piperazine spacer). Electron donating and 

electron withdrawing substituents in the terminal pyridine ring maintained or enhanced activity 

against MSSA-9144 and EMRSA-16 strain but a loss of activity against EMRSA-15 strain was 

observed in both cases. This SAR information will be helpful in designing future analogues of 

this chemical class. The incorporation of the nitrofuran ring suggests that the compounds may be 

active via nitrocompound toxicity, akin to that mediated by nitrofurantoin and benzothiazinone-

based compounds[29].  

 

Compound 8b showed good activity against a wider panel of multiple drug-resistant 

Staphylococcus strains. Many of the strains in the extended panel are multidrug resistant and 

have a range of diverse resistance mechanisms. For example, strain A1988 is resistant to 

trimethoprim, muciprocin, oxacillin, amoxicillin, gentamicin and kanamycin. No significant 

difference in sensitivity was observed for strains 6571 and 8325 which express Panton Valentin 

Leukocidin (PVL), which is a virulence factor associated with aggressive infection in healthy 

individuals. Compound 8b showed similar activity (MIC 4-16 µg/mL) against most members of 

the extended panel. 

 

The increased susceptibility of Gram-positive strains compared to Gram-negative bacteria 

mirrors other recent investigations of nitrofuran-containing compounds, such as N-
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acylhydrazone[30, 31], which have been investigated for the control of nosocomial pathogens. 

The reduced efficacy against Gram-negative pathogens probably reflects the greater barrier 

functions of the bacterial membrane, but may also be influenced by cellular metabolism related 

to nitrocompound activation and/or toxicity. Given the likely mechanisms of action of the 

pyridyl nitrofuranyl isoxazolines being investigated here, we would not have expected any of the 

existing resistance mechanisms in the Gram-positive strain panel to mediate cross-resistance to 

the new compounds.  Indeed there was no difference in the MIC levels (defined here as being 

less than 4-fold difference in MIC) determined for strains resistant or sensitive to amoxicillin, 

vancomycin or ciprofloxacin, respectively. Hence the compounds are equally active against 

isolates which are resistant to key front-line antibiotics. The MICs of the pyridyl nitrofuranyl 

isoxazolines are consistent with those of other novel nitrofuran-containing compounds tested 

against Gram-positive pathogens[30, 31].  The absolute MIC values for drug resistant strains that 

were susceptible against 8b were consistently lower for compound 8b (typically 4-16 µg/mL) 

than for the control antibiotic nitrofurantoin which may have a similar mechanism of action (i.e., 

nitrocompound toxicity) and shares structural similarity.   Nitrofurantoin is used routinely in the 

United Kingdom and elsewhere for the treatment of urinary tract infections and the improved 

activity of 8b compared to nitrofurantoin is both encouraging and significant from a drug-

discovery point of view as there is significant opportunity to make medicinal chemistry 

modifications on the scaffold to develop more potent antibacterial agents. It should be noted that 

the MIC values of 8b were higher than that for ciprofloxacin (0.125-2 µg/mL), vancomycin (0.5-

2 µg/mL) or amoxicillin (0.25-2 µg/mL), Given the different mode of action of these antibiotics, 

this is unsurprising and does not necessarily preclude the development of pyridyl nitrofuranyl 

isoxazolines as candidate antibiotics, especially given their low eukaryotic cell toxicity. Like 
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nitrofurantoin, there are several antibiotics which are used routinely in the clinic and where the 

MIC for susceptible strains is higher than that observed for compound 8b. The European 

Committee on Antimicrobial Susceptibility Testing (EUCAST) define resistance to 

nitrofurantoin as being an MIC of 64 µg/mL and above, for Staphylococcus spp. In contrast, 

S.aureus strains with an MIC of 2 µg/mL are defined as being resistant to ciprofloxacin. There is 

significant opportunity to make medicinal chemistry modifications on the scaffold, to develop 

more potent antibacterial agents.  

  

Although this chemical scaffold showed a relatively narrow spectrum of activity, there is 

increasing support within the clinical community for this since they do not have wide ranging 

deleterious effects on the patients’ normal flora.  Narrow spectrum agents can eliminate 

resistance pressure on large sections of the microbiome, as these agents will be inactive against 

them, and thereby play a pivotal role in minimising spread or resistance[32]. The number of 

pipeline drugs presently undergoing clinical trials against MRSA is not particularly 

encouraging[33] and, although the pipeline is not completely empty, it is important to exploit 

existing as well as new chemical scaffolds to develop drug leads that can be optimized into 

clinical candidates.  

 

5.0 Conclusion 

Concern over antibiotic resistance is growing, and novel classes of antibiotics are needed. We 

have successfully modified a chemical scaffold that has previously shown activity against 

Mycobacterium species, but was inactive against MDR Gram-positive pathogens, and introduced 

notable activity against MRSA strains. It was possible to obtain limited SAR information from 



  

28 
 

the compound set and this information can be useful to generate future compounds of this type.  

The pyridyl nitrofuranyl isoxazoline 8b showed improved activity against a wider panel of drug-

resistant and sensitive Staphylococcus strains compared to nitrofurantoin which like these 

compounds shares nitrofuran group and may have a similar mechanism of action. The lack of 

mammalian toxicity and the opportunity to make medicinal-chemistry modifications make 

pyridyl nitrofuranyl isoxazoline scaffold an interesting starting point to develop more potent 

antibacterial agents against MDR Gram-positive pathogens.  
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