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5,6-Dibromo-tryptophan is an interesting amino acid whose derivatives and analogues are found in a
variety of highly bioactive natural compounds. Notwithstanding its relevance no data concerning this
compound are found in the literature. Here an efficient pathway for the synthesis of 5,6-dibromo-
tryptophan derivatives is reported. The reaction is performed by using 6-Br-isatin as starting material.
Selective bromination at position 5 was followed by BH3 reduction of the intermediate a-keto-amide
and alkylation with Ser-OH in Ac2O/AcOH. Optical resolution was effected by enzymatic de-acetylation
of the obtained racemic mixture. Finally, in situ Na-Boc protection of the optically pure S form yielded
the desired Na-Boc-(S)-5,6-dibromo-tryptophan.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In a large number of biochemical processes brought about by
functional proteins the presence of the essential amino acid trypto-
phan plays a crucial role. The indolic side chain of this residue is in
fact unique for structural and chemical properties. Its planar and
heteroaromatic moiety is the largest among the naturally occurring
amino acids and possesses electrostatic and amphiphilic properties
capable of highly influencing the protein function. The usual
H-bonding activity is accompanied by more specific interactions
connected with the presence of the electron-rich indole nucleus
and this property is responsible for the interaromatic ring-stacking
effects and cation–p interactions which often control protein confor-
mation and enzymatic activity.1–3

In accordance with the above reported multifunctional charac-
ter tryptophan represents a target substrate for both synthetic and
biosynthetic transformations in search of lead compounds and
building blocks for pharmaceutical applications.4a,b Literature
examination shows that halogenated derivatives and in particular
brominated indole derivatives have attracted the attention of both
chemists and biologists.5–7 The presence of halogen atoms in the
indole nucleus may in fact significantly influence bioactivity and
bioavailability5 of bioactive compounds offering, at the same time,
suitable models for SAR studies and selective functionalization
strategies through coupling reactions mediated by the presence
ll rights reserved.
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of the aromatic bromine atoms. Methods for efficient synthesis of
tryptophan analogues with monobromo- or dibromo-substitution
on the indole ring are therefore highly desirable.

Representative examples of natural compounds related to
5,6-dibromo-tryptophan as the bioprecursor and possessing inter-
esting biological activity, often associated with unusual structural
features, are reported in Figure 1.

A wide range of indoles13 and tryptophan derivatives14 have
been previously synthesized by using enzymatic and chemical
methods. When enzymes are involved14a the accessibility of the
enzyme active site may be sensibly restricted by substituents on
the tryptophan indole ring. Substitution at the 4- or 7-positions
leads to poor substrates while substituents at the 5- or 6-positions
are generally accepted with the large iodo or nitro groups usually
poorly tolerated.14c Concerning the series of halogenated trypto-
phans, an examination of the literature shows that, whereas some
monohalo-tryptophans have recently been described,14a–g synthe-
sis and property of dihalo-tryptophans are not known.

Taking into account the low availability of marine organisms
which are the main source of dihalo-tryptophan containing mole-
cules as well as the potential of dihalo-tryptophans as building
blocks for the chemistry of peptides, we report here synthesis and
the properties of 5,6-dibromo-tryptophan (di-BrTrp) derivatives.
2. Chemistry

The adopted synthetic protocol is reported in Scheme 1. Selec-
tive bromination of 6-bromo-isatin was performed by following
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Figure 1. Literature examples of 5,6-dibromoindole containing natural products: 5,6-dibromo-abrine (see Ref. 8); 5,6-dibromo-tryptamine (see Refs. 8,9); 5,6-dibromo-N,N-
dimethyltryptamine (see Ref. 9); aplicyanin E (isolated from the ascidians Aplidium cyaneum and characterized by cytotoxic activity on the human tumour cells and
antimitotic activity; see Ref. 10a,c); meridianin F (isolated from the tunicate Aplidium meridianum; see Refs. 10b,11); kottamide E (from ascidian Pycnoclavella kottae; see Refs.
12a,b).
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Scheme 1. Synthesis of Na-Ac-5,6-(R)-di-BrTrp-OH 4 and Na-Boc-(S)-5,6-di-BrTrp-OH 6. Reagents and conditions: (a) Br2, THF, AcOH, reflux, 48 h, 57%; (b) 1 M BH3�THF, THF,
rt, 3 h, 68%; (c) (S)-Ser-OH, Ac2O, AcOH, under N2 atm, reflux, 3.5 h, 50%; (d) amano acylase, CoCl2�6 H2O, phosphate buffer at pH 8, 37 �C, 6 h; (e) Boc2O, 10% NaOH, H2O/
dioxane 1:3, rt, 5 h, 23% from 3.
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the procedure described by Vine et al.15 5,6-Dibromo-isatin (1)16

was carefully purified by multiple crystallization from AcOH and
then reduced by a solution of BH3 in THF to give 5,6-dibromo-in-
dole (2) in good yield (68%).17 As previously reported, attempts
to obtain 2 by using LiAlH4 or NaBH4 were unsuccessful while
reduction with LiBH4 in THF gave only very low yields.18 Synthesis
of the 5,6-dibromo-tryptophan derivative (3) was performed by
exploiting the nucleophilic reactivity of the indole ring at the C-3
carbon atom. Thus, 5,6-dibromo-indole (2) was reacted with
(S)-serine in a mixture of acetic acid/acetic anhydride to give in
good yields the desired N-acetyl-(R,S)-5,6-dibromo-tryptophan
(3).19 The reaction proceeds through N-acetyl-a,b-unsaturated spe-
cies as electrophilic intermediates14c,d and this leads, as expected,
to complete loss of the (S)-serine chiral centre. ‘Amano’ acylase,
an enzyme commonly used for optical resolutions of racemic N-
acetyl amino acids was used to resolve the racemic N-acyl deriva-
tive 3. As previously reported14c the two large substituents at the
5- and 6-positions of the indole ring sensibly slow down the enzy-
matic hydrolysis rate as compared with the N-acetyl-(R,S)-trypto-
phan. Thus, in order to obtain in one step the (S)-form as
derivative suitable for peptide synthesis, the usually reported pro-
cedures14c,e have been modified. The aqueous buffered solution
was acidified (pH 3) and extracted with EtOAc to give N-acetyl-
(R)-5,6-dibromo-tryptophan (4) ca. 90% ee. Subsequent evapora-
tion of the aqueous layer and treatment of the residue with
tert-butyl dicarbonate (Boc2O) gave the desired enantiopure
N-Boc-(S)-5,6-dibromo-tryptophan (6), ca. 82% ee.20 The enantio-
meric excess of products (4) and (6) was tested by the HPLC
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method reported by Jin et al.21 Chromatography was performed at
room temperature on a polysaccaride-derived chiral stationary
phase (CSP) covalently bonded on silica matrix. The packing com-
position of the used column (Chiralpak IA) is amylose tris(3,5-dim-
ethylphenylcarbamate) immobilized on 5 lm silica-gel,22 a chiral
selector system which shows high enantioselectivity for the reso-
lution of N-Boc-a-amino acids and their esters.21

3. Conclusion

In conclusion, an efficient synthesis of the N-Boc 5,6-dibromo-
(S)-tryptophan and N-acetyl 5,6-dibromo-(R)-tryptophan, useful
and still unknown building blocks for both peptide chemistry
and synthesis of natural products, has been developed by using a
combined chemical and enzymatic approach.

Supplementary data

Supplementary data (1H NMR spectra, 13C NMR spectra, chiral
HPLC runs are reported in Supplementary data) associated with
this article can be found, in the online version, at doi:10.1016/
j.tetlet.2011.03.041.
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