SYNTHESIS AND PROPERTIES OF METHYL HYDROPYRIMIDINEACETATES

K. Brokaite¹, V. Mickevičius¹, and G. Mikulskiene²

The alkylation of 1-aryl-substituted dihydro-2,4(1H,3H)-pyrimidinediones with methyl 2-bromoacetate has been studied followed by hydrolysis and condensation of the products with o-phenylenediamine. The compounds have been identified by NMR, and IR spectrometry and mass spectrometry. Structural characteristics in the ¹H and ¹³C NMR spectra of the synthesized are discussed.

Keywords: 1-aryldihydro-2,4(1H,3H)-pyrimidinedione, benzimidazoles, hydropyrimidineacetic acids, alkylation, condensation, NMR, IR, mass spectrometry.

Pyrimidineacetic acids and their derivatives possess biological activity [1-4]. However there is no information on the synthesis of dihydropyrimidineacetic acids. The objective of our work was the synthesis and investigation of some chemical properties of the products of alkylation of 1-aryl-substituted dihydro-2,4-(1H,3H)-pyrimidinediones with methyl bromoacetate.

Scheme 1

¹Kaunas Technological University, Kaunas LT-50524, Lithuania; e-mail: Vytautas.Mickevicius@ktu.lt. ²Institute of Biochemistry, Vilnius LT-08622, Lithuania; e-mail: gemam@bchi.lt. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, 1095-1105, July, 2007. Original article submitted March 11, 2006.

0009-3122/07/4307-0926©2007 Springer Science+Business Media, Inc.

Com	Empirical	Found, %					
pound formula		Calculated, %		R_f^*	mp, °C*²	Yield, %	
P · · · · ·		С	Н	Ν			
2a	$C_{13}H_{14}N_2O_4$	<u>59.54</u> 59.16	<u>5.38</u> 5.46	$\frac{10.68}{10.34}$		110-111	40
2b	$C_{14}H_{16}N_{2}O_{4} \\$	$\frac{60.86}{60.66}$	$\frac{5.84}{5.48}$	$\frac{10.14}{10.39}$		108-109	55
2c	$C_{15}H_{18}N_{2}O_{4} \\$	$\frac{62.06}{62.43}$	<u>6.25</u> 5.99	<u>9.65</u> 9.58		120-121	30
2d	$C_{14}H_{15}ClN_2O_4$	<u>54.11</u> 53.89	$\frac{4.87}{4.63}$	<u>9.02</u> 8.96		97-98	66
2e	$C_{14}H_{15}ClN_2O_4$	<u>54.11</u> 54.35	$\frac{4.87}{4.53}$	<u>9.02</u> 9.31		101-102	92
3a	$C_{12}H_{12}N_2O_4$	<u>58.06</u> 58.21	$\frac{4.87}{4.75}$	<u>11.29</u> 11.13		149-150	38
3b	$C_{13}H_{14}N_2O_4$	<u>59.54</u> 59.21	$\frac{5.38}{5.03}$	$\frac{10.68}{10.57}$		202-203	72
3c	$C_{14}H_{16}N_2O_4$	$\frac{60.86}{60.57}$	$\frac{5.84}{5.49}$	$\frac{10.14}{10.32}$		165 (dec.)	51
3d	$C_{13}H_{13}ClN_2O_4$	$\frac{52.62}{52.23}$	$\frac{4.42}{4.34}$	<u>9.44</u> 9.28		184-185	56
3e	$C_{13}H_{13}ClN_2O_4$	$\frac{52.62}{52.37}$	$\frac{4.42}{4.17}$	<u>9.44</u> 9.31		143-144	64
4a	$C_{18}H_{16}N_4O_2\\$	$\frac{67.49}{67.62}$	$\frac{5.03}{5.36}$	$\frac{17.49}{17.55}$	0.41	230 (dec.)	21
4b	$C_{19}H_{18}N_4O_2$	$\frac{68.25}{68.59}$	$\frac{5.43}{5.46}$	<u>16.76</u> 16.49	0.46	245-246	43
4c	$C_{20}H_{20}N_4O_2\\$	<u>68.95</u> 68.88	<u>5.79</u> 5.43	$\frac{16.08}{16.30}$	0.55	193-194	38
4d	$C_{19}H_{17}ClN_4O_2$	$\frac{61.88}{61.55}$	$\frac{4.65}{4.36}$	<u>15.19</u> 15.11	0.59	128-129	42
4e	$C_{19}H_{17}ClN_4O_2$	$\tfrac{61.88}{61.73}$	$\frac{4.65}{4.60}$	<u>15.19</u> 15.36	0.52	159 (dec.)	30
5a	$C_{15}H_{15}N_3$	<u>75.92</u> 75.82	$\frac{6.37}{6.30}$	<u>17.71</u> 17.56	0.64	Resin	11
5b	$C_{16}H_{17}N_3$	$\frac{76.46}{76.63}$	$\frac{6.82}{6.56}$	$\frac{16.72}{16.59}$	0.62	Resin	11
5e	$C_{16}H_{16}ClN_3$	$\frac{67.25}{67.33}$	$\frac{5.64}{5.43}$	$\frac{14.70}{14.89}$	0.73	145 (dec.)	14
6c	$C_{26}H_{26}N_6O$	<u>71.43</u> 71.21	<u>6.18</u> 5.98	<u>19.27</u> 19.16	0.23	151-152	23
6d	C25H23CIN6O	$\frac{65.48}{65.43}$	$\frac{5.35}{5.05}$	$\frac{18.03}{18.31}$	0.2	149-150	24

Table 1. Characteristics of the Compounds Synthesized.

* Acetone–hexane, 1:1

*² Solvents: toluene (compounds **2a,b,d,e**) and 2-propanol (compound **2c**).

We have established that the reaction of 1-aryl-substituted dihydro-2,4(1H,3H)-pyrimidinediones **1a-e** with methyl bromoacetate in DMF in the presence of sodium hydroxide occurred uniquely to give the products of N-alkylation – methyl 2-[3-aryl-2,6-dioxohexahydro-1-pyrimidyl]acetates **2a-e**, separated from the reaction mixture by dilution with water and ice. The dihydropyrimidineacetic acids **3a-e** were prepared by boiling the corresponding esters **2a-e** in 10% hydrochloric acid with subsequent cooling of the reaction mixture to 4°C.

The possibility of synthesis of benzimidazole system by the Phillips method from the carboxylic acids and *o*-phenylenediamine was explored. On investigating the products of the condensation of the methyl esters **2a-e** with *o*-phenylenediamine in 4M hydrochloric acid it appeared that two products were formed in each reaction – 1-aryl-3-(1H-benzimidazolylmethyl)dihydropyrimidine-2,4(1H,3H)-diones **4a-e** and products of the decompo-sition of the hydropyrimidine ring – N-aryl-N-[2-(1H-benzimidazol-2-yl]amines **5a,b,e**, or N-[2-(1H)benzimidazol-2-yl)ethyl]-N'-(1H-benzimidazol-2-yl)-disubstituted phenylureas **6c,d** (Table 1). It is probable

Com- pound	IR spectrum, v, cm ⁻¹	¹ H NMR, δ , ppm (<i>J</i> , Hz)*	Mass spectrum, $m/z \ (I_{otn}, \%)$
1	2	3	4
2 a	1673, 1719, 1754 (C=O)	2.95 (2H, t, <i>J</i> = 6.6, CH ₂ CO); 3.69 (3H, s, COOCH ₃); 3.91 (2H, t, <i>J</i> = 6.6, CH ₂ N); 4.48 (2H, s, NCH ₂ CO); 7.22-7.44 (5H, m. H atom.)	263 [M+H] ⁺ (100)
2b	1667, 1720, 1752 (C=O)	2.33 (3H, s, 4-CH ₃); 2.93 (2H, t, <i>J</i> = 6.6, CH ₂ CO); 3.69 (3H, s, COOCH ₃); 3.90 (2H, t, <i>J</i> = 6.6, CH ₂ N); 4.47 (2H, s, NCH ₂ CO); 7.19-7.27 (4H, m, H arom.)	277 [M+H] ⁺ (100)
2c	1669, 1717, 1748 (C=O)	2.20 (3H, s, 2-CH ₃); 2.30 (3H, s, 4-CH ₃); 2.94 (2H, t, $J = 6.6$, CH ₂ CO); 3.68 (3H, s, COOCH ₃); 3.60-3.93 (2H, m, CH ₂ N); 4.42 (1H, d, $J = 16.9$, NCH ₂ CO/H ₄); 4.52 (1H, d, $J = 16.9$, NCH ₂ CO/H ₈); 7.03-7.16 (3H, m, H arom.)	291 [M+H] ⁺ (100)
2d	1682, 1720, 1748 (C=O)	2.24 (3H, s, 2-CH ₃); 2.99 (2H, t, $J = 6.6$, CH ₅ CO); 3.69 (3H, s, COOCH ₃); 3.69-3.99 (2H, m, CH ₂ N); 4.42 (1H, d, $J = 16.9$, NCH ₂ CO/H _A); 4.52 (1H, d, $J = 16.9$, NCH ₂ CO/H _B); 7.27-7.39 (3H, m, H arom.)	311 [M+H] ⁺ (100)* ²
2e	1667, 1723, 1756 (C=O)	2.31 (3H, s, 4-CH ₃); 2.90 (2H, t, <i>J</i> = 6.6, CH ₂ CO); 3.64 (3H, s, COOCH ₃); 3.80 (2H, t, <i>J</i> = 6.6, CH ₂ N); 4.41 (2H, s, NCH ₂ CO); 7.20-7.44 (3H, m, H arom.)	311 [M+H] ⁺ (100)* ²
3а	1660, 1704, 1767 (C=O)	2.95 (2H, t, <i>J</i> = 6.6, CH ₂ CO); 3.95 (2H, t, <i>J</i> = 6.6, CH ₂ N); 4.48 (2H, s, NCH ₂ CO); 7.22-7.44 (5H, m, H arom.); 11.28 (1H, br. s, COOH)	249 [M+H] ⁺ (100)
3b	1644, 1698, 1768 (C=O)	2.32 (3H, s, 4-CH ₃); 2.93 (2H, t, <i>J</i> = 6.6, CH ₂ CO); 3.90 (2H, t, <i>J</i> = 6.6, CH ₂ N); 4.47 (2H, s, NCH ₂ CO); 7.18-7.24 (4H, m, H arom.); 11.26 (1H, br. s, COOH)	263 [M+H] ⁺ (100)
3c	1661, 1710, 1749 (C=O)	2.20 (3H, s, 2-CH ₃); 2.30 (3H, s, 4-CH ₃); 2.94 (2H, t, $J = 6.6$, CH ₂ CO); 3.63-3.91 (2H, m, CH ₂ N); 4.43 (1H, d, $J = 17.0$, NCH ₂ CO/H _A); 4.52 (1H, d, $J = 17.0$, NCH ₂ CO/H _B); 7.03-7.15 (3H, m, H arom.); 11.26 (1H, hr \approx COOH)	277 [M+H] ⁺ (100)
3d	1681, 1724, 1730 (C=O)	2.24 (3H, s, 2-cH ₃); 2.99 (2H, t, $J = 6.7$, CH ₂ CO); 3.70-4.01 (2H, m, CH ₂ N); 4.43 (1H, d, $J = 17.0$, NCH ₂ CO/H _A); 4.53 (1H, d, $J = 17.0$, NCH ₂ CO/H _B); 7.27-7.41 (3H, m, H arom.); 10.00 (1H hr c COOH)	297 [M+H] ⁺ (100)* ²
3e	1662, 1708, 1750 (C=O)	2.33 (3H, s, 4-CH ₃); 2.90 (2H, t, $J = 6.7$, CH ₅ CO); 3.81 (2H, t, $J = 6.7$, CH ₂ N); 4.43 (1H, s, NCH ₂ CO); 7.22-7.45 (3H, m, H arom.); 7.81 (1H, br. s, COOH)	297 [M+H] ⁺ (100)* ²

TABLE 2. Spectral Characteristics of the Compounds Synthesized

1	2	3	4
4a	1677, 1723 (C=O); 2643, 2852, 2916 (NH)	2.95 (2H, t, J = 6.6, CH ₂ CO); 3.90 (2H, t, J = 6.6, CH ₂ N); 5.10 (2H, s, NCH ₂ C=); 7.12-7.55 (9H, m, H arom.); 12.24 (1H, s, NH)	321 [M+H] ⁺ (100)
4b	1671, 1721 (C=O); 2920, 3030, 3055 (NH)	2.30 (3H, s, 4-CH ₃);2.95 (2H, t, <i>J</i> = 6.7, CH ₂ CO); 3.86 (2H, t, <i>J</i> = 6.7, CH ₂ N); 5.08 (2H, s, NCH ₂ C=); 7.11-7.61 (8H, m, H arom.); 12.22 (1H, s, NH)	335 [M+H] ⁺ (100)
4c	1675, 1721 (C=O); 2764, 2923, 3071 (NH)	2.14 (3H, s, 2-CH ₃); 2.27 (3H, s, 4-CH ₃); 2.98 (2H, t, <i>J</i> = 6.7, CH ₂ CO); 3.59-3.83 (2H, m, CH ₂ N); 5.07 (1H, d, <i>J</i> = 16.0, NCH ₂ C=/H ₄); 5.16 (1H, d, <i>J</i> = 16.0, NCH ₂ C=/H _B); 7.03-7.52 (7H, m, H arom.); 12.18 (1H, br. s, NH)	349 [M+H] ⁺ (100)
4d	1673, 1719 (C=O); 2739, 2854, 2922 (NH)	2.17 (3H, s, 2-CH.); 3.00 (2H, t, <i>J</i> = 6.7, CH ₂ CO); 3.63-3.83 (2H, m, CH ₂ N); 5.03 (1H, d, <i>J</i> = 15.9, NCH ₂ C=/H _A); 5.15 (1H, d, <i>J</i> = 15.9, NCH ₂ C=/H _B); 7.11-7.53 (7H, m, H arom.); 7.11 (1H, m, NH); 12.23 (1H, br. s, NH)	369 [M+H] ⁺ (100)* ²
4e	1666, 1727 (C=O); 2753, 2852, 2919 (NH)	2.32 (3H, s, 4-CH ₃); 2.96 (2H, t, <i>J</i> = 6.7, CH ₂ CO); 3.89 (2H, t, <i>J</i> = 6.7, CH ₂ N); 5.08 (2H, s, NCH ₂ C=); 7.11-7.55 (7H, m, H arom.), 12.25 (1H, s, NH)	369 [M+H] ⁺ (100)* ²
Sa		3.06 (2H, t, $J = 7.3$, CH ₂ (C=)); 3.45-3.62 (2H, m, NH <u>CH₂</u>); 5.73 (2H, t, $J = 5.8$, CH ₂ NH); 6.51-7.52 (9H, m, H arom.), 12.27 (1H, s, NH)	238 [M+H] ⁺ (100)
5b		2.15 (3H, s, 4-CH ₃); 3.05 (2H, t, <i>J</i> = 7.3, CH ₂ (C=)); 3.46 (2H, t, <i>J</i> = 7.3, CH ₂ NH); 5.49 (1H, br. s, CH ₂ NH); 6.53-7.48 (8H, m, H arom.); 12.22 (1H, s, NH)	252 [M+H] ⁺ (100)
Se		2.16 (3H, s, 2-CH ₃); 3.04 (2H, t, <i>J</i> = 7.2, CH ₂ (C=)); 3.44-3.51 (2H, m, NH <u>CH₂</u>); 5.90 (1H, t, <i>J</i> = 5.8, CH ₂ <u>NH</u>); 6.50-7.50 (7H, m, H arom.); 12.27 (1H, s, NH)	286 [M+H] ⁺ (100)* ²
96		2.14 (3H, s, 2-CH ₃); 2.28 (3H, s, 4-CH ₃); 3.05 (2H, t, <i>J</i> = 7.7, CH ₂ CH ₂ (C=)); 3.69, 4.23 (2H, 2br. s, NCH ₂); 4.42 (2H, d, <i>J</i> = 5.6, <u>CH₂</u> NH); 6.18 (1H, s, CH ₂ <u>NH</u>); 7.01-7.52 (11H, m, H arom.); 11.84 (2H, 2br. s, NH)	439 [M+H] ⁺ (100)
6 d		2.14 (3H, s, 2-CH ₃); 3.09 (2H, t, <i>J</i> = 7.5, CH ₂ CH ₃ C=); 3.74, 4.18 (2H, 2 br. s, NCH ₃); 4.42 (2H, d, <i>J</i> = 5.6, CH ₃ NH); 6.59 (1H, br. s, CH ₃ <u>NH</u>); 7.08-7.51 (11H, m, H arom.); 12.18 (2H, s, NH)	459 [M+H] ⁺ (100)* ²
* 11			

TABLE 2.(continued)

* ¹H NMR spectra were recorded in acetone-d₆ (compounds **2a-e**) and DMSO-d₆ (compounds **4-6**). *² The cited $[M + H]^+$ contain the isotope ³⁵Cl.

that the reaction occurs in two directions. The first direction is the condensation of *o*-phenylenediamine with the esters **2** to give compounds **4a-e**. The second direction of the reaction is that the nucleophile diamine attacks the 4-CO group of the heterocycle with subsequent opening of the heterocycle to form the benzimidazole fragment (compounds **6c,d**) with subsequent hydrolysis of the amide to give compounds with the structures **5a,b,e**.

The structures of the compounds synthesized were confirmed by IR, mass spectrometry, and ¹H and ¹³C NMR spectroscopy (Table 2) with assignment of the signals on the basis of general rules of additivity of substituents and published spectral data of model compounds [5-9].

With the necessity to assign spectral lines we used the APT ¹³C NMR method [5, 6]. The investigation compounds are divided to for classes according the characteristic features of their structural fragments. The substituent R in all the compounds synthesized has the form of a benzene ring with varying degrees of substitution. The spectral lines of the carbon atoms of the benzene ring for compounds 2a-e and 4a-e in their ¹³H NMR spectra were identified on the basis of the refined in the given word increments ($C_i = 12.05$, $C_o = -1.32$, C_m = 2.06, and C_p = -0.54 ppm) of the influence of the substituent in the pyrimidine ring [8], in the case of compounds **5a,b,e** the refined influence of the fragment NHCH₂CH₂ [5-7] ($C_i = 19.97$, $C_o = -16.41$, $C_m = 0.43$, and $C_p = -12.69$ ppm), but in compounds 6c-d by comparison with related fragments in model compounds [9]. The character of the substitution on the benzene ring has an important effect on the structural characteristics and properties of the compound. With no substituent on the benzene ring (compounds 2a-5a) or with p- or *m*-substituents (compounds **2b-5b** and **2e-5e**) the aliphatic hydrogen atoms appear in the ¹H NMR spectra as triplets (Table 3, Fig., 4b), while hydrogen atoms of the NCH₂C= fragment are observed as a sharp singlet. Substituent in the o-position (compounds 2c-4c, 2d-4d) hinder rotation about the C(1)-N bond, as a consequence of which the hydrogen atoms in the NCH₂ fragment appear as an AB spin-spin multiplet in the ABX₂ spin-spin system (Fig., 4c). The hydrogen atoms in the NCH₂C= fragment appear as an AB spin-spin multiplet. In the 13 C NMR spectra of compounds with an o-substituent in the benzene ring, no specific changes in the chemical shifts of the carbon atoms of the pyrimidinedione ring were observed.

Carbon		Chamical shifts (a	cetone d.) & nnm	
atoms		Cilennical sinits (a	cetone-u ₆), o, ppm	
atoms	2a	2b	2c	2d
C-1	144.55	142.04	140.78	144.38
C-2	127.18	127.11	137.28	136.90
C-3	130.56	131.08	133.17	133.93
C-4	127.96	137.67	139.14	129.02 or 129.48
C-5	130.56	131.08	128.63 or 129.24	132.93
C-6	127.18	127.11	128.63 or 129.24	129.02 or 129.48
C-2'	154.13	154.14	153.67	153.63
C-4'	170.59 or 170.85	170.61 or 170.80	170.66 or 170.99	170.56 or 170.87
C-5'	33.21	33.23	33.32	33.24
C-6'	45.78	45.90	45.76	45.54
N <u>CH</u> 2	43.12	43.11	43.01	42.02
COO				43.02
$CH_2\underline{C}$	170.59 or 170.85	170.61 or 170.80	170.66 or 170.99	170 56 or 170 97
<u>0</u> 0				1/0.30 01 1/0.8/
OCH_3	53.31	53.29	53.28	53.33
$2\text{-}CH_3$			18.83	18.45
$4-CH_3$		21.92	21.96	

Table 3. ¹³C NMR Spectral Data for Compounds **2a-d**

The characteristics of the ¹H NMR spectra of compounds **2a-e** are the singlet for the COOCH₃ group at 3.6 ppm and correspondingly in the ¹³C NMR spectra carbon resonances at 170 and 53 ppm. The structures of compounds **3a-e** were confirmed by the broad singlet at 11.3 ppm in the ¹H NMR spectra. The presence of the characteristic benzimidazole multiplets in the aromatic proton region [10-12] and a broad singlet at 12.2 ppm in the ¹H NMR spectrum indicate the formation of compounds of type **4a-e**. In the ¹³C NMR spectra the presence

Fig. Aliphatic proton parts of the ¹H NMR spectra of compounds **4b**,**c** and **6c**.

of the benzimidazole fragment is confirmed by a group of lines characteristically broadened because of exchange processes - the lines are sometimes lost in the background (compounds **4b**,**c**) and also a signal at 150 ppm, assigned to the atom C-a.

It is characteristic of compounds **5a,b,e**, products of decomposition of the hydropyrimidine ring, that a second signal for NH at 5.5 ppm in the ¹H NMR spectrum appears, sometimes observed as a triplet because of spin-spin interaction with the protons of the CH₂ group, and the presence of the CH₂CH₂, fragment in which the difference of chemical shifts is 0.5 ppm less than in the corresponding fragment of the pyrimidinedione ring, and the absence of the lines of the carbon in the carbonyl groups at 150 and 169 ppm in the ¹³C NMR spectrum.

On decomposition of the hydropyrimidine ring in compounds with *o*-substitution in the benzene ring, stable compounds **6c,d** are formed in which there are two benzimidazole units. The structures of compounds **6c,d** are confirmed by the presence of two broad singlets of the NH of the benzimidazole fragments at 12.2 and the singlet of the NH group at 6.2 ppm in the ¹H NMR spectra. The presence of a doublet at 4.4 ppm indicates the existence of the NHCH₂C= unit. The presence of a fast exchange process of molecules of compounds in the solutions **6c,d** is indicated by the broad the multiplets of the fragment NCH₂CH₂C= (Fig. **6c**), while in the absence of exchange a resolution of the multiplets is observed (Fig. **4c,b**). Careful integration of the ¹H NMR spectra of compounds **6c,d** confirmed the presence of the required number of protons and the fragments mentioned above.

Carbon	Chemical shifts (DMSO-d ₆), δ, ppm					
atoms	4a	4b	4c	4d	4e	
C-1	142.33	139.82	138.59	142.23	141.26	
C-2	125.21	125.11	135.04	134.79	125.68	
C-3	128.67	129.12	131.16	132.14	132.76 or 133.16	
C-4	126.00	135.32	136.85	127.29 or 127.54	132.76 or 133.16	
C-5	128.67	129.12	126.95 or 127.29	130.31	131.08	
C-6	125.21	125.11	126.95 or 127.29	127.29 or 127.54	123.87	
C-2'	151.04 or 152.24	151.07 or 152.23	151.09 or 151.78	150.96 or 151.79	150.99 or 152.26	
C-4'	169.50	169.53	169.64	169.57	169.49	
C-5'	31.33	31.33	31.44	31.35	31.26	
C-6'	43.55	43.65	43.58	43.34	43.51	
$NCH_2C=$	38.44	38.42	38.23	38.28	38.52	
C-a	151.04 or 152.24	151.07 or 152.23	151.09 or 151.78	150.96 or 151.79	150.99 or 152.26	
C-b	118.36	Not observed	114.69	118.30	118.33	
C-c	121.10 or 121.68	121.36	121.40	121.10 or 121.83	121.16 or 121.78	
C-d	121.10 or 121.68	121.36	121.40	121.10 or 121.83	121.16 or 121.78	
C-e	111.04	Not observed	111.15	111.09	111.11	
C-f	134.16	Not observed	Not observed	134.20	134.26	
C-g	143.04	Not observed.	Not observed	143.05	143.22	
2-CH ₃			17.32	16.91		
4-CH ₃		20.50	20.54		19.11	

Table 4. ¹³C NMR Spectral Data for Compounds 4a-e

The presence of lines at 156, 153, an 152 ppm in the ¹³C NMR spectra of compounds **6c,d** indicates the existence of the NCONH fragment, and correspondingly the C-a and C'-a atoms of the benzimidazole unit. The lines at 47, 27, and 38 ppm are unambiguously assigned to the carbon atoms of the fragments NCH_2CH_2 , NCH_2CH_2 , and $CONHCH_2C=$ respectively.

For comparison (Tables 3 and 4) of the chemical shifts of the corresponding fragments of compounds **2a-e** and **4a-e** it should be noted that in the spectra of compounds **2a-e**, recorded in acetone- d_6 , a weak field shift of the lines of the aliphatic and aromatic carbon atoms by 2 ppm was observed in the ¹³C NMR spectra.

Carbon	Chemical shifts (DMSO-d ₆), δ, ppm		ō, ppm
atoms	5a	5b	5e
C-1	148.47	146.22	147.99
C-2	112.09	112.28	111.29 or 111.80
C-3	128.93	129.37	133.64
C-4	115.81	124.20	121.44
C-5	128.93	129.37	131.39
C-6	112.09	112.28	111.29 or 111.80
NHCH2CH2	41.41	41.72	41.39
NHCH2CH2	28.58	28.61	28.50
C-a	153.16	153.22	153.05
C-b	118.12	118.29	118.20
C-c	121.39 or 121.44	121.15 or 121.29	121.01 or 121.10
C-d	121.39 or 121.44	121.15 or 121.29	121.01 or 121.10
C-e	110.73	110.83	110.54
C-f	134.21	134.45	134.32
C-g	143.31	142.41	143.18
2-CH ₃			
4-CH ₃		20.05	18.46

Table 5. ¹³C NMR Spectral Data for Compounds **5a,b,c**

Table 6. ¹³C NMR Spectral Data for Compounds 6c,d

Carl an atoms	Chemical shifts (D	MSO-d ₆), δ, ppm.	
Carbon atoms	6с	6d	
C-1	137.11 or 137.26	141.54	
C-2	137.11 or 137.26	135.90	
C-3	131.94	130.58	
C-4	136.37	129.41	
C-5	127.73	127.67	
C-6	129.36	132.60	
NCONH	156.65	156.32	
$NHCH_2C=$	38.75	38.28	
$NCH_2CH_2C=$	47.25	47.44	
$NCH_2CH_2C=$	27.88	27.88	
C-a / C-a'	152.48 or 153.40	152.44 or 153.41	
C-b / C-b'	114.69 or 114.80	118.33 or 118.42	
C-c / C-c'	121.25 or 121.32	121.30 or 121.37	
C-d / C-d'	121.25 or 121.32	121.30 or 121.37	
C-e/ C-e'	114.69 or 114.80	110.75 or 110.83	
C-f / C-f	138.87	134.23 or 134.56	
C-g / C-g'	138.87	143.33 or 143.63	
2-CH ₃	17.26	16.91	
4-CH ₃	20.60		

EXPERIMENTAL

¹H and ¹³C NMR spectra were recorded with TMS as internal standard on a Varian Unity Inova (300 and 75 MHz respectively) spectrometer. IR spectra of KBr disks were recorded on a Perkin-Elmer Bx FT-IR instrument. Mass spectra were recorded on a Waters ZQ 2000 instrument, with 15 eV ionizing voltage. Monitoring of the course of reaction and purity of the compounds synthesized was *via* TLC using Silufol UV-254, with development with UV light or iodine vapor.

Methyl [3-aryl-2,6-dioxotetrarylpyrimidin-1-(2H)-yl]acetates (2a-e) (General Method). A 60% suspension of sodium hydroxide in paraffin (2.40 g, 60 mmol) was added to dry DMF (100 ml) with stirring. The corresponding 1-aryldihydro-2,4-pyrimidinedione **1a-e** (50 mmol) dissolved in dry DMF (50 ml) was added to the suspension in 10 min with stirring. The mixture was maintained at 50°C and stirring was continued until evolution of hydrogen ceased (~45 min). The mixture was cooled to 5-10°C, 2-bromomethyl acetate (14.2 ml, 150 mmol), dissolved in dry DMF (20 ml), was added dropwise over 10 min. The temperature of the mixture was increased to 50-60°C, stirring was continued for 30 min, the mixture was cooled to 20°C and the mixture was poured into a mixture of ice and water (~500 ml). The crystals of compounds **2a-e** were filtered off, washed with water, dried and recrystallized from the relevant solvent.

[3-Aryl-2,6-dioxohexahydropyrimidin-1-(2H)-yl]acetic Acids 3a-e (General Method). A solution of 2 mmol of the corresponding ester 2a-e in 10% hydrochloric acid (12 ml) was boiled for 2 h, cooled, and the precipitated compound 3a-e was filtered off, washed with water, and dried. The solid was twice dissolved in 5% Na₂CO₃ solution, filtered, and precipitated with 5% hydrochloric acid.

3-(1H-Benzimidazol-2-ylmethyl)-1-aryldihydropyrimidine-2,4(1H,3H)-diones 4a-e, N-aryl-N-[2-(1H-benzimidazol-2-yl)ethyl]amines, 5a,b,e, and N-arylN-[2-(1H-benzimidazol-2-yl)ethyl]-N'-(1H-benzimidazol-2-ylmethyl)urea, 6c,d (General Method). A solution of 4 mmol of the corresponding ester **2a-e** and *o*-phenylenediamine (1.30 g, 12 mmol) in 4M hydrochloric acid (12 ml) was boiled for 16 h, cooled, and neutralized 25% ammonia to pH 8-9. The precipitate was filtered off and purified by column chromatography with 1:1 acetone–hexane as eluent.

REFERENCES

- 1. D. S. Dogruer, S. Unlu, M. F. Sahin, and E. Yesilada, *Farmaco*, **53**, 80 (1998).
- 2. V. J. Demopoulos and E. J. Rekka, J. Pharm. Sci., 84, 79 (1995).
- 3. J. Ellingboe, T. Alessi, J. Millen, J. Sredy, A. King, C. Prusiewicz, F. Guzzo, D. VanEngen, and J. Bagli, *J. Med. Chem.*, **33**, 2892 (1990).
- 4. B. L. Mylari, W. J. Zembrowski, T. A. Beyer, C. E. Aldinger, and T. W. Siegel, *J. Med. Chem.*, **35**, 2155 (1992).
- 5. H. Duddeck, W. Dietrich, and G. Tóth, *Structure Elucidation by Modern NMR*. Springer, Darmstadt, Steinkopff, New York, 1998.
- 6. H. O. Kalinowski, S. Berger, and S. Braun, ¹³C NMR-Spektroscopie. Georg Thieme Verlag, Stuttgart, New York (1984).
- 7. J. D. Memory and N. K. Wilson, *NMR of Aromatic Compounds,* John Wiley & Sons, New York, 1982.
- 8. K. Beresnevičiūté, Z. Beresnevičius, G. Mikulskiené, J. Kihlberg, and J. Broddefalk, *Magn. Reson. Chem.*, **35**, 553 (1997).
- 9. K. Kantminiené, Z. Beresnevičius, G. Mikulskiené, J. Kihlberg, and J. Broddefalk. J. Chem. Res. Synopses, 1, 16(S), 164 (M) (1999).

- 10. M. Bonamico, V. Fares, A. F. Flamini, P. Imperatori, and N. Poli, J. Chem. Soc., Perkin Trans 2, 1359 (1990).
- 11. Z. Kang, C. C. Dykstra, and D. Boykin, *Molecules*, 9, 158 (2004).
- 12. R. J. Pugmire and D. M. Grant, J. Amer. Chem. Soc., 93, 1880 (1971).