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Abstract: An improved procedure is reported for the asymmetric synthesis of uracil polyoxin C (UPOC) 
from 2',3'-O-isopropylideneuridine-5'-aldehyde. The methodology described here is based on the highly 
diastereocontrolled formation of 1-(l~-D-allofuraaosyl)uracil and its facile conversion into the corresponding 
2,5'-O-eyclouridine derivative, a key step for the stereocontrolled formation of the terminal or-amino acid of 
UPOC. 

Polyoxins and nikkomycins form an important class of peptidyi nucleosides which are potent inhibitors 

of chitin synthetase. 1 1-(5'-Amino-5'-deoxy-13-D-aUofuranuronosyl)pyrimidines la-e  constitute the basic 

terminal amino acid nucleosides common to most members of the polyoxin and nikkomycin dipeptides. 
o 

Nit 

H2 N la R = H: Uracil Polyo~dn C 
lb R = CH2OH: Polyoxin C 
lc R = CH3: Thymine Polyoxin C 

HO OH 

These important amino acid nucleosides have been obtained by degradation of natural polyoxins la,2 

and a variety of synthetic approaches have been already reported 3 for their total synthesis. Most of these 

syntheses are based on the stereocontrolled formation of the sugar component common to amino acids la-e,  

followed by incorporation of a pyrimidine using Vorbrtlggen's glycosylation methodology. 4 

Direct synthesis of uracil polyoxin C from 2',3'-O-cyclohexylideneuridine-5'-aldehyde, first described 

by Moffatt and co-workers via cyanohydrin formation at the C-5'-aldehyde, leads to mixtures of I~-D-allo and 

I~-L-talofuranuronic acid derivatives which are difficult to separate. 5 Similarly, the synthesis reported by 

Tsuchida and co-workers using the Ugi reaction suffers also from the lack of diastereomeric control in the 

formation of the or-amino acid center 6 

We describe here an asymmetric synthesis of UPOC from uridine. The methodology used is based on 

the highly diastereocontroiled formation of protected 1-([~-D-allofuranosyl)uracil and its facile conversion into 

its corresponding 2,5'-O-cyclo derivative, a key step in the stereocontrolled formation of the terminal a-amino 

acid of UPOC. The synthetic sequence to l a  is shown in Scheme 1. 

5 ' -Deoxy-5 '-methyleneuridine 3 was obtained in 64% overall yield via its acetylenic precursor 

prepared from 2',3'-O-isopropylideneuridine-5'-aldehyde 27 by a mild procedure reported by Ohira 8 using the 

readily available dimethyl-(1-diazo-2-oxopropyl)phosphonate. 
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j : IR.'o2lt - 11,20 (4:1) ; k :  II 2, PdC,  NleOI[ - 1t20. 
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The synthesis of 3 presented here was found to be particularly valuable since alternative routes to 3, 

via Wittig chemistry gave moderate yields or complex mixtures. 7, 9 

Cis-dihydroxylation of alkene 3 using AD-mix-ct under standard conditions t0 proceeded in a highly 

diastereoselective manner, providing 1-(2',3'-O-isopropylidene-I~-D allofuranosyl)uracil 4 as an almost 

unique product (ds > 95%) in 89% yield, l 1 The absolute configuration of C-5' was firmly established to be 

(R). 12 The other 5'-epimer was only detected by 1H NMR. It 

Preparation of UPOC required replacement of the 5'-hydroxyl in 4 by an amino group with retention of 

configuration. Fortunately, this transformation could be achieved via the facile formation of 2,5'-0- 

cyclonucleoside 7. Thus, 4 was converted into 6 through successive selective silylation of the primary 

hydroxyl group as its TBDPS ether and mesylation of the 5'-hydroxyl. Heating 6 in DMF with DBU afforded 

the expected 2,5'-O-cyclonucleoside 713 in 61% yield from 4. Then, 7 treated with sodium azide in HMPA led 

to the azido derivative 8. Removal of the TBDPS group gave the 1-(5'-azido-5'-deoxy-2',3'-O-isopropylidene- 

[3-D-allofuranosyl)umcil 914 (79% yield from 7) which was then converted to UPOC. 

The final three steps (PDC oxidation, deisopropylidenation and catalytic reduction) were carried out as 

previously described by H. Ohrui and co-workers on the thymine analogue of 915, without characterization of 

the intermediates. 

UPOC obtained by this route (overall yield 6%) was purified by ion exchange chromatography 

(DOWEX 50 W H +- elution with NH4OH IN) and crystallized from EtOH/AcOEt, m.p. 238"C (lit. 3b 

m.p. 241-245"C), [ct]2~ +12.8 (c 0.19 in H20) (lit. 3b [a]o  ~ +16.5 (c 0.97 in H20)), MS (FAB) m/z 288 

(MH) +. Its 1H NMR spectrum was identical to that reported by Barrett. 3b 

This synthetic route utilizing the enantiomerically pure diol 4 affords a valuable synthesis of uracil 

polyoxin C starting from uridine and could be applicable to other related molecules of biological interest. 
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