Explorations of New Second-Order NLO Materials in the Potassium Vanadyl Iodate System

Chuan-Fu Sun,^{a,b} Chun-Li Hu,^a Xiang Xu,^a Bing-Ping Yang,^a Jiang-Gao Mao*^a

Supporting Information

- Table S1. Calculation of dipole moment for IO₃, VO₆ or VO₅ polyhedra and net dipole moment for a unit cell in four compounds.
- Table S2. The state energies (eV) of the lowest conduction band (L-CB) and the highest valence band (H-VB) of α -KVO₂(IO₃)₂(H₂O), β -KVO₂(IO₃)₂(H₂O), $K_4[(VO)(IO_3)_5]_2(HIO_3)(H_2O)_2 \cdot H_2O$, and K(VO)₂O₂(IO₃)₃.
- Table S3. The experimental and calculated gaps as well as the scissor values adopted

 in the optical properties calculations.
- Table S4. The calculated bond orders of α -KVO₂(IO₃)₂(H₂O), β -KVO₂(IO₃)₂(H₂O), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂·H₂O, and K(VO)₂O₂(IO₃)₃.
- Table S5. The angles between the crystallography axes (i.e. *a*, *b* and *c*) and the principal dielectric axes (i.e. x, y and z) in triclinic crystal $K_4[(VO)(IO_3)_5]_2(HIO_3)(H_2O)_2 \cdot H_2O$.
- Figure S1. Experimental and simulated powder X-ray diffraction data for α -KVO₂(IO₃)₂(H₂O), β -KVO₂(IO₃)₂(H₂O), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂·H₂O, K(VO)₂O₂(IO₃)₃, and M[(VO)₂(IO₃)₃O₂] (M = Rb⁺, Cs⁺, NH₄⁺).

Figure S2. Powder X-ray diffraction studies for the thermal decomposition products

of
$$\alpha$$
-KVO₂(IO₃)₂(H₂O), β -KVO₂(IO₃)₂(H₂O), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂·H₂O, and K(VO)₂O₂(IO₃)₃.

- Figure S3. The infrared spectra of α -KVO₂(IO₃)₂(H₂O), β -KVO₂(IO₃)₂(H₂O), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂·H₂O, and K(VO)₂O₂(IO₃)₃.
- Figure S4. UV absorption spectra of $K(VO)_2O_2(IO_3)_3$ and $M[(VO)_2(IO_3)_3O_2]$ (M = Rb⁺, Cs⁺, NH₄⁺).
- Figure S5. Optical diffuse reflectance spectra for $M[(VO)_2(IO_3)_3O_2]$ (M = Rb⁺, Cs⁺, NH₄⁺).
- Figure S6. Polarization versus applied electric field for $K_4[(VO)(IO_3)_5]_2(HIO_3)(H_2O)_2 \cdot H_2O$ and $K(VO)_2O_2(IO_3)_3$.
- Figure S7. Calculated band structures of α -KVO₂(IO₃)₂(H₂O), β -KVO₂(IO₃)₂(H₂O),

 $K_4[(VO)(IO_3)_5]_2(HIO_3)(H_2O)_2 \cdot H_2O$, and $K(VO)_2O_2(IO_3)_3$.

- Figure S8. Electronic density of states of α -KVO₂(IO₃)₂(H₂O), β -KVO₂(IO₃)₂(H₂O), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂•H₂O, and K(VO)₂O₂(IO₃)₃.
- Figure S9. The imaginary part of the dielectric function polarized, average imaginary part and real part of the dielectric function over three dielectric axes directions for β -KVO₂(IO₃)₂(H₂O), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂·H₂O, and K(VO)₂O₂(IO₃)₃.
- Figure S10. Calculated linear refractive indices for β -KVO₂(IO₃)₂(H₂O), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂·H₂O, and K(VO)₂O₂(IO₃)₃.

Figure S11. Calculated frequency-dependent second harmonic generation coefficients for β -KVO₂(IO₃)₂(H₂O), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂•H₂O, and K(VO)₂O₂(IO₃)₃.

Figure S12. Calculated frequency-dependent second harmonic generation coefficients for Rb[(VO)₂(IO₃)₃O₂], Cs[(VO)₂(IO₃)₃O₂], and NH₄[(VO)₂(IO₃)₃O₂].

Table S1. Calculation of dipole moment for IO_3 , VO_6 or VO_5 polyhedra and net dipole moment for a unit cell in four compounds (D = Debyes, K⁺ ions and water molecules were not considered).

	α-KVO ₂ (IO	3)2(H2O)				
Delenerit	Dipole moment (D)					
Polar unit	total magnitude	x-component	y-component	z-component		
I(1)O ₃	14.52	11.63	8.25	2.75		
I(2)O ₃	14.33	3.93	1.51	13.70		
V(1)O ₆	7.64	1.75	6.43	3.74		
Net dipole moment (a unit cell)	0	0	0	0		
	β-KVO ₂ (IO	3)2(H2O)		·		
Deleg vgit		Dipole mor	ment (D)			
Polar unit	total magnitude	x-component	y-component	z-component		
I(1)O ₃	14.29	9.85	4.94	9.10		
I(2)O ₃	16.59	15.27	4.27	4.89		
V(1)O ₅	3.05	1.75	0.52	2.44		
Net dipole moment (a unit cell)	0	0	0	0		
	K ₄ [(VO)(IO ₃) ₅] ₂ (H)	$(O_3)(H_2O)_2 \cdot H_2O$				
Delerymit		Dipole mor	ment (D)			
Polar unit	total magnitude	x-component	y-component	z-component		
I(1)O ₃	13.84	7.19	11.43	3.02		
I(2)O ₃	13.77	8.26	10.93	1.42		
I(3)O ₃	14.53	10.38	0.53	10.15		
I(4)O ₃	15.24	10.22	11.27	0.88		
I(5)O ₃	15.19	4.08	11.51	9.04		
I(6)O ₃	14.64	10.16	1.45	10.44		
I(7)O ₃	13.23	8.67	9.70	2.40		
I(8)O ₃	16.01	7.59	8.05	11.58		
I(9)O ₃	15.75	11.96	10.24	0.45		
I(10)O ₃	15.61	3.86	11.09	10.29		
I(11)O ₃	14.48	9.73	9.58	4.81		
V(1)O ₆	5.34	2.42	3.33	3.41		
V(2)O ₆	5.89	1.97	4.48	3.29		
Net dipole moment (a unit cell)	33.62	10.21	29.65	12.13		
	$K(VO)_2O_2$	$_{2}(IO_{3})_{3}$				
Polor unit		Dipole mor	ment (D)			
i olar ulitt	total magnitude	x-component y-component		z-component		
$I(1)O_3$	14.77	0	14.53	2.67		
I(2)O ₃	13.36	1.08	4.35	12.59		
V(1)O ₆	5.86	0.71	5.36	2.26		
Net dipole moment (a unit cell)	129.48	0	0	129.48		

Table S2. The state energies (eV) of the lowest conduction band (L-CB) and the

Compound	k-point	L-CB	H-VB
	<i>G</i> (0.000, 0.000, 0.000)	2.66488	0
	Z (0.000, 0.000, 0.500)	2.66845	-0.01174
	<i>T</i> (-0.500, 0.000, 0.500)	2.70478	-0.14669
$\sim KVO(10)(HO)$	<i>Y</i> (-0.500, 0.000, 0.000)	2.7043	-0.14421
α -K v O ₂ (1O ₃) ₂ (H ₂ O)	<i>S</i> (-0.500, 0.500, 0.000)	2.74928	-0.25308
	X(0.000, 0.500, 0.000)	2.70825	-0.16563
	U(0.000, 0.500, 0.500)	2.72001	-0.18451
	<i>R</i> (-0.500, 0.500, 0.500)	2.74791	-0.25233
	<i>G</i> (0.000, 0.000, 0.000)	2.53857	-0.01155
	Z (0.000, 0.000, 0.500)	2.56016	-0.01754
	<i>T</i> (-0.500, 0.000, 0.500)	2.70158	-0.07596
$\beta K V O_{2} (IO_{2}) \cdot (H_{2}O)$	<i>Y</i> (-0.500, 0.000, 0.000)	2.69509	-0.07305
p-K v O ₂ (1O ₃) ₂ (11 ₂ O)	<i>S</i> (-0.500, 0.500, 0.000)	2.76193	-0.0757
	X(0.000, 0.500, 0.000)	2.51134	0
	<i>U</i> (0.000, 0.500, 0.500)	2.51232	-5.99739E-4
	<i>R</i> (-0.500, 0.500, 0.500)	2.76345	-0.08197
	<i>G</i> (0.000, 0.000, 0.000)	2.00117	0
	F (0.000, 0.500, 0.000)	1.99736	-0.04061
$K_4[(VO)(IO_3)_5]_2(HIO_3)(H_2O)_2 \cdot H_2O$	<i>Q</i> (0.000, 0.500, 0.500)	1.99847	-0.03874
	Z (0.000, 0.000, 0.500)	2.001	-0.00593
	<i>G</i> (0.000, 0.000, 0.000)	2.00117	0
	<i>T</i> (0.500, -0.500, 0.000)	1.83457	-0.06669
K(VO) ₂ O ₂ (IO ₃) ₃	W(0.750, -0.250, -0.250)	1.87833	-0.24323
	<i>R</i> (0.500, 0.000, 0.000)	1.76989	-0.08523
	<i>G</i> (0.000, 0.000, 0.000)	1.96209	-0.09799
	<i>X</i> (0.500, -0.500, -0.500)	1.67255	-0.00201

highest valence band (H-VB) of four compounds.

	Eg(exp.)(eV)	Eg(cal.) (eV)	Scissors (eV)
β -KVO ₂ (IO ₃) ₂ (H ₂ O)	3.39	2.51	0.88
$K_4[(VO)(IO_3)_5]_2(HIO_3)(H_2O)_2 \cdot H_2O$	2.27	2.00	0.27
K(VO) ₂ O ₂ (IO ₃) ₃	2.30	1.67	0.63
Rb[(VO) ₂ (IO ₃) ₃ O ₂]	2.35	1.61	0.74
Cs[(VO) ₂ (IO ₃) ₃ O ₂]	2.47	1.60	0.87
NH ₄ [(VO) ₂ (IO ₃) ₃ O ₂]	2.43	1.56	0.87

Table S3. The experimental and calculated gaps as well as the scissor values adopted in the optical properties calculations.

Table S4. The calculated bond	orders of the four compounds.
-------------------------------	-------------------------------

α-KVO ₂ (IO ₃) ₂ (H ₂ O)							
Bond	Bond length	Bond order Bond Bond length		Bond order			
V-O	1.6283	0.91	V-O	1.6613	0.80		
V-O	1.9580	0.42	V-O	2.0056	0.36		
V-O	2.1832	0.25	V-O	2.1735	0.24		
I-O	1.7786	0.48	I-O	1.7820	0.38		
I-O	1.8015	0.37	I-O	1.8633	0.30		
I-O	1.8188	0.26	I-O	1.8566	0.20		
β -KVO ₂ (IO ₃) ₂ (H ₂ O)							
Bond	Bond length	Bond order	Bond	Bond length	Bond order		
V-O	1.6186	0.93	V-O	1.6182	0.90		
V-O	1.9593	0.38	V-O	2.0138	0.33		
V-O	2.02583	0.33	I-O	1.7748	0.45		
I-O	1.7769	0.44	I-O	1.7868	0.44		
I-O	1.8328	0.28	I-O	1.8426	0.20		
I-O	1.8636	0.18					
K ₄ [(VO)(IO ₃) ₅] ₂ (HIO ₃)(H ₂ O) ₂ •H ₂ O							
Bond	Bond length	Bond order	Bond	Bond length	Bond order		
V-O	1.5866	0.94	V-O	1.5934	0.92		

V-O	1.8932	0.45	V-O	1.8935	0.44		
V-O	1.8922	0.43	0.43 V-O		0.40		
V-O	1.9144	0.42	0.42 V-O		0.41		
V-O	1.9147	0.40	V-O	1.9751	0.39		
V-O	2.1966	0.28	V-O	2.1707	0.25		
I-O	1.8082	0.56	I-O	1.7903	0.47		
I-O	1.7912	0.47	I-O	1.8134	0.46		
I-O	1.8012	0.46	I-O	1.7830	0.45		
I-O	1.8084	0.44	I-O	1.7969	0.43		
I-O	1.7846	0.42	I-O	1.7946	0.41		
I-O	1.8150	0.41	I-O	1.8430	0.41		
I-O	1.8035	0.40	I-O	1.8046	0.40		
I-O	1.7901	0.39	I-O	1.7980	0.36		
I-O	1.8112	0.36	I-O	1.7858	0.35		
I-O	1.7980	0.35	I-O	1.8111	0.35		
I-O	1.8161	0.35	I-O	1.8153	0.33		
I-O	1.8188	0.29	I-O	1.8223	0.29		
I-O	1.8592	0.23	I-O	1.8870	0.21		
I-O	1.8833	0.17	I-O	1.8935	0.17		
I-O	1.8981	0.17	I-O	1.8841	0.15		
I-O	1.8599	0.15	I-O	1.8671	0.12		
K(VO) ₂ O ₂ (IO ₃) ₃							
Bond	Bond length	Bond order	Bond	Bond length	Bond order		
V-O	1.6229	0.92	V-O	1.8801	0.55		
V-O	1.8792	0.53	V-O	1.9317	0.39		
V-O	1.9671	0.37	V-O	2.2019	0.23		
I-O	1.7719	0.50	I-O	1.7811	0.44		
I-O	1.8290	0.29	I-O	1.8485	0.27		
I-O	1.8541	0.23					

Table S5. The angles between the crystallography axes (i.e. *a*, *b* and *c*) and the principal dielectric axes (i.e. x, y and z) in triclinic crystal $K_4[(VO)(IO_3)_5]_2(HIO_3)(H_2O)_2 \cdot H_2O$.

	<i>a</i> -O-x	<i>b</i> -O-x	с-О-х	а-О-у	<i>b</i> -О-у	с-О-у	a-O-z	b-O-z	<i>c</i> -O-z
Angle(°)	20.55	74.16	91.52	98.60	36.62	130.50	108.51	57.97	40.54

S10

Figure S1. Experimental and simulated powder X-ray diffraction patterns for α -KVO₂(IO₃)₂(H₂O), β -KVO₂(IO₃)₂(H₂O), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂·H₂O, K(VO)₂O₂(IO₃)₃, and M[(VO)₂(IO₃)₃O₂] (M = Rb⁺, Cs⁺, NH₄⁺).

Figure S2. Powder X-ray diffraction patterns for the thermal decomposition residuals of α -KVO₂(IO₃)₂(H₂O) (a), β -KVO₂(IO₃)₂(H₂O) (b), K₄[(VO)(IO₃)₅]₂(HIO₃) (H₂O)₂·H₂O (c), and K(VO)₂O₂(IO₃)₃ (d).

(a)

Figure S3. The infrared spectra of α -KVO₂(IO₃)₂(H₂O) (a), β -KVO₂(IO₃)₂(H₂O) (b), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂·H₂O (c), and K(VO)₂O₂(IO₃)₃ (d).

Figure S4. UV absorption spectra of $K(VO)_2O_2(IO_3)_3$ and $M[(VO)_2(IO_3)_3O_2]$ (M = Rb⁺, Cs⁺, NH₄⁺).

Figure S5. Optical diffuse reflectance spectra for $M[(VO)_2(IO_3)_3O_2]$ (M = Rb⁺, Cs⁺, NH₄⁺).

Figure S6. Polarization versus applied electric field for $K_4[(VO)(IO_3)_5]_2(HIO_3)(H_2O)_2 \cdot H_2O$ (a) and $K(VO)_2O_2(IO_3)_3$ (b).

Figure S7. Calculated band structures of α -KVO₂(IO₃)₂(H₂O) (a), β -KVO₂(IO₃)₂(H₂O) (b), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂·H₂O (c), and K(VO)₂O₂(IO₃)₃ (d) (the Fermi level is set at 0 eV).

Figure S8. Electronic density of states of α -KVO₂(IO₃)₂(H₂O) (a), β -KVO₂(IO₃)₂(H₂O) (b), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂•H₂O (c), and K(VO)₂O₂(IO₃)₃ (d).

Figure S9. The imaginary part of the dielectric function polarized along three dielectric axes directions for β -KVO₂(IO₃)₂(H₂O) (a), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂•H₂O (b), and K(VO)₂O₂(IO₃)₃ (c); and average imaginary part and real part of the dielectric function over three dielectric axes directions β -KVO₂(IO₃)₂(H₂O) (d), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂•H₂O (e), and K(VO)₂O₂(IO₃)₃ (f).

Figure S10. Calculated linear refractive indices for β -KVO₂(IO₃)₂(H₂O) (a), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂•H₂O (b), and K(VO)₂O₂(IO₃)₃ (c).

Figure S11. Calculated frequency-dependent second harmonic generation coefficients for β -KVO₂(IO₃)₂(H₂O) (a), K₄[(VO)(IO₃)₅]₂(HIO₃)(H₂O)₂•H₂O (b), and K(VO)₂O₂(IO₃)₃ (c).

Figure S12. Calculated frequency-dependent second harmonic generation coefficients for $Rb[(VO)_2(IO_3)_3O_2]$ (a), $Cs[(VO)_2(IO_3)_3O_2]$ (b), and $NH_4[(VO)_2(IO_3)_3O_2]$ (c).