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Abstract: A sequential SN2–Michael addition–Michael addition
reaction process between w-iodo-a,b-alkynoates and d- or g-amino
a,b-unsaturated esters is developed, which affords polysubstituted
pyrrolizidines, indolizidines or quinolizidines in good yields.
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Recently, we have reported several cascade processes
using w-iodo-a,b-alkynoates 1 as bisfunctional building
blocks.1–3 When they reacted with other bisfunctional
compounds such as b-amino esters,1 d-chloropropyl-
amines,2 or 2-aryl aziridines,3 a variety of quinolizidi-
nones, indolizidinones, indolizidines or quinolizidines
were obtained. As a continuing effort of this project, we
report here a new cascade process employing d- or g-ami-
no a,b-unsaturated esters 2 as bisfunctional agents. As de-
picted in Scheme 1, reaction of 1 and 2 might undergo an
SN2 reaction between the amino group in 2 and the iodide
moiety in 1, and subsequent Michael addition between the
resultant secondary amine and the electron-deficient C–C
triple bond to provide monocyclic intermediates A. The
vinylogous anion thus formed would attack another
electronic deficient C–C double bond to furnish bicyclic
products 3.

Scheme 1

The requisite d- or g-amino a,b-unsaturated esters 2 were
generally assembled via a Wittig reaction of the corre-
sponding N-Boc amino aldehyde4 and subsequent treat-

ment with HCl as represented by preparation of 2b–f
(Scheme 2). From diol 8, a reduction product of Boc-pro-
tected L-aspartic acid dimethyl ester, two a,b-unsaturated
esters were elaborated (Scheme 3). Swern oxidation of 8
followed by a Wittig reaction provided diene 9 in 45%
yield, which was treated with a gaseous hydrogen chloride
saturated ethyl acetate solution to afford g-amino a,b-un-
saturated ester 2g. In a parallel procedure, protection of 8
with DMP produced monoalcohol 10, which was subject-
ed to Swern oxidation and Wittig olefination to give 11.
Treatment of 11 with TFA and subsequent benzyl ether
formation provided 12, which was exposed on HCl in eth-
yl acetate to result in d-amino a,b-unsaturated ester 2h.

Scheme 2

Elaboration of the other two enantiopure d-amino a,b-un-
saturated esters 2i and 2j is demonstrated in Scheme 4.
After hydrogenolysis of b-amino ester 131 accompanying
with in situ Boc-protection to afford ester 14, reduction of
ester moiety and Swern oxidation were carried out to give
an aldehyde, which was reacted with a Wittig reagent to
provide olefin 15. Exposure of 15 on HCl in ethyl acetate
furnished 2i. Similarly, 2j was obtained from an L-ala-
nine-derived b-amino ester through olefin 16.
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With the above d- or g-amino a,b-unsaturated esters in
hand, we next tried their reaction with w-iodo-a,b-
alkynoates. As summarized in Table 1, heating a mixture
of L-valine derived g-amino a,b-unsaturated ester 2a,
iodide 1b and K2CO3 in MeCN afforded 1,2,3-trisubstitut-
ed indolizidine 3a5,6 in 80% yield (entry 1). Its stereo-
chemistry was 1,2-trans as determined by NOESY, which
might result from the strong 1,2-induction during the last
Michael addition step. Similarly, indolizidines 3b–d were
obtained from the corresponding L-phenylalanine, L-as-
partic acid or L-serine-derived g-amino a,b-unsaturated
ester substrate (entries 2–4). Noteworthy is that we ob-
tained 8-substituted, 5,8-disubstituted and 5,6,8-trisubsti-
tuted indolizidines via sequential SN2–Michael addition–
SN2–SN2 reaction process.2 A combination of these two
processes would therefore be able to construct more
diverse substituted indolizidines.

When methyl 7-iodo-2-hexynoate (1a) was used, this pro-
cess allowed the formation of 1,2,3-trisubstituted pyr-
rolizidines 3e and 3f although the yields were moderate

due to incomplete conversion in the last step (entries 5 and
6). In the cases of d-branched g-amino a,b-unsaturated
esters as substrates, reaction with 1b produced 1,2,3-
trisubstituted quinolizidine 3g (entry 7), or even 1,2,3,4-
tetrasubstituted quinolizidine 3h5,7 (entry 8). Their stereo-
chemistry was still 1,2-trans, which was the same as that
of g-amino a,b-unsaturated ester derived products due
to a similar mechanism. However, when d-unbranched
g-amino a,b-unsaturated esters were employed, a mixture
of two isomers in favor of 1,2-cis-isomer formed (entries
9–11). We reasoned that this stereochemistry might be
contributed by a chair-like transition state at the intramo-
lecular Michael addition step, in which 1,3-substituents
preferred a cis relationship in the reactive conformer.

Scheme 3
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Table 1 Reaction of Iodides 1 and Amines 2a

Entry Iodide Amine Product Yield (%)b

1 1b 2a

3a: R = i-Pr

80

2 1b 2b 3b: R = Bn 76

3 1b 2c 3c: R = CH2CO2Et 65
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4 1b 2d

3d

64

5 1a 2a

3e

51c

6 1a 2d

3f

49c

7 1b 2e

3g

85

8 1b 2f

3h

74

9 1b 2j

3i

90d

10 1b 2h

3j: R = CH2OBn

71d

11 1b 2i 3k: R = 3,4-(MeO)2C6H3 85d

12 1b 2g

3m

65

a Reaction conditions: 1 (0.2 mmol), 2 (0.2 mmol), K2CO3 (0.7 mmol), 4 Å MS (40 mg) in 3 mL of MeCN, refluxed for 5–24 h.
b Isolated yield.
c Monocyclic product was isolated in about 30% yield.
d Ratio for cis and trans was about 1.5:1.

Table 1 Reaction of Iodides 1 and Amines 2a (continued)
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Notably, there was marked difference in yield between
formation of 3a and 3e (compare entries 1 and 5), or 3d
and 3f (compare entries 4 and 6). These results indicated
that the second intramolecular Michael addition should be
more difficult after formation of a five-membered ring
than that of a six-membered ring. However, it seemed that
a five-membered ring was easier to generate than a six-
membered ring for the intramolecular Michael addition
step because when 1b reacted with 2g, an amine bearing
two a,b-unsaturated ester units, only indolizidine 3m5,8

was isolated (entry 12).

In conclusion, we have developed a novel cascade reac-
tion process between w-iodo-a,b-alkynoates and d- or g-
amino a,b-unsaturated esters, which allowed the assem-
bly of polysubstituted indolizidines, quinolizidines, and
pyrrolizidines with a great diversity in a very efficient
manner.9 This method may find further application in the
total synthesis of natural products and designed molecules
for biological evaluation.
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