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Hepatitis B virus (HBV) represents a major global health 

problem, with an estimated 240 million people chronically 

infected worldwide.
1
 


Despite highly effective vaccination 

programs and approved treatments for chronic hepatitis B, the 
lack of a cure for individuals already infected with HBV, 

combined with the fact that people are unaware of their infection, 
results in continued spread of the virus. To date, there are seven 

FDA approved inhibitors for HBV,
2,3

 but none can cure this viral 

infection. Moreover, these agents lack an important characteristic 
necessary to confer a cure, which is the ability to eliminate HBV 

cccDNA from the nucleus of infected hepatocytes.
4
 To address 

this unmet clinical need, several HBV Capsid Assembly 

Effectors (CAE), have been developed over the years (Figure 
1).

5,6,7,8
 Among them, BAY 41-4109, which was studied in a 

phase I clinical trial,
9
 was found to misdirect the HBV capsid 

assembly and interfere with the viral infection.
10

 Recent studies 

have also shown that the combination of nucleoside analogs like 
adefovir (ADV) or tenofovir (TFV) with either one of these 

capsid effectors could lead to a synergistic antiviral effects.
11,12  

Novira recently completed a phase Ia clinical trial with  a new  

capsid assembly effector (NVR 3-778, later acquired by Johnson 
& Johnson), and revealed that combinations with Entecavir 

(ETV) or pegIFN had additive and/or synergistic antiviral 
activity leading to high viral load suppression efficacy in infected 

humanized mouse models.
13

 Despite their mechanism of action 
not being completely clear, capsid assembly effectors seem to 

——— 

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represent a promising cohort of molecules with curative potential 

when combined with other HBV inhibitors such as nucleoside 
analogs.

14
 

 
Figure 1. Chemical structure of known Capsid Assembly Effectors (CAE). 
 
In our continuing efforts to identify more effective small antiviral 

molecules and based on the potential of these CAE, we report 

herein the synthesis and evaluation of four new series of HAP 
analogs (Figure 2): Series I is comprised of “flexible” HAP 

derivatives bearing an extra CH2 linker between the main core 
and the halogenated phenyl ring. Compounds from series II & 

III are aromatic version of HAP bearing a methylene linker 
between the pyrimidine core and the phenyl ring. Unsaturated 

dihydropyrimidine can potentially be aromatized to their 
pyrimidine form by human liver microsomes and thus lose their 

potency.
15

 We hypothesized that the addition of an extra 
methylene linker could compensate for the loss 

of stereochemistry in the original structure. Finally, series IV 
include 5- and 6-modifications that retain hydrogen bond 

accepting characteristics of the morpholine or the ester groups 
presents on the HAP scaffold. Other, less common functionalities 

such as a phosphonate or imidazolium groups were also 
evaluated. 
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Figure 2. Proposed modifications of the known capsid assembly effectors. 

 

A Biginelli cyclocondensation between β-ketoacetate 2, pyridine-

2-carboximidamide salt 4 and phenylacetaldehydes 3a-b in 
isopropanol under microwave irradiation generated the 

corresponding compounds 5a and 5b.
16

 Bromination of 
dihydropyrimidine 5b using N-bromosuccinimide (NBS) in 1,2-

dichloroethane led to the intermediate 6a, which was easily 
substituted with morpholine, N-methylpiperazine, 

methoxyethanol or thiobenzene to form compounds 7a-d. 
Oxidation of these dihydropyrimidines using 2,3-dichloro-5,6-

dicyano-1,4-benzoquinone (DDQ) easily led to the desired 
pyrimidines 8a-f (Scheme 1). It is noteworthy that the 

bromination of compound 5a could not be achieved under the 
halogenation conditions described above and therefore, we had to 

prepare targeted compound 13 through the chemistry described in 
Scheme 2. Methyl 4-morpholino-3-acetoacetate 11, synthesized 

by reaction of methyl 4-chloroacetoacetate 9 with morpholine, 
was quickly purified and directly reacted with aldehyde 3a to 

yield dihydropyrimidine 12. Final oxidation with DDQ gave 
compound 13. 

  
Scheme 1.  Reagents and conditions: (a) piperidine, AcOH, iPrOH, 12 h, 11-36%; (b) 

NBS, 1,2-DCE, 50 ºC, 30 min, 80%; (c) R3H, NaH or Et3N, DMF, 0 ºC, 1 h, 29-72%; (d) 

DDQ, toluene, rt, 1 h, 42-68%.  

 

  
Scheme 2. Reagents and conditions: (a) NaH, DMF, 0 ºC to rt, 1 h, 41-60%, (b) 

pyridine-2-carboximidamide, Et3N, µW, 10 min, 14%; (c) DDQ, toluene, rt, 1 h, 20%.  

 

Aromatic analogs of bicyclic derivative 1 were synthesized using 
the chemistry described in Scheme 3. Compounds 15a-c were 

prepared via a three-component Biginelli-type cyclocondensation 
under microwave irradiation involving dimedone 14, pyridine-3-

carboximidamide 4a-c and the corresponding aldehyde 3a-b. 
Interestingly, all our attempts to purify and isolate compounds 

15a-c failed due to the instability of these dihydropyrimidines, 
which are spontaneously oxidized to their pyrimidine form. 

Therefore, compounds 15a-c were directly treated with DDQ in 
toluene to afford the corresponding pyrimidines 16a-c.  

 
Scheme 3.  Reagents and conditions: (a) Et3N, 140 ºC, µW, 5 min, 10-25%, (b) DDQ, 

toluene, rt, 1 h, 60–82%. 

 

Compounds 21a-f, 6-modified analogs of lead compound 

HAP-12, were prepared according to the chemistry described in 
Scheme 4. The one pot, 2 step, condensation of 2-chloro-4-

fluorobenzaldehyde 17 with methylacetoacetate 2 and pyridine-2-
carboximidamide hydrochloride 4 under microwave irradiation 

gave dihydropyrimidine 19 in 53% yield. Bromination of 19 
followed by substitution with various nucleophiles led to the 

formation of compounds 21a-f. 

  
Scheme 4.  Reagents and conditions: (a) iPrOH, piperidine, AcOH, 80 ºC, 30 min, µW 

(b) 4, 100 ºC, 30 min, µW, 53%; (c) NBS, 1,2-DCE, 50 ºC, 30 min, 68%; (d) P(OEt)3, 

140 ºC, 20 min, µW for 21a; R1Na, Et3N, rt, 12 h for 21d-f; N-butyl or N-

methylimidazole, DMF, rt, 12 h for 21b-c, 36-98%. 
 

Finally, various 5-modified HAP analogs were prepared 
according to chemical reactions described in Scheme 5. 

Compounds 23a-b were obtained as described above by 
condensation of diketoester 22 with aldehyde 17a-b and 

carboximidamide 4 under microwave irradiation. Bromination of 
compounds 23a-b followed by nucleophilic substitution of the 

brominated intermediates with morpholine led to 6-
methylmorpholino-HAPs 24a-b. Dihydropyrimidine-5-

carboxylic acids 25a-d, were then acquired after hydrogenolysis 
of the corresponding benzylic ester (25a and 25c), or by using 

boron trichloride (25b and 25d). Thioester 26d, ester 26e and 
N,N-dimethylsulfamoyl 26f were synthesized from 25c under 

peptidic coupling conditions (EDC DMAP, DMF). 
Halodecarboxylation of carboxylic acids 25a-d in presence of a 

source of halogen, oxone and sodium carbonate yielded halo-



  

HAPs 26a-c and 26g-i after 20 min
17,18

 It is noteworthy, that a 
longer reaction time or use of an excess of oxone resulted in the 

aromatization of compounds 26a-c. Introduction of the amide 
group at the 6 position (compounds 28a-b) was achieved by first 

protection of the dihydropyrimidine 26a and 26h with a 
carboxybenzyl group and reaction with acetamide in presence of 

a catalytic amount of palladium tris(dibenzylideneacetone) (0) 
and Xantphos.

19
 Subsequent Cbz-deprotection using either boron 

trichloride or a palladium catalyzed hydrogenolysis afforded 
compounds 28a-b. Interestingly, the Buchwald-Hartwig 

amination could not be achieved directly from 5-

iododihydropyrimidines 26a and 26h and the choice of the 
correct protecting group was key. Indeed, introduction of 

protecting groups such as t-butoxylcarbonyl, tosyl or mesyl 
groups led to the dehalogenation and aromatization of the starting 

materials under palladium catalyzed amination conditions.  

  

 Scheme 5.  Reagents and conditions: (a) i) iPrOH, piperidine, AcOH, 80 ºC, 30 min, 

µW ii) 100 ºC, 30 min, µW, 44-48%; (b) i) NBS, 1,2-DCE, 50 ºC, 30 min, 52%, ii) 

morpholine, Et3N, DMF, rt, 12 h, 98%; (c) H2, Pd/C, EtOH, 12 h, or BCl3, DCM, -78 ºC 

to rt, 1 h, 74-95%; (d) NaR4, Na2CO3, Oxone, MeOH/H2O, R4 = I, Br or Cl, rt, 20 min, 

10-68%, for 26a-c and 26g-i. EDC, DMAP, CH3CN, EtSH or CF3CH2OH or 

H2NSO2N(Me)2, rt, 12 h, 7-76%, for 26d-f; (e) CbzCl, KHMDS, THF, 0 ºC to rt, 1 h, 

78%; (f) i) AcNH2, Pd2dba3, XantPhos, K2CO3, dioxane, 105 ºC, 20 min, µW, 47-68%, 

ii) cyclohexadiene, Pd/C, EtOH, 3 h, or BCl3, DCM, 0 ºC to rt, 2 h, 72-83%. 

 

The in vitro anti-HBV activity of thirty new 
heteroarylpyrimidines (HAP) derivatives were assessed at 

concentration ranging from 0.001 to 10 µM in HepAD38 cells 
using real-time-PCR, as previously described by Stuyver et al., 

2002.
20

 All samples were tested in duplicate and the 
concentration of compound that inhibited HBV DNA replication 

by 50% (EC50) was determined using the Chou and Talalay 
method as previously described.

20
 All data were given relative to 

the untreated control. In addition, cytotoxicity was determined by 
using the CellTiter 96 non-radioactive cell proliferation 

colorimetric assay (Promega) in peripheral blood mononuclear 
(PBM) cells and in human T lymphoblast (CEM), African green 

monkey kidney (Vero), and human hepatocellular carcinoma 
(HepG2) cells. Toxicity levels were measured as the 

concentration of test compound that inhibited cell growth by 50% 
(CC50). As expected HAP-12, GLS4 and 3TC inhibited HBV 

DNA replication with EC50 values <1 µM and were used as 
positive control. However, it is noteworthy that compound 1, 

resynthesized in our laboratory, did not express any activity 
against HBV in the HepAD38 system (Table 1) even though it 

was reported in the literature, to be a submicromolar inhibitor of 
HBV replication.

13
 None of the compounds with an extra 

methylene group between the dihydropyrimidine or pyridine core 
(Series I, II, III) displayed anti-HBV activity at concentrations 

up to 10 M (Table 1). Interestingly, in these series, compounds 
7d, 8d-e, 13, 16b-c showed single digit micromolar cytotoxicity 

in CEM cells. 
 

Table 1. HBV inhibition and cytotoxicity of series I, II & III. 

 

Cmpd R1/R2 R3 

Anti-HBV 

activity, 

µM 

 

Cytotoxicity, CC50 (µM) 

EC50 HepG2 PBM CEM Vero 

5b H/H H >10 >100 52 61 >100 

7c H/H 
 

>10 14 >100 17 76 

7d H/H 
 

>10 96 >100 5 >100 

8a H/H 
 

>10 >100 81 2 59 

8b H/H 
 

>10 ≥100 99 55 87 

8c H/H 
 

>10 >100 >100 86 >100 

8d H/H 
 

>10 >100 65 9 12 

8e H/H H >10 41 67 4 61 

13 Cl/F 
 

>10 69 34 11 71 

16a H/H 

 

>10 47 43 21 53 

16b Cl/F 

 

>10 42 69 9 29 

16c Cl/F 

 

>10 >100 >100 86 ≥100 

16d Cl/F 

 

>10 ≥100 >100 ≥100 10 

HAP-12 - - 0.5 ± 0.3 >100 >100 >100 >100 

GLS4 - - 0.3 ± 0.02 >100 28 69 18 

1 - - >10 >100 >100 >100 >100 

3TC - - 0.04 ± 0.03 >100 >100 >100 >100 

ND: not determined 
 

As described in Table 2, replacement of the morpholine core of 

HAP-12 with a phosphonate moiety, an imidazolium salt or a 
sulfone group was counterproductive and lead to inactive 

compounds 21a-c and 21e-f. Introduction of an azido group 
(Compound 21d), on the other hand, only lead to a moderate 

decrease of potency (EC50 = 7.5 µM) compared to HAP-12. 
 

 

 

 

 

 

Table 2. HBV inhibition and cytotoxicity of compounds 21a-f. 

  
Cmpd R1 Anti-

HBV 
Cytotoxicity, CC50 (µM) 



  

activity, 

 µM 

EC50 HepG2 PBM CEM Vero 

21a 

 

>10 >100 65 15 43 

21b 

 
>10 >100 44 23 >100 

21c 

 

>10 14 20 3 >100 

21d 
 

5.3 ± 

3.2 
>100 >100 >100 56 

21e 

 
>10 >100 >100 39 >100 

21f 

 
>10 >100 67 47 ≥ 100 

HAP-12 - 
0.45 >100 >100 >100 >100 

GLS4 - 
0.3 >100 28 69 18 

3TC - 0.04 ± 

0.03 
>10 >100 >100 >100 

ND: not determined 

 
In our last series of compounds (Table 3), various 

modifications at the 6-position were explored. Unfortunately, 
replacement of the methyl or ethyl ester of HAP-12 or GLS-4 

with a thioester (26c), a trifluoroethyl ester (26e), a N-(N,N-
dimethylsulfamoyl)carboxamide (26f) or an acetamide (28a-b) 

was detrimental to the anti-HBV potency of these compounds 

and none of them showed activity at concentration up to 10 µM. 
Interestingly, introduction of an iodine or a bromine atom at this 

position lead to the discovery of compounds 26a-b and 26g-i 
which displayed EC50 values between 4.0 and 5.7 µM. Chlorine, 

however, was not a suitable modification and 26c was found to 
be inactive at 10 µM. 

 
Table 3.  HBV inhibition and cytotoxicity of series IV: compounds 26a-i and 

28a-b. 

  

Cmpd R1 R2 R3 R4 

Anti-HBV 
activity, 

µM 

Cytotoxicity, CC50 (µM) 

EC50 HepG2 PBM CEM Vero 

26a Cl 

 

H I 4.1 >100 80 74 29 

26b Cl 

 

H Br 5.2 ± 1.0 79 >100 23 16 

26c Cl 

 

H Cl >10 98 >100 44 13 

26d Cl 

 

H 
 

>10 >100 31 13 40 

26e Cl 

 

H 

 

>10 >100 > 100 4 65 

26f Cl 

 

H 

 

>10 >100 >100 >100 ≥100 

26g Br 
 

H I 7.1 >100 80 33 >100 

26h Cl 

  
I 4.0 ± 1.1 >100 >100 11 45 

26i Br 
  

I 5.7 >100 75 33 >100 

28a Cl 

 

H 

 

>10 80 >100 >100 >100 

28b Cl 

   

>10 >100 28 69 18 

HAP-

12 
- - - - 0.5 ± 0.3 >100 >100 >100 >100 

GLS4 - - - - 0.3 ± 0.02 >100 28 69 18 

3TC - - - - 0.04 ± 0.03 >10 >100 >100 >100 

ND: not determined 

 

In conclusion, we have synthesized and evaluated more than 
thirty CAE analogs of HAP-12 and GLS4. Among them, we 

discovered five new 5-halogeno-heteroarylpyrimidines analogs 
that displayed anti-HBV activity in the low micromolar range. 

Despite some toxicity observed in certain cell lines, further 
modifications are currently being investigated and will be subject 

of future publications.  
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