

# A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

# **Accepted Article**

Title: A Tunable Trifluoromethyl-lodonium Reagent

Authors: Antonio Togni, Phil Liebing, Jorna Kalim, Natalia Arefyeva, Mathias Wickleder, and Florian Oehler

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201903623 Angew. Chem. 10.1002/ange.201903623

Link to VoR: http://dx.doi.org/10.1002/anie.201903623 http://dx.doi.org/10.1002/ange.201903623

# WILEY-VCH

## A Tunable Trifluoromethyl-lodonium Reagent

Phil Liebing,<sup>[a]</sup> Jorna Kalim,<sup>[a]</sup> Natalia Arefyeva,<sup>[b]</sup> Florian Oehler,<sup>[c]</sup> Mathias Wickleder,<sup>[b]</sup> and Antonio Togni<sup>\*[a]</sup>

Abstract: Four complexes of MCl4 (M = Ti, Zr, Hf) with the hypervalent trifluoromethyl iodine reagent trifluoromethyl-1,3-dihydro-3,3dimethyl-1,2-benziodoxole (1, = L) are described. With TiCl<sub>4</sub>, an I-O bond cleavage occurs leading to the formation of the trifluoromethyl iodonium alcoholate complexes [Ti<sub>2</sub>Cl<sub>6</sub>(L)<sub>4</sub>]Cl<sub>2</sub> (2a) and Ti<sub>2</sub>Cl<sub>8</sub>(L) (2b). Reactions with ZrCl<sub>4</sub> or HfCl<sub>4</sub> form the complexes ZrCl<sub>4</sub>(L)<sub>2</sub> (3) and  $HfCl_4(L)_2$  (4), wherein the original I-O bond is retained and elongated compared to free 1. Therefore, the reactivity of 1 can be easily and practically fine-tuned by addition of different metal chlorides, following the order ZrCl<sub>4</sub>/HfCl<sub>4</sub> < TiCl<sub>4</sub> < 2 TiCl<sub>4</sub>. Complexes 2a, 3 and 4 are remarkably bench-stable forms of activated reagent 1, while 2b is readily accessible in situ. 2a and 2b represent the first "real" trifluoromethyl iodonium reagents derived from iodanes, i.e. with the I-O bond being completely cleaved. The new complexes were shown to be useful for the trifluoromethylation of para-toluene sulfonate under aprotic conditions.

Hypervalent iodine reagents for electrophilic trifluoromethylation are readily accessible from cheap starting materials and are bench stable. Their versatility has been widely demonstrated since the first report from our laboratory in 2006.<sup>[1,2]</sup> The most popular reagents are 1-(trifluoromethyl)-1,2benziodoxol-3(1H)-one ("Togni's reagent I" or "acid reagent") and trifluoromethyl-1,3-dihydro-3,3-dimethyl-1,2-benziodoxole ("Togni's reagent II" or "alcohol reagent") (1, = L). These compounds have been successfully employed for the trifluoromethylation of various C-, O-, N-, S- and P-centered nucleophiles, where the reagents show different reactivities. In many cases, the iodane reagents show radical reactions, which can be initiated by transition-metal catalysis or by one-electron reduction of the reagent.<sup>[2,3]</sup> We recently showed that cobalt(II) complexes can be converted to corresponding trifluoromethylcobalt(III) complexes by the reagents.<sup>[4]</sup> On the other hand, protonation or coordination of the iodane to a Lewis-acidic metal enhances the electrophilic character, thus resulting in a CF3<sup>+</sup>-equivalent species (Scheme 1).

| [a] | Dr. P. Liebing, J. Kalim, Prof. Dr. Antonio Togni<br>Swiss Federal Institute of Technology. ETH Zurich |
|-----|--------------------------------------------------------------------------------------------------------|
|     | Department of Chemistry and Applied Biosciences                                                        |
|     | Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland                                                        |
|     | E-mail: atogni@ethz.ch                                                                                 |
| [b] | Dr. N. Arefyeva, Prof. Dr. Mathias Wickleder                                                           |
|     | University of Cologne                                                                                  |
|     | Department of Chemistry, Institute of Inorganic Chemistry                                              |
|     | Greinstr. 6, 50939 Cologne, Germany                                                                    |
| [c] | Dr. F. Oehler                                                                                          |
|     | Martin-Luther-Universität Halle-Wittenberg,                                                            |
|     | Institut für Chemie                                                                                    |
|     | Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany                                                       |
|     |                                                                                                        |
|     |                                                                                                        |

Supporting information for this article is given via a link at the end of the document.

For instance, the iodanes react readily with acidic thiols and sulfonic acids to the corresponding trifluoromethylated products, and the less acidic alcohols are converted to trifluoromethyl ethers by activation of the reagent with Zn(NTf)<sub>2</sub> (Tf = Triflate).<sup>[2]</sup> A number of acid adducts of 1 have been structurally characterized by us<sup>[5]</sup> and by Toste and co-workers<sup>[6]</sup>. To our knowledge the only structurally characterized metal complex of 1 is the gold(I) complex [(L)Au(P<sup>t</sup>Bu<sub>2</sub>Bph)]SbF<sub>6</sub> (Bph = biphenyl-2-yl).<sup>[7]</sup> In all known protonated iodanes and metal complexes, the I-O bond is considerably elongated, and the iodonium character of the reagent is enhanced. However, the preparation of "real" iodonium reagents derived from iodanes (i.e. with the I-O bond being completely cleaved) still remained elusive, since activated reagents are often unstable. Moreover, disadvantages of the known activation modes are the potential incompatibility of many substrates with protic reagents, and the high expense of gold compounds. For these reasons, we were interested in new model complexes with 1 as ligand, which could potentially display tunable reactivity regarding the Iodane/Iodonium dualism. Group-IV-metal chlorides were chosen due to their highly oxophilic character, expecting to form complexes with iodane ligands readily. Herein, we report the synthesis, full characterization, and reactivity of TiCl<sub>4</sub>, ZrCl<sub>4</sub> and HfCl<sub>4</sub> adducts of reagent 1.



Scheme 1. Activation of iodane reagent 1 by protonation or coordination to a metal center.

In an initial screening,  $CH_2Cl_2$  solutions of compound **1** with differing amounts of TiCl<sub>4</sub> were prepared and <sup>19</sup>F-NMR spectra recorded (Figure 1). Generally, the signal of the CF<sub>3</sub> group is increasingly downfield-shifted with increasing amounts of TiCl<sub>4</sub>. This is to be expected in view of a rising iodonium cation character of the iodane through coordination to titanium.<sup>[2]</sup> Strong broadening of the signal up to 0.25 equiv. TiCl<sub>4</sub> can be attributed to an equilibrium between free and complexed **1**, and vanishing of the signal between 0.50 and 0.75 equiv. is due to the precipitation of a metal complex. From 1.00 equiv. TiCl<sub>4</sub> on, the precipitate begins to re-dissolve, the solution is markedly yellow-

## COMMUNICATION

colored, and a sharp <sup>19</sup>F-NMR signal around –18 ppm appears. This behavior suggests an equilibrium between two titanium complexes: poorly soluble, colorless  $[Ti_2Cl_6(L)_4]Cl_2$  (**2a**), and soluble, yellow  $Ti_2Cl_8(L)$  (**2b**) (Scheme 2, a). Complex **2a** could easily be isolated in good yield due to its low solubility, while attempts to isolate **2b** always afforded mixtures containing **2a**. However, solutions of **2b** are readily prepared *in situ* by addition of an excess TiCl<sub>4</sub> to a CH<sub>2</sub>Cl<sub>2</sub> solution of **1**.



Figure 1. a) Samples of reagent 1 (0.1 mol/L) in CH<sub>2</sub>Cl<sub>2</sub> with different equivalents of TiCl<sub>4</sub> and b)  $^{19}\text{F-NMR}$  spectra of the same.

Even though ZrCl<sub>4</sub> and HfCl<sub>4</sub> are much less reactive than TiCl<sub>4</sub>, the 2:1 complexes ZrCl<sub>4</sub>(L)<sub>2</sub> (**3**) and HfCl<sub>4</sub>(L)<sub>2</sub> (**4**) were obtained in good isolated yields by treatment with a slight excess of **1** in CH<sub>2</sub>Cl<sub>2</sub> (Scheme 2, b). Compounds **2a** and **2b** are sensitive towards hydrolysis, while **2a** is otherwise stable at -20 °C and **2b** decomposes gradually. Compounds **3** and **4** are less reactive than **2a** and can be handled in air, but long-term storage under an inert atmosphere at low temperature is recommended. It is worth mentioning that in each case the complex formation turned out to be irreversible. Complexes **2a**, **3** and **4** dissolve in THF under formation of the corresponding MCl<sub>4</sub>(THF)<sub>2</sub> complex (M = Ti, Zr, Hf), and the decomposition products CHF<sub>3</sub> and CF<sub>3</sub>I have been detected instead of the liberated iodane **1** (*cf.* Figure S6). The thermal stability of the isolated complexes was investigated by TG/DTA analyses (*cf.* Figures S11–S14). The decomposition temperature of **2a** is relatively low at 102 °C, while thermal decomposition of **3** (133 °C) and **4** (139 °C) was observed at similar temperatures as for free **1** (136 °C).



Scheme 2. Complexation of reagent 1 with a) TiCl<sub>4</sub> and b) ZrCl<sub>4</sub> and HfCl<sub>4</sub>.

The identity of all new compounds 2a, 2b, 3 and 4 was confirmed by elemental analyses, <sup>1</sup>H- and <sup>19</sup>F-NMR spectroscopy (in CD<sub>2</sub>Cl<sub>2</sub>), and single-crystal X-ray diffraction. A <sup>13</sup>C-NMR spectrum was only obtainable for 2b due to solubility issues. The latter displays a characteristic quartett signal for the CF<sub>3</sub> group at 100.0 ppm, with a  $|^{1}J_{C,F}|$  value of 374 Hz, which is considerably smaller than the value of free 1 (398 Hz) and close to the value of trifluoroacetic-acid protonated 1 (367 Hz).<sup>[5]</sup> In accordance with the enhanced iodonium character of the coordinated iodane, the <sup>19</sup>F-NMR signals of all four complexes are downfield-shifted with respect to free 1. The <sup>19</sup>F chemical shifts of 2a, 3 and 4 are around -30 ppm, while the signal of 2b was observed even more downfield-shifted at -17.2 ppm (cf. Figures S3 and S5). Interestingly, not only in the <sup>19</sup>F-NMR spectrum of 2a, but also for 3 and 4 significant broadening and splitting of the signal indicated a complex structural chemistry in solution. The equilibrium between 2a and 2b is well illustrated by the presence of the signals of both species in the <sup>1</sup>H-NMR spectra of both compounds.

Single-crystal X-ray structure determination revealed that the I-O bond is completely cleaved in both Ti complexes **2a** and **2b**, and the iodane ligand is better described as a zwitterionic iodonium alcoholate (*cf.* Scheme 1, c; non-bonding I···O separations 309.7(3) and 313.6(3) pm for **2a**, and 308.2(2) pm for **2b**). This model is in agreement with the observed Ti-O distances (**2a**: 176.5(3)–176.6(3) pm; **2b**: 172.9(2) pm), being comparable with values for other titanium alcoholates.<sup>[8,9]</sup> Compound **2a** displays a centrosymmetric dinuclear structure, comprising a complex [Ti<sub>2</sub>Cl<sub>6</sub>(**1**)<sub>4</sub>]<sup>2+</sup> cation and two chloride counterions (Figure 2, a). The central structural motif is a planar Ti<sub>2</sub>Cl<sub>2</sub> ring containing two µ-bridging chlorido ligands. The titanium atoms are

## COMMUNICATION

coordinated in a typical octahedral fashion by four CI atoms and the O atoms of two cis-arranged iodonium alcoholate ligands. The reactive trifluoromethyl iodonium moiety is stabilized by two I···Cl contacts, resulting in a typical square-planar coordination of iodine.<sup>[5]</sup> Therefore, the chloride counterions are fixed by two iodine atoms in a tilted fashion. Complex 2b (Figure 2, b) consists of two distorted-octahedrally coordinated Ti centers linked by three µ-bridging chlorido ligands, with the alkoxy moiety of a trifluoromethyl iodonium alcoholate ligand attached to one Ti atom. The I<sup>+</sup>CF<sub>3</sub> moiety is again stabilized by I···CI contacts, leading to square-planar coordination of iodine. Thereby, µ-bridging coordination of one chlorine atom leads to formation of a supramolecular dimer, featuring a cyclic I2Cl2 core. The significance of the secondary I···Cl bonds is illustrated by a considerable elongation of the corresponding Ti-Cl bond to 231.6(1) pm, while all other terminal Ti-Cl bonds are in a narrow range of 221.0(1)-222.9(1) pm.



Figure 2. Molecular structures of complexes 2a (a), 2b (b), and 3 (c; complex 4 is isotypic). For crystallographic details, see the SI.

The heavier group IV metal complexes 3 and 4 are isotypic and exhibit virtually identical molecular structures (Figure 2, c). In the centrosymmetric molecules, a single metal center is octahedrally coordinated by four terminal chlorido ligands and two iodane ligands in a trans arrangement. Interestingly, the I-O bond within the iodane ligands is not cleaved as in the case of 2a and 2b, but only elongated to 243.1(2) pm (3) or 243.3(2) (4), respectively. These values are considerably larger than the I-O distance observed in the previously reported gold(I) complex (228.1(4) pm),<sup>[7]</sup> and comparable with that of protonated forms of 1, e.g. 249.5(1) pm in the HNTf<sub>2</sub> adduct.<sup>[5]</sup> The model of neutral iodane ligands also fits to the M-O bond lengths of 210.0(2) pm (3) and 209.3(2) pm (4). Therefore, the bonds are considerably longer than in Zr and Hf alcoholates,[10,11] but shorter than in complexes with classical ether ligands.[12-14] The molecular structures of 3 and 4 are again supported by secondary I...Cl bonding, but this time the iodine atom is penta-coordinated by two additional I...Cl contacts rather than displaying the more usual square-planar coordination. It is worth mentioning that the I-CF<sub>3</sub> bond lengths are very similar in all four complexes at 220.8(4)–222.1(3) pm, which is significantly smaller than in free **1** (I-CF<sub>3</sub> 226.7(2) pm).<sup>[15]</sup> A similar I-C bond shortening has been observed in protonated forms of **1**.<sup>[5]</sup>

To gain deeper insights into structure-reactivity relationships of the new complexes, we conducted a combined electrochemical/computational study (see the SI for details). The cyclovoltagrams of all four metal complexes revealed that they are more easily reduced as compared to non-activated iodane 1 ( $E_{pc}$ = -2.90 V vs. FeCp<sub>2</sub>/FeCp<sub>2</sub><sup>+</sup> in CH<sub>2</sub>Cl<sub>2</sub>). The first reduction peak was observed at -1.00 V (2a), -0.57 V (2b in situ), -0.57 V (3), and -0.57 V (4). DFT calculations of the frontier molecular orbitals of the complexes shows that the LUMO is localized at the metal center and at the hypervalent iodine fragment in each complex. However, formal reduction of the metal center is expected to be feasible only for the titanium complexes, while zirconium and hafnium are not redox-active. The literature holds several examples for reductions of titanium(IV) to titanium(III) complexes,[16,17] while reductions of zirconium and hafnium complexes are usually ligand-centered.[18,19] Computational results of the singly-reduced species corresponding to 2a and 3 are in perfect agreement with these expectations. While the SOMO in the case of 2a<sup>-</sup> is centered at one of the two Ti atoms (suggesting the formation of a mixed Ti(III)/Ti(IV) species upon reduction), in 3<sup>-</sup> one of the two iodane ligands is reduced to a 2-(2-iodophenyl)propan-2-olate ligand, and a CF3 radical is liberated. Electrochemical oxidation of 2a, 2b, 3, and 4 was observed in a range of +1.2 V to +1.4 V vs. FeCp<sub>2</sub>/FeCp<sub>2</sub><sup>+</sup>. The HOMO in all four complexes was computed to be exclusively chlorine-centered, and therefore oxidation can be expected to form chlorine radicals rather than highly oxidized iodine species. The difficulty in oxidizing iodane reagents to iodine(V) compounds has been demonstrated previously.<sup>[20]</sup>



**Scheme 3.** Trifluoromethylation of *para*-toluenesulfonate with TiCl<sub>4</sub>- or ZrCl<sub>4</sub>-activated reagent **1** (Conditions: 0.1–0.2 mol/L substrate in CH<sub>2</sub>Cl<sub>2</sub>, 1.0–1.2 equiv. **1**, r.t. to 40 °C, 16 h; see Table S1 for details).

Finally, to demonstrate the utility of the new complexes in trifluoromethylation reactions, we performed a reactivity screening of iodane **1** with tetrabutylammonium *para*-toluenesulfonate in the presence of TiCl<sub>4</sub> or ZrCl<sub>4</sub> (see Table S1 for details). As opposed to the parent sulfonic acids, which react readily with the non-activated reagent **1** to the corresponding trifluoromethyl sulfonates, sulfonate salts do not.<sup>[2,21]</sup> However, in the presence of TiCl<sub>4</sub>, **1** reacts indeed with *para*-toluenesulfonate to the corresponding trifluoromethylated product in good yields (Scheme 3). A maximal <sup>19</sup>F-NMR yield of 73% of the trifluoromethyl sulfonate was achieved with 2 equiv. TiCl<sub>4</sub> in CH<sub>2</sub>Cl<sub>2</sub> solution at 40 °C. With less than 2 equiv. of TiCl<sub>4</sub>, the yields were always below 10%, which can be attributed to the much lower solubility of **2a** as compared to **2b**. Good yields of the

## COMMUNICATION

trifluoromethyl sulfonate were also obtained using *in-situ* prepared **2b** in chloroform or toluene, while the use of THF as solvent led to only trace amounts of product. This finding can be attributed to the formation of TiCl<sub>4</sub>(THF)<sub>2</sub>. An increase of the temperature above 40 °C did not result in a significant improvement of the yield. When TiCl<sub>4</sub> was replaced by ZrCl<sub>4</sub> under comparable reaction conditions, the <sup>19</sup>F-NMR yield dropped to below 30%, reflecting the lower reactivity of complex **3** as compared to **2b**.

To summarize the results reported here, four novel complexes of the hypervalent iodine reagent 1 with group-IV-metal chlorides were prepared and fully characterized. These complexes display remarkable stability and persistence making activated forms of 1 more accessible. Additionally, the reactivity of 1 in electrophilic trifluoromethylations can be fine-tuned by complexation with different metal chlorides, following the order ZrCl<sub>4</sub>/HfCl<sub>4</sub> < TiCl<sub>4</sub> < 2 TiCl<sub>4</sub>. All complexes are readily prepared, and the titanium complex **2b** turned out to be a powerful  $CF_3^+$  transfer reagent. While in the previous literature activation of iodane 1 was often achieved by protonation, the reaction of 2b with paratoluenesulfonates is a unique model for electrophilic trifluoromethylation under aprotic conditions. In view of these reactivity properties and the easy in-situ preparation, we believe that 2b has a significant application potential also for a wide range of other substrates. Moreover, the zirconium complex 3 represents a mild reagent variant and may find application for the trifluoromethylation of highly functionalized substrates.

#### **Author Information**

#### **Current Address:**

Dr. P. Liebing, Otto-von-Guericke-Universität Magdeburg, Institut für Chemie, Universitätsplatz 2, 39108 Magdeburg, Germany.

#### ORCID:

Phil Liebing: 0000-0002-4660-1691

Antonio Togni: 0000-0003-3868-1799

#### Acknowledgements

We thank the Regional Computing Center of the University of Cologne (RRZK) for providing computing time on the DFG-funded High-Performance Computing (HPC) system CHEOPS as well as for the support. General financial support by ETH Zurich is gratefully acknowledged.

#### **Conflict of Interest**

The authors declare no conflict of interest.

**Keywords:** hypervalent iodine • trifluoromethylation • iodonium • titanium • zirconium • hafnium

| [1]  | P. Eisenberger, S. Gischig, A. Togni, <i>Chem. Eur. J.</i> 2006, <i>12</i> , 2579–2586 |  |
|------|----------------------------------------------------------------------------------------|--|
| [2]  | J Charpentier N Früh A Togni Chem Rev 2015 115 650–682                                 |  |
| [3]  | X Wang A Studer Acc Chem Res 2017 50 1712–1724                                         |  |
| [4]  | P. Liebing, F. Oehler, M. Wagner, P. F. Tripet, A. Togni,                              |  |
|      | Organometallics <b>2018</b> , 37, 570–583.                                             |  |
| [5]  | P. Liebing, E. Pietrasiak, E. Otth, J. Kalim, D. Bornemann, A. Togni,                  |  |
|      | Eur. J. Org. Chem. 2018, 27–28, 3771–3781.                                             |  |
| [6]  | J. N. Brantley, A. V. Samant, F. D. Toste, ACS Cent. Sci. 2016, 2,                     |  |
|      | 341–350.                                                                               |  |
| [7]  | H. S. M. Siah, A. Fiksdahl, J. Fluorine Chem. 2017, 197, 24-33.                        |  |
| [8]  | J. Pauls, E. Iravani, P. Köhl, B. Neumüller, Z. Anorg. Allg. Chem.                     |  |
|      | <b>2004</b> , <i>630</i> , 876–884.                                                    |  |
| [9]  | N. A. Kolosov, V. A. Tuskaev, S. C. Gagieva, I. V. Fedyanin, V. N.                     |  |
|      | Khrustalev, O. V. Polyakova, B. M. Bulychev, Eur. Polym. J. 2017,                      |  |
|      | 87, 266–276.                                                                           |  |
| [10] | R. Pothiraja, A. Milanov, H. Parala, M. Winter, R. A. Fischer, A.                      |  |
| _    | Devi, Dalton Trans. 2009, 654–663.                                                     |  |
| [11] | T. J. Boyle, L. A. M. Steele, P. D. Burton, S. M. Hoppe, C. Lockhart,                  |  |
|      | M. A. Rodriguez, Inorg. Chem. 2012, 51, 12075–12092.                                   |  |
| [12] | M. Eberle, C. Röhr, Acta Cryst. 1996, C52, 566–568.                                    |  |
| [13] | V. Reimer, T. P. Spaniol, J. Okuda, H. Ebeling, A. Tuchbreiter, R.                     |  |
|      | Mülhaupt, Inorg. Chim. Acta 2003, 345, 221–227.                                        |  |
| [14] | S. A. Duraj, R. L. R. Towns, R. J. Baker, J. Schupp, Acta                              |  |
|      | Crystallogr. Sect. C 1990, C46, 890–892.                                               |  |
| [15] | I. Kieltsch, P. Eisenberger, A. Togni, Angew. Chem. Int. Ed. 2007,                     |  |
|      | 46, 754–757.                                                                           |  |
| [16] | A. Kuhn, J. Conradie, Inorg. Chim. Acta 2016, 453, 247–256.                            |  |
| [17] | A. Kuhn, J. Conradie, New J. Chem. 2018, 42, 662–670.                                  |  |
| [18] | T. Nyokong, Synth. Met. 1994, 66, 107–116.                                             |  |
| [19] | M. K. M. Rabia, G. Y. Aly, M. A. F. Al-Mohanna, Synth. React. Inorg.                   |  |
|      | Met. Chem. 2004, 34, 1651–1674.                                                        |  |
| [20] | S. Gruber, S. M. Ametamey, R. Schibli, <i>Chem. Commun.</i> <b>2018</b> , <i>54</i> ,  |  |
|      | 8999–9002.                                                                             |  |
| [21] | R. Koller, Q. Huchert, P. Battaglia, J. M. Welch, A. Togni, Chem.                      |  |
|      | Commun. <b>2009</b> , 5993–5995.                                                       |  |

## COMMUNICATION

### Entry for the Table of Contents

## COMMUNICATION

The reactivity of trifluoromethyl-1,3dihydro-3,3-dimethyl-1,2-benziodoxole in electrophilic trifluoromethylations can be fine-tuned by complexation with TiCl<sub>4</sub>, ZrCl<sub>4</sub>, and HfCl<sub>4</sub>.



P. Liebing, J. Kalim, N. Arefyeva, F. Oehler, M. Wickleder, A. Togni\*

Page No. – Page No.

A Tunable Trifluoromethyl-lodonium Reagent COMMUNICATION

### WILEY-VCH

# Ein abstimmbares Trifluoromethyl-lodonium-Reagenz

Phil Liebing,<sup>[a]</sup> Jorna Kalim,<sup>[a]</sup> Natalia Arefyeva,<sup>[b]</sup> Florian Oehler,<sup>[c]</sup> Mathias Wickleder<sup>[b]</sup> und Antonio Togni<sup>\*[a]</sup>

Abstract: Vier Komplexe von MCl4 (M = Ti, Zr, Hf) mit dem hypervalenten Trifluormethylierungs-Reazenz Trifluormethyl-1,3dihydro-3,3-dimethyl-1,2-benziodoxol (1, = L) sind beschrieben. Mit TiCl<sub>4</sub> erfolgt eine I-O-Bindungsspaltung, die zur Bildung der  $Trifluormethyliodonium-Alkoholat-Komplexe \ [Ti_2Cl_6(L)_4]Cl_2 \ (\textbf{2a}) \ und$ Ti<sub>2</sub>Cl<sub>8</sub>(L) (2b) führt. Umsetzungen von 1 mit ZrCl<sub>4</sub> und HfCl<sub>4</sub> liefern die Komplexe ZrCl<sub>4</sub>(L)<sub>2</sub> (3) und HfCl<sub>4</sub>(L)<sub>2</sub> (4), in denen die ursprüngliche I-O-Bindung bestehen bleibt, aber verglichen mit freiem 1 verlängert ist. Somit kann die Reaktivität von 1 einfach und praktikabel durch Zugabe verschiedener Metallchloride variiert werden, wobei die Reihenfolge ZrCl<sub>4</sub>/HfCl<sub>4</sub> < TiCl<sub>4</sub> < 2 TiCl<sub>4</sub> gilt. Die Komplexe 2a, 3 und 4 sind bemerkenswert lagerstabile Formen des aktivierten Reagenzes 1, während 2b leicht in situ zugänglich ist. 2a und 2b repräsentieren die ersten "echten" lodan-basierten Trifluormethyliodonium-Reagenzien, also mit einer vollständig gespaltenen I-O-Bindung. Es wurde gezeigt, dass sich die neuen Komplexe zur Trifluormethylierung von para-Toluolsulfonat unter aprotischen Bedingungen eignen.

Hypervalente lodreagenzien zur elektrophilen Trifluormethylierung sind aus preisgünstigen Ausgangsstoffen leicht zugänglich und lagerstabil. Seit der ersten Veröffentlichung aus unserem Labor 2006 ist ihre Vielseitigkeit umfassend demonstriert worden.<sup>[1,2]</sup> Die bekanntesten Reagenzien sind 1-(Trifluormethyl)-1,2-benziodoxol-3(1H)-on ("Tognis Reagenz I" oder "Säurereagenz") und Trifluormethyl-1,3-dihydro-3,3dimethyl-1,2-benziodoxol ("Tognis Reagenz II" oder "Alkoholreagenz" (1, = L). Diese Verbindungen sind erfolgreich zur Trifluormethylierung von diversen C-, O-, N-, S- und P-zentrierten Nukleophilen eingesetzt worden, wobei die Reagenzien verschiedene Reaktivitätsmuster zeigen. So zeigen die lodane in vielen Fällen Radikalreaktionen, welche durch Übergangsmetallkatalysatoren oder durch Einelektronenreduktion des Reagenzes initiiert werden können.<sup>[2,3]</sup> Wir haben kürzlich gezeigt, dass Cobalt(II)-Komplexe mit den Reagenzien in entsprechende

| [a] | Dr. P. Liebing, J. Kalim, Prof. Dr. Antonio Togni       |
|-----|---------------------------------------------------------|
|     | Eidgenössische Technische Hochschule (ETH) Zürich       |
|     | Department Chemie und Angewandte Biowissenschaften      |
|     | Vladimir-Prelog-Weg 2, 8093 Zürich, Schweiz             |
|     | E-mail: antonio.togni@inorg.chem.ethz.ch                |
| [b] | Dr. N. Arefyeva, Prof. Dr. Mathias Wickleder            |
|     | University zu Köln                                      |
|     | Department für Chemie, Institut für Anorganische Chemie |
|     | Greinstr. 6, 50939 Köln, Deutschland                    |
| [c] | Dr. F. Oehler                                           |
|     | Martin-Luther-Universität Halle-Wittenberg,             |
|     | Institut für Chemie                                     |
|     | Kurt-Mothes-Str. 2, 06120 Halle (Saale), Deutschland    |
|     |                                                         |

4

Zusätzliche Informationen zu diesem Artikel sind über einen Link am Ende dieses Dokuments zu finden.

Trifluormethylcobalt(III)-Komplexe überführt werden können.<sup>[4]</sup> Andererseits verstärkt die Protonierung oder Koordination eines Iodans an ein Lewis-acides Metall dessen elektrophilen Charakter, sodass CF3<sup>+</sup>-äquivalente Spezies entstehen (Schema 1). Beispielsweise reagieren die lodane bereitwillig mit Thiolen und Sulfonsäuren zu den entsprechenden trifluormethylierten Produkten und die weniger aciden Alkohole werden durch Aktivierung des Reagenzes mit Zn(NTf)2 (Tf = Triflat) in entsprechende Trifluormethylether überführt.<sup>[2]</sup> Eine Reihe von Säure-Addukten von 1 sind von uns<sup>[5]</sup> sowie von Toste und Mitarbeitern<sup>[6]</sup> strukturell charakterisiert worden. Nach unserem Wissen der einzige strukturell charakterisierte Metallkomplex von 1 ist der Gold(I)-Komplex [(L)Au(P<sup>t</sup>Bu<sub>2</sub>Bph)]SbF<sub>6</sub> (Bph = biphenyl-2-yl).[7] In allen bekannten protonierten lodanen und Metallkomplexen ist die I-O-Bindung deutlich verlängert, was eine Verstärkung des lodonium-Charakters mit sich bringt. Allerdings steht die Darstellung "echter" Iodan-basierten Iodonium-Reagenzien (also mit einer vollständig gespalteten I-O-Bindung) noch aus, denn die aktivierten Reagenzien sind oft instabil. Nachteile der bekannten Aktivierungsmethoden sind außerdem eine potentielle Intoleranz vieler Substrate gegenüber protischen Reagenzien sowie der hohe Preis von Goldverbindungen. Aus den genannten Gründen waren wir an neuen Modellkomplexen mit 1 als Ligand interessiert, die eine regelbare Reaktivität hinsichtlich des Iodan-/Iodonium-Dualismus zeigen. Gruppe-IV-Metallchloride wurden aufgrund ihres stark oxophilen Charakters gewählt, da hier die bereitwillige Bildung von Komplexen mit Iodan-Liganden zu erwarten war. Wir berichten hier über die Synthese, vollständige Charakterisierung und Reaktivität von TiCl<sub>4</sub>-, ZrCl<sub>4</sub>- und HfCl<sub>4</sub>-Addukten des Reagenzes 1.



[M] = ZrCl<sub>4,</sub> HfCl<sub>4</sub> (diese Arbeit))

Schema 1. Aktivierung des Iodan-Reagenzes 1 durch Protonierung oder Koordination an ein Metallzentrum.

In einem ersten Screening wurden CH<sub>2</sub>Cl<sub>2</sub>-Lösungen von **1** mit verschiedenen Mengen TiCl<sub>4</sub> hergestellt und deren <sup>19</sup>F-NMR-Spektren gemessen (Abbildung 1). Grundsätzlich verschiebt sich mit steigender TiCl<sub>4</sub>-Menge das Signal der CF<sub>3</sub>-Gruppe zunehmend zu tiefem Feld, was angesichts des verstärkten

## COMMUNICATION

Iodonium-Charakters des Iodans durch Koordination an Titan der Erwartung entspricht.<sup>[2]</sup> Eine starke Signalverbreiterung bis zu 0,25 Äquiv. TiCl4 ist mit einem Gleichgewicht zwischen freiem und komplex-gebundenem 1 erklärbar und das Verschwinden des Signals zwischen 0,25 und 0,50 Äuqiv. resultiert durch Ausfallen eines Metallkomplexes aus der Lösung. Ab 1,00 Äquiv. TiCl4 beginnt sich der Niederschlag wieder zu lösen, wobei die Lösung deutlich gelb gefärbt ist und ein neues <sup>19</sup>F-NMR-Signal um -18 ppm erscheint. Dieses Verhalten deutet auf ein Gleichgewicht zwischen zwei verschiedenen Titankomplexen hin: schwerlösliches farbloses [Ti2Cl6(L)4]Cl2 (2a) und lösliches gelbes Ti<sub>2</sub>Cl<sub>8</sub>(L) (2b) (Schema 2, a). Komplex 2a konnte aufgrund seiner Schwerlöslichkeit leicht in guter Ausbeute isoliert werden, wohingegen Versuche zur Isolierung von 2b stets Mischungen mit 2a lieferten. Allerdings können Lösungen von 2b bequem durch Zugabe eines Überschusses TiCl<sub>4</sub> zu einer CH<sub>2</sub>Cl<sub>2</sub>-Lösung von 1 in situ präpariert werden.



Abbildung 1. a) Proben von Reagenz 1 (0,1 mol/L) in CH<sub>2</sub>Cl<sub>2</sub> mit verschiedenen äquivalenten Mengen TiCl<sub>4</sub> und b) <sup>19</sup>F-NMR-Spektren derselben.

Obwohl ZrCl<sub>4</sub> und HfCl<sub>4</sub> weitaus weniger reaktiv als TiCl<sub>4</sub> sind, konnten die Komplexe ZrCl<sub>4</sub>(L)<sub>2</sub> (**3**) und HfCl<sub>4</sub>(L)<sub>2</sub> (**4**) in guten isolierten Ausbeuten durch Zugabe eines leichten Überschusses von **1** in CH<sub>2</sub>Cl<sub>2</sub>-Lösung erhalten werden (Schema 2, b). Verbindungen **2a** und **2b** sind hydrolyseempfindlich, wobei **2a** anderweitig stabil bei –20 °C ist und **2b** sich allmählich zersetzt. Verbindungen **3** und **4** sind weniger reaktiv als **2a** und können an der Luft gehandhabt werden, aber eine Langzeitlagerung unter Inertgasatmosphäre bei niedriger Temperatur ist empfehlenswert. Erwähnenswert ist auch, dass die Komplexbildung in allen Fällen irreversibel ist. So lösen sich die Komplexe **2a**, **3** und **4** in THF unter Bildung des entsprechenden MCl<sub>4</sub>(THF)<sub>2</sub>-Komplexes (M = Ti, Zr, Hf) und den Zersetzungsprodukten CHF<sub>3</sub> und CF<sub>3</sub>I anstelle des freigesetzten Iodans **1**. (vgl. Abbildung S6). Die thermische Stabilität der isolierten Komplexe wurde mittels TG/DTA untersucht (vgl. Abbildungen S11–S14). Die Zersetzungstemperatur von **2a** liegt mit 102 °C vergleichsweise niedrig, während die thermische Zersetzung von **3** (133 °C) und **4** (139 °C) bei ähnlichen Temperaturen wie bei freiem **1** (136 °C) einsetzt.



Schema 2. Komplexierung von Reagenz 1 mit a) TiCl4 und b) ZrCl4 und HfCl4.

Die Identität der neuen Verbindungen 2a, 2b, 3 und 4 wurde durch Elementaranalysen, <sup>1</sup>H- und <sup>19</sup>F-NMR-Spektroskopie (in CD<sub>2</sub>Cl<sub>2</sub>) und Einkristall-Röntgendiffraktometrie aufgeklärt. Ein <sup>13</sup>C-NMR-Spektrum war aus Löslichkeitsgründen nur für 2b zugänglich. Letzteres zeigt ein charakteristisches Quartettsignal der CF3-Gruppe bei 100.0 ppm mit einem  $|^{1}J_{C,F}|$ -Wert von 374 Hz, welcher deutlich kleiner als der Wert für freies 1 (398 Hz) ist und dem Wert für Trifluoressigsäure-protoniertes 1 (367 Hz) ähnelt.<sup>[5]</sup> Die <sup>19</sup>F-NMR-Signale aller vier Komplexe sind bezogen auf freies 1 tieffeldverschoben, was einen erhöhten lodonium-Charakter des koordinierten lodans bestätigt. Die Signale von 2a, 3 und 4 liegen um -30 ppm, während das Signal von 2b mit -17,2 ppm noch weiter im Tieffeld gefunden wurde (vgl. Abbildungen S3 und S5). Interessanterweise deuten nicht nur im <sup>19</sup>F-NMR-Spektrum von 2a, sondern auch im Fall von 3 und 4 signifikante Signalverbreiterungen und -aufspaltungen auf eine komplexe Strukturchemie in Lösung hin. Das Gleichgewicht zwischen 2a und 2b wird gut durch die Präsenz der Signale beider Spezies in den <sup>1</sup>H-NMR-Spektren beider Verbindungen veranschaulicht.

Einkristall-Röntgenstrukturanalysen haben gezeigt, dass die I-O-Bindung in 2a und 2b komplett gespalten ist, weshalb der

## COMMUNICATION

Iodan-Ligand besser als zwitterionisches Iodonium-Alkoholat zu beschreiben ist (vgl. Schema 1, c; I···O-Nichtbindungsabstände 309,7(3) und 313,6(3) pm für 2a, und 308,2(2) pm für 2b). Dieses Modell passt zu den ermittelten Ti-O-Abständen (2a: 176,5(3)-176,6(3) pm; 2b: 172,9(2) pm), denn diese sind vergleichbar mit denen in anderen Titan-Alkoholaten.<sup>[8,9]</sup> Verbindung 2a besitzt eine zentrosymmetrische zweikernige Struktur mit einem komplexen  $[Ti_2Cl_6(L)_4]^{2+}$ -Kation und zwei Chlorid-Gegenionen (Abbildung 2, a). Das zentrale Strukturmotiv ist ein planarer Ti<sub>2</sub>Cl<sub>2</sub>-Ring mit zwei µ-verbrückenden Chlorido-Liganden. Die Titanatome besitzen eine typische oktaedrische Koordination durch vier Cl-Atomen und die O-Atome zweier cis-angeordneter Iodonium-Alkoholat-Liganden. Die reaktive Trifluormethyliodonium-Einheit ist durch zwei I····Cl-Kontakte stabilisiert, woraus eine typische quadratisch-planare Koordination des lods resultiert.<sup>[5]</sup> Die Chlorid-Gegenionen sind entsprechend durch zwei I-Atome in einer gewinkelten Anordnung fixiert. Komplex 2b (Abbildung 2, b) besteht aus zwei verzerrt-oktaedrisch koordinierten Ti-Zentren, die durch drei u-verbrückende Chlorido-Liganden verknüpft sind. Die Alkoxy-Einheit eines Trifluormethyliodonium-Alkoholat-Liganden ist an eines der beiden Ti-Atome gebunden. Die I<sup>+</sup>CF<sub>3</sub>-Gruppe ist erneut durch I···Cl-Kontakte stabilisiert, woraus sich eine quadratisch-planare Koordination des I-Atoms ergibt. Dabei führt die µ-verbrückende Koordination eines Chlor-Atoms zur Bildung eines supramolekularen Dimers mit einem cyclischen I2Cl2-Kern. Die Signifikanz der sekundären I…CI-Bindungen zeigt sich an einer deutlich verlängerten Ti-CI-Bindung von 231,6(1) pm, während alle anderen terminalen Ti-Cl-Bindungen in einem schmalen Intervall von 221,0(1)-222,9(1) pm liegen.



Abbildung 2. Molekülstrukturen der Komplexe 2a (a), 2b (b) und 3 (c; Komplex 4 ist isotyp). Für kristallographische Details, siehe SI.

Die Komplexe der schwereren Gruppe-IV-Metalle, **3** und **4**, sind isotyp und besitzen praktisch identische Molekülstrukturen (Abbildung 2, c). In den zentrosymmetrischen Molekülen ist ein einzelnes Metallzentrum durch vier Chlorido-Liganden und zwei *trans*-angeordnete Iodan-Liganden oktaedrisch koordiniert.

Interessanterweise ist die I-O-Bindung innerhalb der Iodan-Liganden nicht gespalten wie in 2a und 2b, sondern lediglich auf 243,1(2) pm (3) bzw. 243,3(2) pm (4) verlängert. Diese Werte sind deutlich größer als die I-O-Abstände im zuvor beschriebenen Gold(I)-Komplex (228,1(4) pm)<sup>[7]</sup> und vergleichbar mit denen in protonierten Formen von 1, z.B. 249,5(1) pm im HNTf<sub>2</sub>-Addukt.<sup>[5]</sup> Die Modellvorstellung neutraler Iodan-Liganden ist auch mit den M-O-Bindungslängen von 210.0(2) pm (3) und 209.3(2) pm (4) vereinbar. So sind die Bindungen deutlich länger als in Zr- und Hf-Alkoholaten,<sup>[10,11]</sup> aber kürzer als in Komplexen mit klassischen Ether-Liganden.<sup>[12-14]</sup> Auch die Molekülstrukturen von 3 und 4 werden wohl durch sekundäre I····CI-Bindungen stabilisiert, aber hier ist das Iod-Atom durch zwei I…CI-Kontakte fünffach koordiniert, anstelle eine typischere quadratisch-planare Koordination zu realisieren. Erwähnenswert ist, dass die I-CF3-Bindungslängen in allen vier Komplexen mit 220,8(4)-222,1(3) pm sehr ähnlich sind, aber signifikant kleiner als in freiem 1 (226,7(2) pm).<sup>[15]</sup> Eine vergleichbare I-C-Bindungsverkürzung ist in protonierten Formen von 1 beobachtet worden.<sup>[5]</sup>

Um tiefere Einblicke in Struktur-Reaktivitäts-Beziehungen der neuen Komplexe zu erhalten, haben wir eine kombinierte Studie aus elektrochemischen Messungen und guantenchemischen Rechnungen durchgeführt (siehe SI für Details). Die Cyclovoltagramme aller vier Komplexe haben gezeigt, dass sie sich leichter reduzieren lassen als das nicht-aktivierte lodan 1 ( $E_{pc} = -$ 2.90 V gegen FeCp<sub>2</sub>/FeCp<sub>2</sub><sup>+</sup> in CH<sub>2</sub>Cl<sub>2</sub>). Der erste Reduktionspeak wurde bei -1.00 V (2a), -0.57 V (2b in situ), -0.57 V (3) und -0.57 V (4) gemessen. DFT-Berechnungen der Grenzmolekülorbitale zeigen, dass das LUMO in jedem Komplex am Metallzentrum und am hypervalenten lodfragment lokalisiert ist. Dabei ist eine formale Reduktion des Metallzentrums aber nur bei den Titankomplexen zu erwarten, wohingegen Zirkonium und Hafnium nicht redoxaktiv sind. Die Literatur beinhaltet diverse Beispiele für Reduktionen von Titan(IV)- zu Titan(III)-Komplexen,<sup>[16,17]</sup> während die Reduktion von Zirkonium- und Hafnium-Komplexen normalerweise ligandzentriert ist.[18,19] DFT-Rechnungen zu den von 2a und 3 abgeleiteten einfach reduzierten Spezies sind in perfektem Einklang mit diesen Erwartungen. Während das SOMO im Fall von 2a- an einem der beiden Ti-Atome zentriert ist (was auf die Bildung einer gemischten Ti(III)/Ti(IV)-Spezies bei der Reduktion hindeutet), wurde in 3<sup>--</sup> einer der beiden Iodan-Liganden unter Abspaltung eines CF3-Radikals zu einem 2-(2-iodphenyl)propan-2-olat-Liganden reduziert. Die elektrochemische Oxidation von 2a, 2b, 3 und 4 wurde im Bereich von +1.2 V bis +1.4 V gegen FeCp<sub>2</sub>/FeCp<sub>2</sub><sup>+</sup> beobachtet. Das berechnete HOMO ist in allen vier Komplexen ausschließlich Chlor-zentriert, womit bei der Oxidation die Freisetzung von Chlorradikalen wahrscheinlicher erscheint als die Bildung hoch oxidierter lod-Spezies. Die



**Schema 3.** Trifluoromethylierung von *para*-Toluolsulfonat mit TiCl<sub>4</sub>- oder ZrCl<sub>4</sub>-aktiviertem Reagenz **1** (Bedingungen: 0,1–0,2 mol/L Substrat in CH<sub>2</sub>Cl<sub>2</sub>, 1,0–2,0 Äquiv. 1, RT bis 40 °C, 16 Std.; siehe Tabelle S1 für Details).

## COMMUNICATION

Schwierigkeit, Iodan-Reagenzien zu Iod(V)-Verbindungen zu oxidieren, ist bereits demonstriert worden.<sup>[20]</sup>

Um zuletzt noch die Anwendbarkeit der neuen Komplexe für Trifluormethylierungsreaktionen zu demonstrieren, haben wir ein Reaktivitätsscreening des lodans 1 mit Tetrabutylammoniumpara-toluolsulfonat in Anwesenheit von TiCl<sub>4</sub> oder ZrCl<sub>4</sub> durchgeführt (siehe Tabelle S1 für Details). Im Gegensatz zu den zugrundeliegenden Sulfonsäuren reagieren Sulfonat-Salze nicht direkt mit 1 zu Trifluormethylsulfonaten.<sup>[2,21]</sup> In Anwesenheit von TiCl<sub>4</sub> reagiert 1 nun tatsächlich mit para-Toluolsulfonat in guter Ausbeute zum entsprechenden trifluormethylierten Produkt maximale <sup>19</sup>F-NMR-Ausbeute (Schema 3). Eine des Trifluormethylsulfonats von 73% wurde mit 2 Äquiv. TiCl4 in CH<sub>2</sub>Cl<sub>2</sub>-Lösung bei 40 °C erzielt. Mit weniger als 2 Äquiv. TiCl<sub>4</sub> lag die Ausbeute stets unterhalb 10%, was wohl auf die wesentlich geringere Löslichkeit von 2a verglichen mit 2b zurückzuführen ist. Gute Ausbeuten des Trifluormethylsulfonats wurden auch mit insitu-erzeugtem 2b in Chloroform oder Toluol erzielt, wohingegen sich bei Verwendung von THF als Lösungsmittel nur Spuren des Zielprodukts bildeten. Dieser Befund ist mit der Bildung von TiCl4(THF)2 zu erklären. Wurde TiCl4 unter vergleichbaren Bedingungen durch ZrCl<sub>4</sub> ersetzt, so sank die <sup>19</sup>F-NMR-Ausbeute unter 30%, was die geringere Reaktivität von 3 verglichen mit 2b widerspiegelt.

Die hier berichteten Ergebnisse können so zusammengefass werden, dass wir vier neue Komplexe des hypervalenter lodreagenzes 1 mit Gruppe-IV-Metallchloriden synthetisiert und umfassend charakterisiert haben. Diese Komplexe besitzen eine bemerkenswerte Stabilität und machen somit aktivierte Former von 1 besser zugänglich. Darüber hinaus kann die Reaktivität vor 1 in Trifluormethylierungen durch Komplexierung mit verschie denen Metallchloriden präzise abgestimmt werden, wobei die Reihenfolge ZrCl<sub>4</sub>/HfCl<sub>4</sub> < TiCl<sub>4</sub> < 2 TiCl<sub>4</sub> gilt. Alle Komplexe sind präparativ leicht zugänglich und insbesondere der Titankomplex 2b hat sich als wirkungsvolles CF3<sup>+</sup>-Transferreagenz erwiesen Während in der vorangegangenen Literatur die Aktivierung des Iodans 1 oft durch Protonierung erreicht wurde, ist die Reaktior von 2b mit para-Toluolsulfonat ein einzigartiges Modell fü elektrophile Trifluormethylierungen unter aprotischen Bedingungen. Angesichts dieser Reaktivitätseigenschaften und de einfachen in-situ-Herstellung glauben wir, dass 2b auch für eine große Spannbreite anderer Substrate ein signifikantes Anwendungspotential aufweist. Zudem handelt es sich beim Zirkoniumkomplex 3 um eine mildere Variante des Reagenzes die Anwendung zur Trifluormethylierung hoch funktionalisierte Substrate finden könnte.

#### Authoreninformationen

#### Aktuelle Adresse:

Dr. P. Liebing, Otto-von-Guericke-Universität Magdeburg, Institut für Chemie, Universitätsplatz 2, 39108 Magdeburg, Deutschland.

#### ORCID:

|      | Linkinger | 0000 0000 4000 4004  |
|------|-----------|----------------------|
| Phil | i lenina. | 10000-0002-4660-1691 |
|      | Liobilig. | 0000 0002 1000 1001  |

Antonio Togni: 0000-0003-3868-1799

#### Danksagung

Wir danken dem Regionalen Rechenzentrum der Universität zu Köln (RRZK) für die gewährten Rechnerkapazitäten im Rahmen des DFG-geförderten High-Performance Computing (HPC) Systems CHEOPS sowie für die Unterstützung. Der ETH Zürich gebührt Dank für die allgemeine finanzielle Unterstützung.

#### Interessenkonflikt

Die Autoren erklären, dass keine Interessenkonflikte vorliegen.

Stichwörter: Hypervalentes Iod • Trifluoromethylierung • Iodonium • Titan • Zirkonium • Hafnium

| 1        | [1]  | P. Eisenberger, S. Gischig, A. Togni, Chem. Eur. J. 2006, 12, 2579-   |  |  |
|----------|------|-----------------------------------------------------------------------|--|--|
|          |      | 2586.                                                                 |  |  |
|          | [2]  | J. Charpentier, N. Früh, A. Togni, Chem. Rev. 2015, 115, 650–682.     |  |  |
|          | [3]  | X. Wang, A. Studer, Acc. Chem. Res. 2017, 50, 1712–1724.              |  |  |
|          | [4]  | P. Liebing, F. Oehler, M. Wagner, P. F. Tripet, A. Togni,             |  |  |
| t        |      | Organometallics 2018, 37, 570–583.                                    |  |  |
| 1        | [5]  | P. Liebing, E. Pietrasiak, E. Otth, J. Kalim, D. Bornemann, A. Togni, |  |  |
| 1        |      | Eur. J. Org. Chem. 2018, 27–28, 3771–3781.                            |  |  |
| ;        | [6]  | J. N. Brantley, A. V. Samant, F. D. Toste, ACS Cent. Sci. 2016, 2,    |  |  |
| י<br>ז   |      | 341–350.                                                              |  |  |
| -        | [7]  | H. S. M. Siah, A. Fiksdahl, J. Fluorine Chem. 2017, 197, 24–33.       |  |  |
|          | [8]  | J. Pauls, E. Iravani, P. Köhl, B. Neumüller, Z. Anorg. Allg. Chem.    |  |  |
| ł        |      | <b>2004</b> , <i>630</i> , 876–884.                                   |  |  |
| <b>(</b> | [9]  | N. A. Kolosov, V. A. Tuskaev, S. C. Gagieva, I. V. Fedyanin, V. N.    |  |  |
|          |      | Khrustalev, O. V. Polyakova, B. M. Bulychev, Eur. Polym. J. 2017,     |  |  |
| 5        |      | 87, 266–276.                                                          |  |  |
| ١        | [10] | R. Pothiraja, A. Milanov, H. Parala, M. Winter, R. A. Fischer, A.     |  |  |
| r        |      | Devi, Dalton Trans. 2009, 654–663.                                    |  |  |
| -        | [11] | T. J. Boyle, L. A. M. Steele, P. D. Burton, S. M. Hoppe, C. Lockhart, |  |  |
| r        |      | M. A. Rodriguez, Inorg. Chem. 2012, 51, 12075–12092.                  |  |  |
| •        | [12] | M. Eberle, C. Röhr, Acta Cryst. 1996, C52, 566–568.                   |  |  |
| 5<br>1   | [13] | V. Reimer, T. P. Spaniol, J. Okuda, H. Ebeling, A. Tuchbreiter, R.    |  |  |
|          |      | Mülhaupt, Inorg. Chim. Acta 2003, 345, 221–227.                       |  |  |
| ,<br>r   | [14] | S. A. Duraj, R. L. R. Towns, R. J. Baker, J. Schupp, Acta             |  |  |
|          |      | Crystallogr. Sect. C 1990, C46, 890–892.                              |  |  |
|          | [15] | I. Kieltsch, P. Eisenberger, A. Togni, Angew. Chem. Int. Ed. 2007,    |  |  |
|          |      | 46, 754–757.                                                          |  |  |
|          | [16] | A. Kuhn, J. Conradie, Inorg. Chim. Acta 2016, 453, 247-256.           |  |  |
|          | [17] | A. Kuhn, J. Conradie, New J. Chem. 2018, 42, 662–670.                 |  |  |
|          | [18] | T. Nyokong, Synth. Met. 1994, 66, 107–116.                            |  |  |
|          | [19] | M. K. M. Rabia, G. Y. Aly, M. A. F. Al-Mohanna, Synth. React. Inorg.  |  |  |
| t        |      | Met. Chem. 2004, 34, 1651–1674.                                       |  |  |
| •        | [20] | S. Gruber, S. M. Ametamey, R. Schibli, Chem. Commun. 2018, 54,        |  |  |
|          |      | 8999–9002.                                                            |  |  |
|          | [21] | R. Koller, Q. Huchert, P. Battaglia, J. M. Welch, A. Togni, Chem.     |  |  |
|          |      | Commun 2009 5993-5995                                                 |  |  |

## COMMUNICATION

## **Entry for the Table of Contents**

## COMMUNICATION

Die Reaktivität von Trifluormethyl-1,3dihydro-3,3-dimethyl-1,2-benziodoxol in elektrophilen Trifluormethylierungen kann durch Komplexierung mit TiCl<sub>4</sub>, ZrCl<sub>4</sub> und HfCl<sub>4</sub> präzise abgestimmt werden.



P. Liebing, J. Kalim, N. Arefyeva, F. Oehler, M. Wickleder, A. Togni\*

Page No. – Page No.

Ein abstimmbares Trifluormethyl-Iodonium-Reagenz