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Functionalized Homocubanes: Oxidative Deiodination of
Homocubyl lodide. Synthesis of 4-Mesyloxy-, 4-Tosyloxy-, and
4-Chloro-1-bromopentacyclo[4.3.0.0>-°.0%%,0* " Jnonan-9-one
Ethylene Acetal from the Corresponding 4-fodo-1-bromo-
homocubyl with Hypervalent Iodine
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4-lodo-1-bromopentacyclo[4.3.0.0>°.0>8.0* "Jnonan-9-one  ethylene
acetal (1) undergoes substitution via a ligand exchange process.

The three-coordinated hypervalent aliphatic iodine compounds
are unstable (with few exceptions) and react rapidly after
formation in siru." Oxidation of alkyl iodides with hydroxy-
(aryl/alkylsulfonyloxy)iodobenzene,  (dichloroiodo)benzene,
[bis(trifluoroacetoxy)iodo]benzene, etc. generates a hyper-
valent iodine substituent, which is a strong nucleofuge; substi-
tutions, eliminations, or rearangements occur.? Oxidative
elimination of iodine has been carried out in the case of a
norbornyl iodide with peracid to yield the corresponding nor-
bornene; the double bond formed in the product is a result of a
syn [2,3]-sigmatropic elimination.® Substitution occurs in the
case of three-coordinated hydroxy(3-chlorobenzyloxy)cubyl
iodide formed from the reaction of a cubyl iodide with 3-
chloroperoxybenzoic acid.* 4-Tricycloiodonium bis(3-chloro-
benzoate) was isolated as a stable aliphatic trivalent iodine
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compound.® The nucleofugacity of iodine increases enormous-
ly upon oxidation to the three-coordinated state:® this fact is
illustrated by facile solvolysis of bicyclo iodides such as 1- and
7-iodonorbornane with bromine to the corresponding 1- and 7-
bromonorbornanes.” The reaction involves the formation of
three-coordinated RIBr, as an intermediate.

The formation of electron-deficient intermediates is generally
difficult at bridgehead carbon atoms, and is in an extreme form
in cubane carbocation.® The results presented above suggest that
these reactions proceed via carbocation-like intermediates. We
found that homocubyl iodide 1 reacts with oxidizing reagents
such as hydroxy (mesyloxy)iodobenzene,” hydroxy(tosyloxy)-
iodobenzene,® (dichloroiodo)benzene to produce the correspon-
ding substituted homocubyl compounds 3a—c.

Iodohomocubanes like 1 are now readily available as a result of
the discovery in our laboratory that [bis(acetoxy)iodo]benz-
enefiodine effectively decarboxylates homocubyl carboxylic
acids upon irradiation in carbon tetrachloride.!® With hydroxy-
(tosyloxy)iodobenzene in a mole ratio of ca. 1:2 in anhydrous
dichloromethane at reflux temperature compound 1 was con-
sumed completely within 12 hours (*H-NMR monitoring) and
product 3b was isolated upon work-up in ca. 67 % yield.

Similarly good conversion of 1 to the homocubyl mesylate 3a.
was achieved by reacting the former with hydroxy(tosyloxy)-
iodobenzene. Homocubyl iodide 1 reacts with (dichloroiodo)-
benzene and gives good yield of the corresponding homocubyl
chloride 3e¢.!!

All melting points were determined using a Thomas-Hoover capillary
melting point apparatus and are uncorrected. IR spectra were recorded
with an Unicam SP 1000 spectrophotometer. 'H-NMR spectra were
obtained with a IBM WP-400-SY Bruker NMR spectrometer. Chem-
ical shifts are reported in parts per million relative to internal TMS in
CDCL,.

4-Mesyloxy-1-bromopentacyclo[4.3.0.0.%*.0°%.0* "nonan-9-one Ethyl-
ene Acetal (3a); Typical Procedure:

To a solution of 1'° (381 mg, 1 mmol) in anhydrous CH,Cl, (60 mL) :s
added PhI(OH)(OMs) (632 mg, 2 mmol). The reaction is kept at reflux
for 1Zh. Within 20 min after the start of the reaction a purple color
develops in the solution, and the color intensifies as the reaction
progresses. Then the mixture is cooled and washed with 25% aq.
Na,8,0, until the purple color disappears. The organic layer is washed
with 5% NaHCO,, dried (MgSO,) and evaporated to dryness. The
crude product is triturated with hexane (25 mL) to give 3a as white
crystals; yield: 278 mg (80 %); mp 97-98°C.
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CoHyBrOGS cale. C41.14 H3.72 Br22.88 S9.16
(349.2) found 41.13 374 23.11 9.15
IR (Nujol): v = 3010, 1310, 1080 ¢cm !,
"H-NMR (CDC1,/TMS): 6 = 3.04 (5. 3H, CH;); 3.06- 310 (m, 1 H, H-
&), 3.55-3.58 (m, 2H): 3.96-3.99 (.. 3H); 3.95-4.25 (sym m, 4H,
OCH,CH,).

PC-NMR (CDCly): 6 = 39.62, 41.55, 45,06, 50.27, 30.46, 63.56, 66.12,
§3.84, 125.01.

MS: mjz = 349 (M *): 269 (M "~ Br).

3b; is obtained by oxidative deiodination of T with PAI{OH)OTs) using
the typical procedure for 3a; yield: 284 mg (67 %); white crystals; mp
90--91°C.

CieH-BrOS cale. € 50.83 H4.02 Bri18.78 S7.53

(425.3) found  50.74 3.89 18.8R 7.67

IR (Nujol): v = 3010, 1310, 1080 cm ™.

TH-NMR (CDCly/TMS): 6 = 2.46 (s, 3H, CH,); 2.95-2.97 (m, 1 H, H-
8): 3.42-3.45 (m, 2H); 3.76- 3.78 (m, 3H); 3.95-4.23 (sym m, 4 H.
OCH,CH,); 7.35-7.80 (AB quartet, 4 H, ).

BHNMR (CDCL, TMS): 6 = 21.73, $1.51, 45.01, 49.95, 50.18, 53.63,
66.08, 83.82, 125.02, 127.77, 129.99, 134.32, 145.29,

3¢, is obtained by the oxidative deiodination of I with PhICI, using the
typical procedure for 3a: the crude product after evaporation of the
solvent is recrystallized from EtOH; yield: 182 mg (63 %); white crystals;
mp 120--122°C (Lit."" mp 118--120°C). Spectral data (‘H-NMR, IR,
MS) are identical with those of Ref. 12,
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