

Synthesis of Luminacin D

Rajamalleswaramma Jogireddy and Martin E. Maier*

Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany

martin.e.maier@uni-tuebingen.de.

Received May 30, 2006

The total synthesis of luminacin D (1) is reported on the basis of two aldol reactions to form the carbohydrate sector, aldehyde 30. Reaction of aldehyde 30 with the aryllithium intermediate derived from aryl iodide 38, cleavage of the silyl ether, and oxidation led to keto aldehyde 41. This advanced intermediate could be converted to luminacin 1 and its 6',8'-epimer.

Introduction

Anticancer compounds generally work by interfering with the process of cell division. Another strategy for the treatment of cancer targets the blood supply chain of a tumor. Thus, angiogenesis inhibitors block the formation of new blood capillaries from an existing vessel. Among these compounds, the luminacins, isolated from the fermentation broth of a soil bacterium, represent promising structural leads. Several of the luminacins showed activity with IC₅₀ values of less than 0.1 mg mL⁻¹ in a rat aorta matrix culture model. Some very active members include luminacin D (1), C1 (2), and C2 (3) (Figure 1). The luminacins feature a highly functionalized aromatic ring which is connected to a carbohydrate like subunit. So far total syntheses of luminacins were described by Crews et al. and a group at the Eisai company. Prior to these publications the group of Tatsuta et al. reported on the synthesis of *ent*-

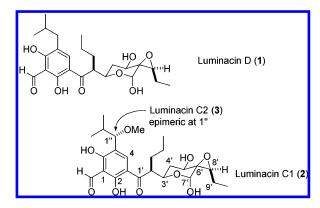


FIGURE 1. Structures of important luminacins.

luminacins C1 and C2 from D-glucal.⁶ While this route was rather lengthy, it clarified the relative and absolute configurations of these and related luminacins.

A recent study described the synthesis of luminacin D analogues with a simplified carbohydrate sector. From this work it was concluded that the epoxide is not essential for biological activity. Our goal in this field differed in that we intended to develop a concise synthesis of the carbohydrate sector that would

^{*} To whom correspondence should be addressed. Fax: +49 7071 295137. Tel: +49 7071 2975247.

⁽¹⁾ For reviews, see the following: (a) Fayette, J.; Soria, J.-C.; Armand, J.-P. *Eur. J. Cancer* **2005**, *41*, 1109–1116. (b) Carmeliet, P. *Nature* **2005**, *438*, 932–936.

^{(2) (}a) Naruse, N.; Kageyama-Kawase, R.; Funuhashi, Y.; Wakabayashi, T.; Watanabe, Y.; Sameshima, T.; Dobashi, K. *J. Antibiot.* **2000**, *53*, 579–590. (b) Wakabayashi, T.; Kageyama-Kawase, R.; Naruse, N.; Funuhashi, Y.; Yoshimatsu, K. *J. Antibiot.* **2000**, *53*, 591–596.

⁽³⁾ Hata-Sugi, N.; Kawase-Kageyama, R.; Wakabayashi, T. *Biol. Pharm. Bull.* **2002**, *25*, 446–451.

⁽⁴⁾ Shotwell, J. B.; Krygowski, E. S.; Hines, J.; Koh, B.; Huntsman, E. W. D.; Choi, H. W.; Schneekloth, J. S., Jr.; Wood, J. L.; Crews, C. M. Org. Lett. 2002, 4, 3087–3089.

⁽⁵⁾ Fang, F.; Johannes, C.; Yao, Y.; Zhu, X. (Eisai Co., Ltd.). Jpn. In PCT Int. Appl. WO 03/057685, 2003, 91 pp.

⁽⁶⁾ Tatsuta, K.; Nakano, S.; Narazaki, F.; Nakamura, Y. *Tetrahedron Lett.* **2001**, *42*, 7625–7628.

⁽⁷⁾ Davies, M. W.; Maskell, L.; Shipman, M.; Slawin, A. M. Z.; Vidot, S. M. E.; Whatmore, J. L. *Org. Lett.* **2004**, *6*, 3909–3912.

⁽⁸⁾ However, luminacin D is considered to be a protein-reactive natural product: Evans, M. J.; Saghatelian, A.; Sorensen, E. J.; Cravatt, B. F. *Nat. Biotech.* **2005**, *23*, 1303–1307.

Luminacin D (1)
$$\Rightarrow$$
 Ar \rightarrow Ar

FIGURE 2. Possible retrosynthetic cuts for luminacins.

allow for simple variation of the aromatic ring at a late stage of the synthesis. Thus, retrosynthetic cuts as shown in Figure 2 were considered (protecting groups omitted). Accordingly, the open-chain luminacin precursor **A** might originate from an aryllithium reagent **B1** and the carbohydrate fragment **B2**. Alternatively, an aldol reaction of an aryl ketone **C1** with aldehyde **C2** could be used. In a variation thereof, an asymmetric aldol reaction using a pentanoyl derivative might be considered. Finally, an aldol reaction of a 2-acetylpentanoate derivative, such as **D1** with an aldehyde of type **D2** might be employed. Since it is not clear whether the epoxide function would survive the conditions for the aldol reactions, the corresponding unsaturated aldehydes might be more appropriate substrates.

Results and Discussion

The initial goal was to prepare an epoxide containing aldehyde of type **C2** and to extend this aldehyde via an Evans aldol reaction. To establish the trisubstituted double bond, the precursor functional group for the epoxide, we opted for the use of a nucleophilic S_N2′ opening of allylic epoxide **12** with dimethyl cuprate (Scheme 1).^{9–11} In the event, aldol reaction¹² of the crotonyl oxazolidinone¹³ **5** with aldehyde¹⁴ **4** provided compound **6**. Three routine steps (OH protection, reductive removal of the auxiliary, tosylation) gave alkene **9**. Via an elimination reaction and deprotection the allylic alcohol, **11** was obtained.¹⁵ A directed epoxidation¹⁶ furnished the allylic epoxide **12** (as an inseparable 3:1 diastereomeric mixture). Subsequent treatment of the epoxide **12** with dimethylcuprate did indeed

SCHEME 1. Attempted Synthesis of the Part with the Trisubstituted Double Bond

PMBO O H H Bn 5
$$\frac{Bu_2BOTf, Et_3N}{CH_2Cl_2, -78 °C (85\%)}$$

PMBO OR O NaBH₄, THF/H₂O PMBO OTBS

TBSOTf, 2,6-lutidine CH₂Cl₂, 23 °C (90%) 7 R = TBS 0 °C (95\%) 9 R = Ts

Nal, DBU glyme, reflux (96%) PMBO OR (66%) PMBO OH 3:1

TBAF, THF 10 R = TBS 12

0 °C (85%) 11 R = H

Me₂CuLi, Et₂O OH PMBO OH 13a 13b

generate the desired trisubstituted double bond. However, there was no selectivity and a 1:1 mixture of the two double bond isomers 13a and 13b was obtained.

Therefore, another strategy was followed. This route began with the known Baylis-Hillman adduct 14 which was transformed via an allylic substitution reaction to the benzoate 15 (Scheme 2).¹⁷ This ester could be converted to aldehyde **19** as shown in Scheme 2. The choice of the PMB-protecting group was crucial. With a TBS protecting group we encountered severe problems in removing the chiral auxiliary in the second aldol step.¹⁸ The next step called for a stereoselective acetate aldol reaction with aldehyde 19. Eventually, a practical solution was found with the TiCl4-mediated aldol reaction using thiazolidinethione **20**. ^{19,20} This produced the aldol product **21** (non-Evans product)²¹ essentially as a single diastereomer in 70% yield. In continuation with the synthesis, the hydroxyl group was protected as silyl ether, the auxiliary was removed, and the resulting alcohol 23 was oxidized to aldehyde 24. Two further stereocenters were established by an Evans aldol reaction^{12,22} using the pentanoyloxazolidinone²³ **25**. Conversion of **26** to the Weinreb amide 27 could be achieved under standard condi-

⁽⁹⁾ Yang, D.; Xu, M. Org. Lett. 2001, 3, 1785-1788.

⁽¹⁰⁾ Balasubramaniam, R. P.; Moss, D. K.; Wyatt, J. K.; Spence, J. D.; Gee, A.; Nantz, M. H. *Tetrahedron* **1997**, *53*, 7429–7444.

⁽¹¹⁾ Roush, W. R.; Ando, K. P. D. B.; Palkowitz, A. D.; Halterman, R. L. J. Am. Chem. Soc. **1990**, 112, 6339–6348.

⁽¹²⁾ Gage, J. R.; Evans, D. A. Org. Synth. 1989, 68, 83-91.

⁽¹³⁾ Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1988, 110, 1238-1256.

^{(14) (}a) Oka, T.; Murai, A. *Tetrahedron* **1998**, *54*, 1–20. (b) Matsuda, F.; Kito, M.; Sakai, T.; Okada, N.; Miyashita, M.; Shirahama, H. *Tetrahedron* **1999**, *55*, 14369–14380. (c) Herb, C.; Maier, M. E. *J. Org. Chem.* **2003**, *68*, 8129–8135.

⁽¹⁵⁾ Phukan, P.; Bauer, M.; Maier, M. E. Synthesis 2003, 1324–1328.
(16) (a) Sharpless, K. B.; Verhoeven, T. R. Aldrichimica Acta 1979, 12, 63–74.
(b) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307–1370.

⁽¹⁷⁾ Charette, A. B.; Cote, B. J. Am. Chem. Soc. 1995, 117, 12721–12732.

⁽¹⁸⁾ In case of steric hindrance in Evans aldol products, thiazolidinone based auxiliaries are more easily cleaved as compared to oxazolidinones: Wu, Y.; Shen, X.; Yang, Y.-Q.; Hu, Q.; Huang, J.-H. *J. Org. Chem.* **2004**, 69, 3857–3865.

^{(19) (}a) Gonzalez, A.; Aiguade, J.; Urpi, F.; Vilarrasa, J. *Tetrahedron Lett.* **1996**, *37*, 8949–8952. (b) Yurek-George, A.; Habens, F.; Brimmell, M.; Packham, G.; Ganesan, A. *J. Am. Chem. Soc.* **2004**, *126*, 1030–1031.

⁽²⁰⁾ For a review, see Velázquez, F.; Olivo, H. F. *Curr. Org. Chem.* **2002**, *6*, 303–340.

⁽²¹⁾ Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, 894–902.

⁽²²⁾ White, J. D.; Blakemore, P. R.; Browder, C. C.; Hong, J.; Lincoln, C. M.; Nagornyy, P. A.; Robarge, L. A.; Wardrop, D. J. *J. Am. Chem. Soc.* **2001**, *123*, 8593–8595.

⁽²³⁾ Soucy, F.; Grenier, L.; Behnke, M. L.; Destree, A. T.; McCormack, T. A.; Adams, J.; Plamondon, L. J. Am. Chem. Soc. **1999**, 121, 9967–9976.

JOC Article

SCHEME 2. Synthesis of Aldehyde 30 by Successive Aldol Reactions

tions.²⁴ After cleavage of the silyl ether, the 1,3-diol was protected as an acetal, leading to amide **29**. The *anti*-stereochemistry of **29** is clearly evident from the chemical shift of the acetal C ($\delta = 100.8$ ppm).²⁵ In addition, the acetal methyl groups appear at similar chemical shifts ($\delta = 24.4$ and 24.8 ppm) which is typical for the twist-boat conformation of *anti*-1,3-diol acetonides.²⁶ Reduction of the amide **29** with DIBAL in THF provided the key aldehyde **30**.

The synthesis of the aryl building block required for luminacin D is shown in Scheme 3. Thus, MOM protection of 2,4-dihydroxybenzaldehyde (31) provided aldehyde 32 (97% yield). Via Wittig reaction with (2-methylpropyl)(triphenyl)phospho-

SCHEME 3. Synthesis of the Aryl Iodide 38

nium iodide/nBuLi followed by hydrogenation of the styrene 33, the resorcinol derivative 34 was secured. Formylation could be achieved by metalation and trapping of the aryllithium intermediate with DMF.^{27,28} Reduction of the aldehyde 35 to the primary alcohol 36 and silylation furnished compound 37. Iodination of 37 via metalation gave rise to the key building block, aryl iodide 38.

The combination of the two fragments **30** and **38** was initiated by lithiation of aryl iodide **38** followed by addition of aldehyde **30** (Scheme 4). Thereafter, the silyl ether was cleaved. Treatment of the diol **40** with the Dess–Martin reagent (3 equiv) gave the keto aldehyde **41**. At this stage, the PMB-protecting group was removed using DDQ resulting in allylic alcohol **42**. The epoxidation of the allylic double bond was initially tried under Sharpless conditions using D-(-)-diisopropyl tartrate, *t*BuOOH, and Ti(O*i*Pr)₄.²⁹ This reagent combination was expected to give the desired epoxide. However, even after one week at -10 °C only a trace of product could be detected by LCMS.

Epoxidation of **42** with *t*BuOOH in the presence of VO(acac)₂ led to a mixture of two epoxides⁴ **43a,b**. This mixture was converted to the luminacins 6',8'-epi-1 and luminacin D (1) by oxidation to **44**, acid induced deprotection and cyclization. At this stage a chromatographic separation of the epoxide diastereomers was easily possible on diol-modified silica gel. The spectral data for synthetic **1** nicely matched the reported data.² Very characteristic for luminacin D (1) are the values for C-8' (59.2), C-6' (64.3), C-3' (69.8), C-7' (92.5), and C-1' (206.5 ppm) in the ¹³C NMR spectrum. The epimer 6',8'-epi-1 seems to be a mixture of two anomers (around 1:1). This is evident from the fact that several peaks appear as pairs. Thus, the following chemical shifts were observed in the ¹³C NMR spectrum of 6',8'-epi-1: C-8' (69.2, 69.5), C-6' (74.3, 74.5), C-3' (72.0, 72.5), C-7' (94.6, 95.8), and C-1' (206.7, 207.0 ppm).

⁽²⁴⁾ Evans, D. A.; Allison, B. D.; Yang, M. G.; Masse, C. E. *J. Am. Chem. Soc.* **2001**, *123*, 10840–10852.

⁽²⁵⁾ Rychnovsky, S. D.; Rogers, B. N.; Richardson, T. I. Acc. Chem. Res. 1998, 31, 9-17.

⁽²⁶⁾ By using *ent-20* we also prepared the corresponding *syn-*Weinreb amide (R. Joggireddy, unpublished results) which showed the following chemical shifts in the 13 C NMR spectrum: $\delta = 19.7, 30.0, 98.8$ ppm.

⁽²⁷⁾ Narasimhan, N. S.; Mali, R. S. Synthesis 1983, 957-986.

⁽²⁸⁾ Snieckus, V. Chem. Rev. 1990, 90, 879-933.

⁽²⁹⁾ Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. *J. Am. Chem. Soc.* **1987**, *109*, 5765–5780.

SCHEME 4. Synthesis of Luminacin D (1) and Its Epimer

Conclusion

To summarize, we developed a novel route to luminacin D (1). The starting aldehyde 19 was obtained by a simple Baylis—Hillman reaction followed by allylic OH transposition. This should allow for easy variations at this terminus. This aldehyde was then extended by two highly stereoselective asymmetric aldol reactions. The combination of aldehyde 30 with the aryllithium derivative of 38 led to keto aldehyde 41 after cleavage of the silyl ether and oxidation of the primary and secondary alcohol functions. Four further steps provided luminacin D (1) together with its epoxide epimer. The overall strategy is concise and convergent which should allow for the synthesis of aryl modified luminacin analogues. Future work will focus on a stereoselective introduction of the epoxide function, either by direct epoxidation³⁰ or creation of the epoxide from a diol precursor.

Experimental Section

(2Z)-2-{[(4-Methoxybenzyl)oxy]methyl}pent-2-en-1-ol (18). To a cooled (-50 °C) solution of ester 17 (4.0 g, 15.0 mmol) in anhydrous Et₂O (58 mL) was added DIBALH (37.4 mL, 1 M in

hexane, 37.4 mmol) dropwise over 20 min. After 1 h anhydrous methanol (2.2 mL) was added slowly at -50 °C, and the resulting mixture was allowed to warm to room temperature over 4 h. Then the mixture was poured into a 1:1 mixture of Et₂O and 50% aqueous Rochelle's salt (130 mL of each), and the reaction mixture was stirred for 1 h followed by separation of the layers. The aqueous layer was extracted with ether (3 \times 100 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (25% EtOAc/petroleum ether) to yield alcohol 18 (2.7 g, 76%) as a colorless oil. $R_f = 0.23$ (25% EtOAc/petroleum ether). IR (film): $\nu_{\text{max}} = 3401, 2954, 2930, 1612, 1511, 1457, 1245, 1176, 1033,$ 821 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.95$ (t, J = 7.6 Hz, 3H, CH_3CH_2), 2.04 (q_n, J = 7.6 Hz, 2H, CH_2CH_3), 3.32 (s, 1H, OH), 3.71 (s, 3H, OCH₃), 4.06 (s, 4H, CH₂OPMB and CH₂OH), 4.37 (s, 2H, OCH₂Ph), 5.59 (t, J = 7.6 Hz, 1H, HC=C), 6.83 (d, $J = 8.6 \text{ Hz}, 2\text{H}, \text{CH}_{\text{arom}}), 7.21 \text{ (d, } J = 8.6 \text{ Hz}, 2\text{H}, \text{CH}_{\text{arom}}) \text{ ppm.}$ ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.8$ (CH₃CH₂), 20.3 (CH₂-CH₃), 54.6 (OCH₃), 64.3 (CH₂OH), 65.4 (CH₂OPMB), 71.4 (OCH₂-Ph), 113.3 (CH_{arom}), 128.9 (CH_{arom}), 129.8 (C_{quat}Ph), 132.4 (H*C*=C), 134.2 (=CCH₂), 158.7 (C_{quat}Ph) ppm. HRMS (ESI): calcd for $C_{14}H_{20}O_3Na \ [M+Na]^+$, 259.1305; found, 259.1306.

(2E)-2-{[(4-Methoxybenzyl)oxy]methyl}pent-2-enal (19). To a solution of oxalyl chloride (2.2 mL, 24.9 mmol) in CH₂Cl₂ (49 mL) was added DMSO (3.1 mL, 40.7 mmol) in CH_2Cl_2 (10 mL) at -78 °C. The mixture was stirred for 30 min before a solution of alcohol 18 (3.90 g, 16.6 mmol) in CH₂Cl₂ (13 mL) was slowly added at -78 °C. After being stirred for 30 min, Et₃N (9.2 mL, 66.4 mmol) was added slowly at -78 °C, and the mixture allowed to warm to room temperature over 3 h. The mixture was diluted with H₂O (20 mL) and CH₂Cl₂ (20 mL). The organic layer was washed with 1 N HCl (20 mL), saturated aqueous NaHCO₃ (20 mL), and brine (20 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was filtered through a short pad of silica to afford aldehyde 19 (3.55 g, 91%) as a pale yellow oil. $R_f = 0.39$ (25% EtOAc/petroleum ether). IR (film): $\nu_{\text{max}} =$ 2962, 2865, 2719, 1685, 1612, 1511, 1457, 1249, 1079, 1033, 848 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.14$ (t, J = 7.6 Hz, 3H, CH_3CH_2), 2.48 (q_n, J = 7.6 Hz, 2H, CH_2CH_3), 3.81 (s, 3H, OCH₃), 4.21 (s, 2H, CH₂OPMB), 4.45 (s, 2H, OCH₂Ph), 6.71 (t, J = 7.6Hz, 1H, HC=C), 6.89 (d, J = 8.6 Hz, 2H, CH_{arom}), 7.27 (d, J =8.6 Hz, 2H, CH_{arom}), 9.45 (s, 1H, CHO) ppm. ^{13}C NMR (100 MHz, CDCl₃): $\delta = 13.0 \, (CH_3CH_2), 22.6 \, (CH_2CH_3), 55.2 \, (OCH_3), 60.6$ (CH₂OPMB), 72.4 (OCH₂Ph), 113.7 (CH_{arom}), 129.4 (CH_{arom}), 130.1 $(C_{quat}Ph)$, 139.0 (= CCH_2), 159.2 ($C_{quat}Ph$), 161.0 (HC=C), 193.9 (CHO) ppm. HRMS (ESI): calcd for $C_{14}H_{18}O_3Na$ [M + Na]⁺, 257.1148; found, 257.1149.

(4S)-3-((3R,4E)-3-Hydroxy-4- $\{[(4-methoxybenzyl)oxy]methyl\}$ hept-4-enoyl)-4-isopropyl-1,3-thiazolidine-2-thione (21). To a stirred solution of the Nagao acetate³¹ 20 (4.66 g, 23.0 mmol) in CH₂Cl₂ (184 mL) at 0 °C was added TiCl₄ (2.76 mL, 25.2 mmol). The reaction mixture was stirred for 5 min at 0 $^{\circ}$ C, cooled to -78°C, then treated dropwise with iPr₂NEt (4.29 mL, 25.1 mmol) and stirred for 2 h at -78 °C. Then aldehyde **19** (3.16 g, 13.48 mmol) in CH₂Cl₂ (15 mL) was added dropwise, and the mixture was stirred for 30 min at -78 °C. The reaction was quenched with saturated aqueous NH₄Cl solution (50 mL), and the mixture was diluted with CH₂Cl₂ (100 mL). After separation of the layers, the aqueous layer was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (5% EtOAc/CH₂Cl₂) to provide the aldol product **21** (4.12 g, 70%) as a yellow oil. $R_f = 0.21$ (5% EtOAc/CH₂Cl₂);

^{(30) (}a) Spivey, A. C.; Woodhead, S. J.; Weston, M.; Andrews, B. I. *Angew. Chem.* **2001**, *113*, 791–793; *Angew. Chem., Int. Ed.* **2001**, *40*, 769–771. (b) Kramer, R.; Brückner, R. *Synlett* **2006**, 33–38.

^{(31) (}a) Nagao, Y.; Hagiwara, Y.; Kumagai, T.; Ochiai, M.; Inoue, T.; Hashimoto, K.; Fujita, E. *J. Org. Chem.* **1986**, *51*, 2391–2393. (b) Nagao, Y.; Dai, W. M.; Ochiai, M.; Shiro, M. *J. Org. Chem.* **1989**, *54*, 5211–5217. (c) Delaunay, D.; Toupet, L.; Corre, M. L. *J. Org. Chem.* **1995**, *60*, 6604–6607.

JOC Article

 $[\alpha]^{20}_{D} = +238.0$ (c 1.10 in CH₂Cl₂). IR (film): $\nu_{\text{max}} = 3482, 2962,$ 2950, 1693, 1612, 1511, 1461, 1361, 1249, 1164,1037 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.97$ (d, J = 6.8 Hz, 3H, (CH₃)₂-CH), 0.98 (t, J = 7.6 Hz, 3H, CH_3CH_2), 1.05 (d, J = 6.8 Hz, 3H, $(CH_3)_2CH)$, 2.08 $(q_n, J = 7.6 \text{ Hz}, 2H, CH_2CH_3)$, 2.36 (app oct, J= 6.8 Hz, 1H, $CH(CH_3)_2$), 2.99 (d, J = 11.6 Hz, 1H, SCH_2CHN), 3.24 (d, J = 5.3 Hz, 1H, OH), 3.47 (dd, J = 11.5, 8.0 Hz, 1H, SCH_2CHN), 3.57 (d, J = 6.1 Hz, 2H, CH_2CHOH), 3.80 (s, 3H, OCH_3), 4.07 (d, J = 11.1 Hz, 1H, CH_2OPMB), 4.14 (d, J = 11.1Hz, 1H, CH₂OPMB), 4.44 (s, 2H, OCH₂Ph), 4.71 (q, J = 5.9 Hz, 1H, CHOH), 5.12 (t, J = 6.8 Hz, 1H, CHNCS), 5.73 (t, J = 7.3Hz, 1H, C=CH), 6.87 (d, J = 8.6 Hz, 2H, CH_{arom}), 7.26 (d, J =8.6 Hz, 2H, CH_{arom}) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.0$ (CH₃CH₂), 17.6 ((CH₃)₂CH), 18.9 ((CH₃)₂CH), 20.8 (CH₂CH₃), 30.5 (SCH₂CHN), 30.7 (CH(CH₃)₂), 44.4 (NCOCH₂), 55.1 (OCH₃), 65.3 (CH₂OPMB), 71.4 (CHNCS), 71.5 (CHOH), 72.1 (OCH₂Ph), 113.7 (CH_{arom}), 129.3 (CH_{arom}), 129.9 (C_{quat}Ph), 133.5 (=CH), 134.9 (C=CH), 159.1 $(C_{quat}Ph)$, 172.4 (C=O), 202.8 (C=S) ppm. HRMS (ESI): calcd for $C_{22}H_{31}NO_4S_2Na$ [M + Na]⁺, 460.1587; found,

(3R,4E)-3-{[tert-Butyl(dimethyl)silyl]oxy}-4-{[(4-methoxybenzyl)oxy|methyl|hept-4-en-1-ol (23). A stirred solution of 22 (2.13 g, 3.86 mmol) in THF (140 mL) was treated dropwise with a solution of NaBH₄ (0.729 g, 19.30 mmol) in H₂O (27.7 mL) at 0 °C. The mixture was stirred at 0 °C overnight. The reaction was quenched by the addition of saturated aqueous NH₄Cl (50 mL), and the mixture was stirred for 1.5 h. After separation of the layers, the aqueous layer was extracted with EtOAc (3 \times 20 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ (50 mL), H₂O (50 mL), and brine (50 mL). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (5% EtOAc/CH₂Cl₂) to afford alcohol 23 (1.28 g, 84%) as a colorless oil. $R_f = 0.29$ (5% EtOAc/CH₂Cl₂); $[\alpha]^{20}_D = +12.63$ (c 1.05 in CH₂Cl₂). IR (film): $\nu_{\text{max}} = 3432, 2946, 2930, 1612, 1511, 1461,$ 1249, 1176, 1037, 782 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = -0.07 (s, 3H, Si(CH₃)₂), 0.00 (s, 3H, Si(CH₃)₂), 0.82 (s, 9H, SiC- $(CH_3)_3$, 0.91 (t, J = 7.5 Hz, 3H, CH_3CH_2), 1.74–1.79 (m, 2H, CH₂CHOTBS), 2.04 (q_n , J = 7.5 Hz, 2H, CH₂CH₃), 2.68 (br s, 1H, OH), 3.56-3.66 (m, 2H, CH₂CH₂CHOTBS), 3.72 (s, 3H, OCH₃), 3.87 (d, J = 10.9 Hz, 1H, CH₂OPMB), 3.91 (d, J = 10.9Hz, 1H, CH₂OPMB), 4.31 (t, J = 5.7 Hz, 1H, CHOTBS), 4.33 (d, J = 11.6 Hz, 1H, OCH₂Ph), 4.37 (d, J = 11.6 Hz, 1H, OCH₂Ph), 5.64 (t, J = 7.6 Hz, 1H, C=CH), 6.80 (d, J = 8.6 Hz, CH_{arom}), 7.17 (d, J = 8.6 Hz, CH_{arom}) ppm. ¹³C NMR (100 MHz, $CDCl_3$): $\delta = -5.3 \text{ (Si(CH₃)₂)}, -4.6 \text{ (Si(CH₃)₂)}, 14.1 (CH₃CH₂), 18.0$ (C(CH₃)₃), 20.8 (CH₂CH₃), 25.7 (SiC(CH₃)₃), 38.4 (CH₂CHOTBS), 55.1 (OCH₃), 60.1 (CH₂CH₂CHOTBS), 64.5 (CH₂OPMB), 72.0 (OCH₂Ph), 74.7 (CHOTBS), 113.6 (CH_{arom}), 129.1 (CH_{arom}), 130.3 (C_{quat}Ph), 133.2 (=CH), 136.3 (C=CH), 159.1 (C_{quat}Ph) ppm. HRMS (ESI): calcd for $C_{22}H_{38}O_4SiNa [M + Na]^+$, 417.2432; found, 417.2434.

(2S,3R,5R,6E)-5-{[tert-Butyl(dimethyl)silyl]oxy}-3-hydroxy-N-methoxy-6-{[(4-methoxybenzyl)oxy]methyl}-N-methyl-2-pro**pylnon-6-enamide (27).** A solution of (4S)-4-benzyl-3-pentanoyl-1,3-oxazolidin-2-one (**25**) (1.15 g, 4.42 mmol) in CH₂Cl₂ (7.6 mmol) at 0 °C was treated with Bu₂BOTf (4.36 mL, 1 M in CH₂Cl₂, 4.36 mmol) followed by Et₃N (0.83 mL, 5.96 mmol). After stirring for 15 min, the mixture was cooled to -78 °C, and a solution of aldehyde **24** (1.16 g, 2.95 mmol) in CH₂Cl₂ (7.6 mL) was added. After stirring for 2 h at -78 °C, the mixture was allowed to warm to room temperature over a period of 2 h and stirred at room temperature for 1.5 h. The reaction was quenched by addition of a pH = 7 aqueous phosphate buffer solution (11 mL) followed by a 2:1 mixture of MeOH and 30 wt % aqueous H₂O₂ (33 mL). The layers were separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were washed with H₂O (10 mL) and brine (10 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The next step on aldol product 26 was carried out without any further purification.

To a stirred solution of N,O-dimethyl hydroxylamine hydrochloride (0.834 g, 8.55 mmol) in THF (4.3 mL) at 0 °C was added AlMe₃ (4.34 mL, 2 M in toluene, 8.69 mmol). The flask was allowed to warm to room temperature, and the mixture was stirred for 1 h. After recooling the flask to 0 °C, a solution of the crude aldol product 26 (1.87 g, 2.87 mmol) in THF (4.3 mL) was added, and the reaction mixture was allowed to stir in an ice bath for 14 h before it was warmed to room temperature and stirred for an additional 2 h. The reaction mixture was transferred via a cannula to a cooled, vigorously stirred solution of 0.5 N HCl (40 mL) and CH₂Cl₂ (20 mL). Stirring was continued for 1 h, and then the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (5% EtOAc/CH₂Cl₂) to yield the amide **27** (860 mg, 66%) as a colorless oil. $R_f = 0.23$ (5% EtOAc/CH₂-Cl₂); $[\alpha]^{20}_{D} = +6.12$ (c 1.77 in CH₂Cl₂). IR (film): $\nu_{\text{max}} = 3475$, 2958, 2930, 2857, 1657, 1614, 1514, 1464, 1386, 1249, 1174, 1080, 1037, 1004 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = -0.06$ (s, 3H, Si(CH₃)₂), 0.00 (s, 3H, Si(CH₃)₂), 0.81 (s, 9H, SiC(CH₃)₃), 0.82 (t, J = 7.3 Hz, 3H, $CH_3CH_2CH_2$), 0.91 (t, J = 7.6 Hz, 3H, CH₃CH₂), 1.13-1.23 (m, 2H, CH₂CH₂CH), 1.55-1.72 (m, 4H, $CH_2CHC=O$ and $CH_2CHOTBS$), 1.98-2.09 (m, 2H, CH_2CH_3), 2.85-2.93 (m, 1H, CHCON(OMe)Me), 3.10 (s, 3H, CH₃N), 3.60 (s, 3H, CH₃ON), 3.74 (s, 3H, OCH₃), 3.81-3.86 (m, 1H, CHCH-CON), 3.84 (d, J = 10.9 Hz, CH₂OPMB), 3.98 (d, J = 10.9 Hz, CH_2OPMB), 4.29 (d, J = 11.6 Hz, 1H, OCH_2Ph), 4.36 (d, J =11.6 Hz, 1H, OCH₂Ph), 4.44 (t, J = 4.8 Hz, 1H, CHOTBS), 5.66 (t, J = 7.3 Hz, 1H, C=CH), 6.80 (d, J = 8.3 Hz, 2H, CH_{arom}), 7.18 (d, J = 8.6 Hz, 2H, CH_{arom}) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.2$ (Si(CH₃)₂), -4.7 (Si(CH₃)₂), 14.3 (CH₃CH₂), 14.3 (CH₃CH₂CH₂), 18.3 (C(CH₃)₃), 20.8 (CH₂CH₂CH), 21.0 (CH₂-CH₃), 25.8 (SiC(CH₃)₃), 30.1 (CH₂CHC=O), 31.9 (CH₃N), 40.2 (CH₂CHOTBS), 46.2 (CHCON(OMe)Me), 55.2 (OCH₃), 61.4 (CH₃-ON), 64.6 (CH₂OPMB), 69.5 (CHOH), 71.8 (OCH₂Ph), 73.4 (CHOTBS), 113.7 (CH_{arom}), 129.2 (CH_{arom}), 130.5 (C_{quat}Ph), 132.8 (=CH), 135.9 (C=CH), 159.1 (C_{quat}Ph) 176.7 (C=O) ppm. HRMS (ESI): calcd for $C_{29}H_{51}NO_6SiNa$ [M + Na]⁺, 560.3378; found, 560.3379.

(2S)-N-Methoxy-2-[(4R,6R)-6-((1E)-1- $\{[(4$ -methoxybenzyl)oxy]methyl}but-1-enyl)-2,2-dimethyl-1,3-dioxan-4-yl]-N-methylpentanamide (29). To a solution of the diol 28 (450 mg, 1.06 mmol) in THF (20 mL) was added 2,2-dimethoxypropane (1.32 mL, 10.6 mmol) followed by CSA (25 mg, 0.11 mmol) at room temperature. The mixture was stirred for 4 h at room temperature, and then the reaction was quenched with a few drops of Et₃N. The solvent was evaporated in vacuo. The crude product was purified by flash chromatography (30% EtOAc/petroleum ether) to yield acetal **29** (452 mg, 92%) as a colorless oil. $R_f = 0.44$ (50% EtOAc/ petroleum ether); $[\alpha]^{20}_D = 6.78$ (c 0.68 in CH₂Cl₂). IR (film): ν_{max} = 2960, 2932, 2871, 1654, 1511, 1454, 1384, 1245, 1174, 1073, 1035 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.86$ (t, J = 7.3 Hz, 3H, $CH_3CH_2CH_2$), 0.94 (t, J = 7.6 Hz, 3H, CH_3CH_2), 1.20–1.29 (m, 2H, CH_2CH_2CH), 1.32 (s, 3H, $C(CH_3)_2$), 1.33 (s, 3H, $C(CH_3)_2$), 1.54-1.63 (m, 1H, CH₂CHC=ON), 1.65-1.74 (m, 2H, CH₂-CHCON and $CH_2CHOC=CH$), 1.86-1.93 (m, 1H, $CH_2CHOC=$ CH), 2.07 (q_n, J = 7.5 Hz, 2H, CH₂CH₃), 3.02 (m, 1H, CHCON-(OMe)Me), 3.13 (s, 3H, CH₃N), 3.63 (s, 3H, CH₃ON), 3.76 (s, 3H, OCH₃), 3.89-3.95 (m, 1H, CHCHCON), 3.98 (s, 2H, CH₂-OPMB), 4.32 (dd, J = 9.7, 6.2 Hz, 1H, CHC=CH), 4.36 (s, 2H, OCH₂Ph), 5.63 (t, J = 7.3 Hz, 1H, C=CH), 6.82 (d, J = 8.6 Hz, 2H, CH_{arom}), 7.21 (d, J = 8.6 Hz, 2H, CH_{arom}) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.1$ (CH₃CH₂), 14.3 (CH₃CH₂CH₂), 20.5 (CH₂CH₂CH), 21.0 (CH₂CH₃), 24.5 ((CH₃)₂C), 24.8 ((CH₃)₂C), 32.0 (CH₃N), 32.1 (CH₂CHCON), 34.4 (CH₂CHOC=CH), 46.0 (CHCON-(OMe)Me), 55.2 (OCH₃), 61.4 (CH₃ON), 64.9 (CH₂OPMB), 68.2 (CHOC=CH), 68.6 (CHCHCON), 71.9 (OCH₂Ph), 100.8 (C(CH₃)₂),

113.7 (CH_{arom}), 129.4 (CH_{arom}), 130.6 (C_{quat} Ph), 133.6 (=CH), 134.8 (C=CH), 159.1 (C_{quat} Ph) 175.2 (C=O) ppm. HRMS (ESI): calcd for $C_{26}H_{41}NO_6Na$ [M + Na]⁺, 486.2826; found, 486.2829.

 $(2S)-2-[(4R,6S)-6-((1E)-1-\{[(4-Methoxybenzyl)oxy]methyl\}$ but-1-enyl)-2,2-dimethyl-1,3-dioxan-4-yl]pentanal (30). To a solution of the amide 29 (270 mg, 0.58 mmol) in THF (2.7 mL) was added DIBALH (1.75 mL, 1.75 mmol) dropwise at −78 °C. The mixture was stirred for 3 h at -78 °C and then treated with saturated aqueous Na K tartrate (2.7 mL) at -78 °C. After being stirred for 1 h at room temperature, the layers were separated. The agueous layer was extracted with ether (3 \times 1 mL). The combined organic layers were washed with water (2 mL) and brine (2 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (20% EtOAc/ petroleum ether) to yield aldehyde 30 (180 mg, 76%) as a colorless oil. $R_f = 0.40$ (25% EtOAc/petroleum ether); $[\alpha]^{20}_D = +1.24$ (c 0.97 in CH₂Cl₂). IR (film): $\nu_{\text{max}} = 2984, 2959, 2934, 2872, 1724,$ 1613, 1586, 1513, 1463, 1378, 1301, 1248, 1225, 1172, 1080, 1037 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.84$ (t, J = 7.2 Hz, 3H, $CH_3CH_2CH_2$), 0.91 (t, J = 7.6 Hz, 3H, CH_3CH_2), 1.16–1.23 (m, 2H, CH₂CH₂CH), 1.26 (s, 3H, C(CH₃)₂), 1.27 (s, 3H, C(CH₃)₂), 1.41–1.49 (m, 1H, CH₂CHCHO), 1.58–1.72 (m, 2H, CH₂CHCHO and $CH_2CHOC=CH$), 1.84 (ddd, J=12.9, 10.0, 6.4 Hz, 1H, CH_2 -CHOC=CH), 2.04 (q_n , J = 7.3 Hz, 2H, CH_2CH_3), 2.31–2.37 (m, 1H, CHCHO), 3.72 (s, 3H, OCH₃), 3.94 (s, 2H, CH₂OPMB), 4.01-4.06 (m, 1H, CHCHCHO), 4.26 (dd, J = 9.9, 6.1 Hz, 1H, CHC= CH), 4.32 (d, J = 11.6 Hz, 1H, OCH₂Ph), 4.35 (d, J = 11.4 Hz, 1H, OCH₂Ph), 5.59 (t, J = 7.3 Hz, 1H, C=CH), 6.80 (d, J = 8.6Hz, 2H, CH_{arom}), 7.18 (d, J = 8.6 Hz, 2H, CH_{arom}), 9.63 (d, J =2.5 Hz, 1H, CHO) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.1$ (CH₃CH₂), 14.3 (CH₃CH₂CH₂), 20.5 (CH₂CH₂CH), 20.9 (CH₂CH₃), 24.3 ((CH₃)₂C), 24.6 ((CH₃)₂C), 26.7 (CH₂CHCHO), 34.2 (CH₂-CHOC=CH), 55.2 (OCH₃), 56.2 (CHCHO), 64.6 (CH₂OPMB), 66.1 (CHCHCHO), 68.1 (CHC=CH), 71.9 (OCH₂Ph), 100.8 (C(CH₃)₂), 113.6 ((CH_{arom}), 129.4 (CH_{arom}), 130.4 (C_{quat}Ph), 133.4 (=CH), 134.6 (C=CH), 159.1 (C_{quat}Ph) 204.2 (CHO) ppm. HRMS (ESI): calcd for $C_{24}H_{36}O_5Na$ [M + Na]⁺, 427.2455; found, 427.2457.

2,4-Bis(methoxymethoxy)benzaldehyde (32). To a stirred solution of 2,4-dihydroxybenzaldehyde (31) (2.0 g, 14.5 mmol) in DMF (43 mL), iPt₂NEt (10.0 mL, 57.92 mmol) followed by MOMCl (4.4 mL, 57.92 mmol) were added dropwise at room temperature. The reaction mixture was allowed to stir for 5 h before it was poured into water (40 mL) and extracted with EtOAc (3 \times 20 mL). The combined organic layers were washed with 5% NaOH solution (2 \times 10 mL) followed by brine (2 \times 10 mL). The organic layer was dried with Na₂SO₄, filtered, and concentrated in vacuo. The crude product was filtered through a short column of flash silica gel to provide aldehyde 32 (3.20 g, 98%) as a colorless oil. $R_f = 0.48$ (25% EtOAc/petroleum ether). IR (film): $\nu_{\text{max}} = 3613, 2946, 2356,$ 1681, 1600, 1492, 1257, 1157, 1079, 998 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.42$ (s, 3H, OCH₃), 3.46 (s, 3H, OCH₃), 5.15 (s, 2H, OC H_2 OC H_3), 5.22 (s, 2H, OC H_2 OC H_3), 6.68 (d, J = 8.6Hz, 1H, CH_{meta}), 6.78 (s, 1H, CH_{meta}), 7.73 (d, J=8.6 Hz, 1H, CH_{ortho}), 10.28 (s, 1H, CHO) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 56.2 \text{ (OCH}_3), 56.3 \text{ (OCH}_3), 94.0 \text{ (OCH}_2\text{OCH}_3), 94.5 \text{ (OCH}_2\text{--}$ OCH₃), 102.4 (CH_{meta}), 109.2 (CH_{meta}), 120.0 (C_{quat}CHO), 129.9 (CH_{ortho}), 161.1 (C_{quat}OMOM), 163.4 (C_{quat}OMOM), 188.1 (CHO) ppm. HRMS (ESI): calcd for $C_{11}H_{14}O_5Na [M+Na]^+$, 249.0733; found, 249.0734.

2,4-Bis(methoxymethoxy)-1-(2-methylprop-1-enyl)benzene (33). To a stirred solution of $(CH_3)_2CHP(Ph)_3I$ (6.87 g, 15.91 mmol) in THF (50 mL) was added n-BuLi (6.4 mL, 2.5 M in hexane, 15.9 mmol) at 0 °C. The mixture was stirred for 30 min, before a solution of aldehyde **32** (2.0 g, 8.84 mmol) in THF (25 mL) was added dropwise. The reaction was stirred at room temperature for 4 h and then quenched by the addition of water (40 mL). After separation of the layers, the aqueous layer was extracted with Et₂O (3 × 40 mL). The combined organic layers were washed with H₂O

(2 × 40 mL) and brine (40 mL), dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified by flash chromatography (10% EtOAc/petroleum ether) to provide styrene **33** (2.10 g, 94%) as a colorless liquid. $R_f = 0.56$ (25% EtOAc/ petroleum ether). IR (film): $\nu_{\text{max}} = 2950, 2911, 1604, 1496, 1265,$ 1211, 1157, 1076, 1006, 782 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.67$ (s, 3H, C=C(CH₃)₂), 1.78 (s, 3H, C=C(CH₃)₂), 3.35 (s, 3H, OCH₃), 3.40 (s, 3H, OCH₃), 5.02 (s, 2H, OCH₂OCH₃), 5.03 (s, 2H, OC H_2 OC H_3), 6.12 (s, 1H, CH=C(C H_3)₂), 6.55 (dd, J = 8.3, 2.28 Hz, 1H, CH_{meta}), 6.57 (d, J = 2.3 Hz, 1H, CH_{meta}), 6.69 $(d, J = 8.3 \text{ Hz}, 1H, CH_{\text{ortho}}) \text{ ppm.}^{13}\text{C NMR } (100 \text{ MHz}, CDCl_3)$: $\delta = 19.3 \text{ (C=C(CH_3)_2)}, 26.4 \text{ (C=C(CH_3)_2)}, 55.8 \text{ (OCH_3)}, 55.9$ (OCH₃), 94.4 (OCH₂OCH₃), 94.5 (OCH₂OCH₃), 103.7 (CH_{meta}), 108.4 (CH_{meta}), 120.0 (CH=C(CH₃)₂), 122.2 (C_{quat} CH=C), 130.7 (CH_{ortho}) , 134.4 (= $C(CH_3)_2$), 155.4 ($C_{quat}OMOM$), 156.6 (C_{quat} OMOM) ppm. HRMS (ESI): calcd for $C_{14}H_{20}O_4Na$ [M+Na]⁺, 275.1254; found, 275.1256.

3-Isobutyl-2,6-bis(methoxymethoxy)benzaldehyde (35). To a stirred solution of resorcinol derivative 34 (2.90 g, 11.40 mmol) and TMEDA (1.9 mL, 12.65 mmol) in Et₂O (36 mL) was added n-BuLi (5.0 mL, 12.5 mmol, 2.5 M in hexane) dropwise at 0 °C followed by stirring of the mixture for 2 h at the same temperature. The mixture was warmed to room temperature, then DMF (1.96 mL, 25.1 mmol) was added and stirring continued for 3 h. The reaction mixture was poured into a separating funnel containing water (20 mL) and ether (20 mL). The layers were separated and the aqueous layer was extracted with ether (2 \times 10 mL). The combined organic layers were washed with water (20 mL), saturated aqueous NH₄Cl (10 mL), and brine (20 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (15% EtOAc/petroleum ether) to provide aldehyde **35** (2.74 g, 86%) as a colorless liquid. $R_f = 0.46$ (25%) EtOAc/petroleum ether). IR (film): $v_{\text{max}} = 2956, 2891, 2811, 1691,$ 1592, 1477, 1386, 1157, 1079, 1033, 738 cm^{-1} . $^{1}\mathrm{H}$ NMR (400 MHz, CDCl₃): $\delta = 0.82$ (d, J = 6.8 Hz, 6H, CH(CH₃)₂), 1.86 (nonet, J = 6.8 Hz, 1H, $CH(CH_3)_2$), 2.43 (d, J = 7.3 Hz, 2H, CH_2 -CH(CH₃)₂), 3.43 (s, 3H, OCH₃), 3.51 (s, 3H, OCH₃), 4.96 (s, 2H, OCH_2OCH_3), 5.17 (s, 2H, OCH_2OCH_3), 6.85 (d, J = 8.6 Hz, 1H, CH_{meta}), 7.21 (d, J = 8.6 Hz, 1H, CH_{meta}), 10.39 (s, 1H, CHO) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 22.3$ (CH(CH₃)₂), 28.9 (CH(CH₃)₂), 38.9 (CH₂CH(CH₃)₂), 56.4 (OCH₃), 57.4 (OCH₃), 94.9 (OCH₂OCH₃), 101.9 (OCH₂OCH₃), 110.5 (CH_{meta}), 119.1 (C_{quat}-CHO), 129.1 (C_{quat}CH₂CH), 137.0 (CH_{ortho}), 157.2 (C_{quat}OMOM), 158.6 (CquatOMOM), 189.6 (CHO) ppm. HRMS (ESI): calcd for $C_{15}H_{22}O_5Na [M + Na]^+$, 305.1359; found, 305.1360.

tert-Butyl{[3-iodo-5-isobutyl-2,6-bis(methoxymethoxy)benzyl]oxy}dimethylsilane (38). To a solution of resorcinol derivative 37 (1.0 g, 2.50 mmol) in THF (7.5 mL) was added sec-BuLi (2.3 mL, 1.3 M in cyclohexane/hexane, 3.01 mmol) dropwise at −78 °C followed by stirring of the mixture at this temperature for 2 h. Then, iodosuccinimide (0.79 g, 3.51 mmol) in THF (5 mL) was added dropwise, and the mixture was stirred for additional 3 h. The mixture was treated with saturated aqueous NH₄Cl (4 mL) and then warmed to room temperature. The layers were separated, and the aqueous layer was extracted with ether (3 \times 2 mL). The combined organic layers were washed with saturated aqueous Na₂S₂O₃ (5 mL), saturated aqueous NaHCO3 (5 mL), and brine (5 mL). The organic layer was dried over MgSO₄, filtered, and evaporated in vacuo. The crude product was purified by flash chromatography (5% diethyl ether/petroleum ether) to give aryl iodide 38 (0.72 g, 55%) as a colorless oil. $R_f = 0.31$ (5% diethyl ether/petroleum ether). IR (film): $\nu_{\text{max}} = 2954$, 2911, 2857, 1581, 1461, 1382, 1255, 1193, 1162, 1049, 798 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = -0.13$ (s, 6H, $Si(CH_3)_2$), 0.88 (s, 9H, $C(CH_3)_3$), 0.89 (d, J = 6.8 Hz, 6H, $CH(CH_3)_2$, 1.90 (nonet, J = 6.8 Hz, 6H, $CH(CH_3)_2$), 2.48 (d, J =7.1 Hz, 2H, CH₂CH(CH₃)₂), 3.57 (s, 3H, OCH₃), 3.67 (s, 3H, OCH₃), 4.70 (s, 2H, CH₂OTBS), 5.05 (s, 2H, OCH₂OCH₃), 5.12 (s, 2H, OCH₂OCH₃), 7.55 (s, 1H, CH_{ortho}) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.5$ (Si(CH₃)₂), 18.1 (C(CH₃)₃), 22.4 (CH-

 $\begin{array}{l} (CH_3)_2),\ 25.9\ (C(CH_3)_3),\ 29.1\ (CH(CH_3)_2),\ 39.2\ (CH_2CH(CH_3)_2),\\ 56.3\ (CH_2OTBS),\ 57.5\ (OCH_3),\ 58.4\ (OCH_3),\ 86.7\ (C_{quat}I),\ 100.9\\ (OCH_2OCH_3),\ 101.4\ (OCH_2OCH_3),\ 128.9\ (C_{quat}CH_2CH),\ 134.0\\ (C_{quat}CH_2OTBS),\ 140.2\ (CH_{ortho}),\ 154.9\ (C_{quat}OMOM),\ 157.0\ (C_{quat}OM$

3-Isobutyl-5- $\{(2S)$ -2-[(4R,6R)-6-((1E)-1- $\{[(4-methoxybenzyl)$ oxy]methyl}but-1-enyl)-2,2-dimethyl-1,3-dioxan-4-yl]pentanoyl}-2,6-bis(methoxymethoxy)benzaldehyde (41). To a stirred solution of aryl iodide 38 (215 mg, 0.409 mmol) in THF (2.4 mL) was added *n*-BuLi (0.16 mL, 2.5 M in hexane, 0.40 mmol) at -78 °C. After 2 h, aldehyde **30** (55 mg, 0.136 mmol) in THF (1.8 mL) was added dropwise followed by stirring of the mixture for 2 h at -78 °C. Then the mixture was allowed to warm to room temperature slowly over a period of 10 h and then treated with saturated aqueous NH₄Cl (2 mL). The layers were separated, and the aqueous layer was extracted with diethyl ether $(2 \times 1 \text{ mL})$. The combined organic layers were washed with saturated aqueous NaHCO₃ (2 mL) and brine (2 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (10% EtOAc/petroleum ether) to give the alcohol **39** (98 mg, 90%) as a colorless oil. $R_f = 0.22$ (10% EtOAc/ petroleum ether). This compound (1:1 diastereomeric mixture) was used directly for the next step (cleavage of the tert-butyldimethylsilyl ether).

To a stirred solution of alcohol **39** (98 mg, 0.122 mmol) in THF (1.5 mL) was added TBAF (0.25 mL, 0.244 mL) at 0 °C and followed by stirring of the mixture for 12 h in the ice bath. The mixture was diluted with ether and concentrated in vacuo. The crude product was purified by flash chromatography (50% EtOAc/petroleum ether) to obtain the diol **40** (84 mg, 100%) as a colorless oil. $R_f = 0.20$ (25% EtOAc/petroleum ether). This compound (1:1 diastereomeric mixture) was used directly for the next step (oxidation to keto aldehyde).

To a stirred solution of diol 40 (95 mg, 0.137 mmol) in CH₂Cl₂ (4.5 mL) was added Dess-Martin periodinane (175.4 mg, 0.413 mmol), and the mixture was allowed to stir for 1 h. Then it was treated with 10% Na₂S₂O₃ solution (2 mL). The mixture was diluted with ether (2 mL), the layers were separated, and the aqueous layer was extracted with ether $(2 \times 1 \text{ mL})$. The combined organic layers were washed with saturated aqueous NaHCO₃ solution (2 mL) and brine (2 mL). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (25% EtOAc/petroleum ether) to give keto aldehyde **41** (86 mg, 92%) as a pale yellow oil. $R_f = 0.48$ (25% EtOAc/ petroleum ether). $[\alpha]^{20}_D = +2.8$ (c 1.1 in CH₂Cl₂). IR (film): ν_{max} = 2958, 2933, 2871, 1612, 1565, 1513, 1461, 1382, 1249, 1160, 1072, 769 cm $^{-1}$. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.85$ (t, J =7.3 Hz, 3H, $CH_3CH_2CH_2$), 0.88 (d, J = 2.5 Hz, 3H, $(CH_3)_2CH$), 0.89 (d, J = 2.5 Hz, 3H, (CH₃)₂CH), 0.95 (t, J = 7.3 Hz, 3H, CH_3CH_2), 1.16–1.33 (m, 2H, CH_2CH_2CH), 1.25 (s, 3H, $(CH_3)_2C$), 1.26 (s, 3H, (CH₃)₂C), 1.48-1.58 (m, 1H, CH₂CHCOPh), 1.75-1.86 (m, 2H, (1H) CH₂CHCOPh and (1H) CH₂CHC=CH), 1.90-2.01 (m, 2H, (1H) $CH_2CHC = CH$ and (1H) $CH(CH_3)_2$), 2.08 (q_n, J $= 7.6 \text{ Hz}, 2H, CH_2CH_3), 2.53 \text{ (d, } J = 7.3 \text{ Hz}, 2H, CH_2CH(CH_3)_2),$ 3.44 (s, 3H, OCH₂OCH₃), 3.50-3.54 (m, 1H, CHCOPh), 3.58 (s, 3H, OCH₂OCH₃), 3.76 (s, 3H, OCH₃), 3.99 (s, 2H, CH₂OPMB), 4.04-4.14 (m, 1H, CHCHCOPh), 4.29 (dd, J = 9.9, 5.8 Hz, 1H, CHC=CH), 4.37 (s, 2H, OCH₂PhOMe), 5.04 (d, J = 1.8 Hz, 2H, OCH_2OCH_3), 5.06 (s, 2H, OCH_2OCH_3), 5.63 (t, J = 7.3 Hz, 1H, C=CH), 6.83 (d, J = 8.8 Hz, 2H, CH_{arom}), 7.22 (d, J = 8.6 Hz, 2H, CH_{arom}), 7.59 (s, 1H, CH_{ortho}), 10.30 (s, 1H, CHO) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.1$ (CH₃CH₂), 14.4 (CH₃CH₂-CH₂), 20.2 (CH₂CH₂CH), 20.9 (CH₂CH₃), 22.3, 22.4 ((CH₃)₂CH), 24.3, 24.7 ((CH₃)₂C), 28.8 (CH(CH₃)₂), 30.0 (CH₂CHCOPh), 34.0 (CH₂CHC=CH), 39.0 (CH₂CH(CH₃)₂), 54.5 (CHCOPh), 55.1 (OCH₃), 57.6, 58.0 (OCH₂OCH₃), 64.7 (CH₂OPMB), 67.4 (CHCH-COPh), 68.0 (CHC=CH), 71.8 (OCH₂PhOMe), 100.6 (C(CH₃)₂), 102.2, 102.9 (OCH₂OCH₃), 113.6 (CH_{arom}), 124.0 (C_{quat}), 129.3 (CH_{arom}), 130.4, 130.7 (C_{quat}), 132.2 (C_{quat}), 133.3 (C=CH), 134.7 (C=CH), 136.8 (CH_{ortho}), 157.2 (C_{quat}), 159.0, 159.5 (C_{quat}), 189.8 (CHO), 203.3 (C=O) ppm. HRMS (ESI): calcd for C₃₉H₅₆O₁₀Na [M + Na]⁺, 707.3766; found, 707.3762.

 $3-((2S)-2-\{(4R,6R)-6-[(1E)-1-(Hydroxymethyl)but-1-enyl]-2,2$ dimethyl-1,3-dioxan-4-yl}pentanoyl)-5-isobutyl-2,6-bis-(methoxymethoxy)benzaldehyde (42). To a stirred solution of keto aldehyde 41 (86 mg, 0.125 mmol) in CH₂Cl₂ (0.94 mL) was added H_2O (94 μ L) followed by DDQ (43.3 mg). The whole mixture was stirred vigorously at room temperature for 1 h. After dilution with diethyl ether (1 mL), the reaction mixture was stirred with saturated aqueous NaHCO3 solution (1 mL) for 5 min. The layers were separated, and the aqueous layer was extracted with ether (2×1) mL). The combined organic layers were washed with H₂O (1 mL) and brine (1 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (30% EtOAc/petroleum ether) to provide alcohol 42 (50 mg 71%) as a pale yellow oil. $R_f = 0.29$ (25% EtOAc/petroleum ether). $[\alpha]^{20}$ _D = ± 1.8 (c 1.0 in CH₂Cl₂). IR (film): $\nu_{\text{max}} = 3509$, 2958, 2931, $2871, 1691, 1565, 1461, 1382, 1255, 1201, 1160, 1074, 740 \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.85$ (t, J = 7.3 Hz, 3H, CH₃- CH_2CH_2), 0.88 (d, J = 2.8 Hz, 3H, $(CH_3)_2CH$), 0.89 (d, J = 2.8Hz, 3H, $(CH_3)_2CH$), 0.95 (t, J = 7.5 Hz, 3H, CH_3CH_2), 1.16–1.24 (m, 2H, CH₂CH₂CH), 1.28 (s, 6H, (CH₃)₂C), 1.47-1.56 (m, 1H, CH₂CHCOPh), 1.74-1.86 (m, 2H, (1H) CH₂CHCOPh and (1H) $CH_2CHC=CH$), 1.90-2.01 (m, 2H, (1H) $CH_2CHC=CH$ and (1H) $CH(CH_3)_2$, 2.06–2.17 (m, 2H, CH_2CH_3), 2.42 (br s, 1H, OH), 2.53 (d, J = 7.3 Hz, 2H, $CH_2CH(CH_3)_2$), 3.42–3.53 (m, 1H, CHCOPh), 3.46 (s, 3H, OCH₂OCH₃), 3.56 (s, 3H, OCH₂OCH₃), 4.10-4.15 (m, 2H, (1H) CH₂OH and (1H) CHCHCOPh), 4.20-4.25 (m, 1H, CH_2OH), 4.34 (dd, J = 9.6, 6.0 Hz, 1H, CHC = CH), 5.06 (s, 4H, OCH_2OCH_3), 5.48 (t, J = 7.2 Hz, 1H, C=CH), 7.58 (s, 1H, CH_{ortho}), 10.30 (s, 1H, CHO) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.2$ (CH₃CH₂), 14.4 (CH₃CH₂CH₂), 20.2 (CH₂CH₂CH), 20.7 (CH₂CH₃), 22.3, 22.4 ((CH₃)₂CH), 24.4, 24.8 ((CH₃)₂C), 28.8 (CH(CH₃)₂), 30.1 (CH₂CHCOPh), 34.0 (CH₂CHC=CH), 39.1 (CH₂CH(CH₃)₂), 54.4 (CHCOPh), 57.6, 58.1 (OCH₂OCH₃), 58.5 (CH₂OH), 67.5 (CHCH-COPh), 71.53 (CHC=CH), 100.8 (C(CH₃)₂), 102.2, 102.9 (OCH₂-OCH₃), 124.1 (C_{quat}), 130.7, 132.3 (C_{quat}), 132.5 (C=CH), 136.3 (C=CH), 136.7 (CH_{ortho}), 157.1, 159.7 (C_{quat}), 189.8 (CHO), 203.3 (C=O) ppm. HRMS (ESI): calcd for $C_{31}H_{48}O_9Na$ [M + Na]⁺, 587.3191; found, 587.3191.

 $3-((2S)-2-\{(4R,6R)-6-[3-Ethyl-2-(hydroxymethyl)oxiran-2-yl]-$ 2,2-dimethyl-1,3-dioxan-4-yl}pentanoyl)-5-isobutyl-2,6-bis-(methoxymethoxy)benzaldehyde (43). To a stirred solution of allylic alcohol 42 (44 mg, 0.078 mmol), in benzene (2 mL) were added VO(acac)₂ (4.3 mg, 0.016 mmol) and TBHP (29.5 μ L, 0.163 mmol) at room temperature. The mixture was stirred vigorously for 3 h at room temperature. The reaction was guenched with saturated aqueous Na₂S₂O₃ solution (1 mL), and the layers were separated. The aqueous layer was extracted with diethyl ether (2 × 1 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (50% EtOAc/petroleum ether) to give the epoxides 43a and 43b as an inseparable mixture (32 mg, 71%, pale yellow oil). $R_f = 0.15$ (25% EtOAc/petroleum ether). IR (film): $\nu_{\text{max}} = 3502, 2958, 2930, 2870, 1693, 1565, 1459, 1382, 1255,$ 1201, 1160, 1074, 773 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 0.80 (t, J = 7.2 Hz, 3H, $CH_3CH_2CH_2$), 0.83 (d, J = 3.8 Hz, 3H, $(CH_3)_2CH$, 0.84 (d, J = 3.8 Hz, 3H, $(CH_3)_2CH$), 0.95 (t, J = 7.6Hz, 1.5H, CH_3CH_2), 0.98 (t, J = 7.6 Hz, 1.5H, CH_3CH_2),1.10-1.19 (m, 2H, CH₂CH₂CH), 1.22 (s, 3H, (CH₃)₂C), 1.24 (s, 3H, (CH₃)₂C), 1.40-1.50 (m, 1H, CH₂CHCOPh), 1.52-1.60 (m, 2H, CH₂CH₃), 1.68-1.77 (m, 2H, (1H) CH₂CHCOPh and (1H) CH₂-CHC_{quat} epoxide), 1.81-1.92 (m, 2H, (1H) CH₂CHC_{quat} epoxide, (1H) $CH(CH_3)_2$, 2.25 (t, J = 6.1 Hz, 0.5H, OH), 2.40–2.44 (m, 0.5H, OH), 2.48 (d, J = 7.1 Hz, 1H, $CH_2CH(CH_3)_2$), 2.49 (d, J =7.1 Hz, 1H, $CH_2CH(CH_3)_2$), 2.80 (t, J = 6.3 Hz, 0.5H, CH epoxide), 2.86 (t, J = 6.3 Hz, 0.5H, CH epoxide), 3.42 (s, 3H, OCH₂OCH₃), 3.47-3.51 (m, 1H, CHCOPh), 3.52 (s, 3H, OCH₂OCH₃), 3.60 (ddd, J = 11.8, 10.0, 6.7 Hz, 1H, CH₂OH), 3.76 (dd, <math>J = 9.9, 6.3 Hz,0.5H, CHC_{quat}epoxide), 3.82 (dd, J = 11.9, 5.1 Hz, 0.5H, C H_2 -OH), 3.91-3.98 (m, 1H, (0.5H) CH₂OH and (0.5H) CHC_{quat}epoxide), 4.02-4.09 (m, 1H, CHCHCOPh), 5.01 (s, 4H, OCH₂-OCH₃), 7.52 (s, 1H, CH_{ortho}), 10.25, 10.26 (s, 1H, CHO) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 10.6$, 10.7 (CH₃CH₂), 14.4 (CH₃-CH₂CH₂), 20.1, 20.2 (CH₂CH₂CH), 21.2 (CH₂CH₃), 22.3, 22.4 ((CH₃)₂CH), 24.3, 24.4 ((CH₃)₂C), 24.4, 24.6 ((CH₃)₂C), 28.8 (CH-(CH₃)₂), 29.9, 30.1 (CH₂CHCOPh), 30.3, 30.8 (CH₂CHC_{quat}epoxide), 39.1 (CH₂CH(CH₃)₂), 54.3 (CHCOPh), 57.7, 58.2 (OCH₂OCH₃), 60.7, 60.8 (CH₂OH), 61.5, 61.9 (CH epoxide), 62.3, 62.9 (C_{quat}epoxide), 67.2, 67.3 (CHCHCOPh), 68.4, 70.6 (CHC_{quat}epoxide), 101.0, 101.1 (C(CH₃)₂), 102.2, 103.1 (OCH₂OCH₃), 124.1 (C_{quat}), 130.7, 130.8 (C_{quat}), 132.3, 132.4 (C_{quat}), 136.7 (CH_{ortho}), 157.0, 157.1 (C_{quat}), 159.7, 159.8 (C_{quat}), 189.8, 189.9 (CHO), 203.3, 203.4 (C=O) ppm. HRMS (ESI): calcd for $C_{31}H_{48}O_{10}Na$ [M + Na]⁺, 603.3140; found, 603.3142.

 $3-Ethyl-2-((4R,6R)-6-\{(1S)-1-[3-formyl-5-isobutyl-2,4-bis-$ (methoxymethoxy)benzoyl]butyl}-2,2-dimethyl-1,3-dioxan-4-vl)oxirane-2-carbaldehyde (44). To a stirred solution of the foregoing epoxy alcohols 43 (24 mg, 0.041 mmol) in CH₂Cl₂ (1.5 mL) was added Dess-Martin periodinane (26.3 mg, 0.062 mmol) in CH₂-Cl₂ (0.4 mL) dropwise at room temperature. After stirring at room temperature for 45 min, the reaction was quenched with 10% aqueous Na₂S₂O₃ solution (1 mL) and diluted with ether (2 mL). The layers were separated and the aqueous layer was extracted with ether (3 \times 1 mL). The combined organic layers were washed with saturated aqueous NaHCO3 (2 mL) and brine (2 mL), dried over MgSO₄, filtered and concentrated in vacuo. The crude product was filtered through a short pad of silica gel to obtain the dialdehydes **44** (22 mg, 93%) as a slightly yellow oil. $R_f = 0.31$ (25% EtOAc/ petroleum ether). IR (film): $\nu_{\text{max}} = 2958, 2938, 2873, 1693, 1569,$ 1461, 1384, 1253, 1199, 1172, 1133, 763 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.80$ (t, J = 7.3 Hz, 3H, CH₃CH₂CH₂), 0.82-0.91 (m, 6H, (CH_3)₂CH), 1.01 (t, J = 7.5 Hz, 1.5H, CH_3 CH₂), 1.04 (t, J = 7.5 Hz, 1.5H, CH_3CH_2), 1.24 (s, 6H, $(CH_3)_2C$), 1.28–2.00 (m, 9H, (2H) CH₂CH₂CH, (2H) CH₂CH₃, (1H) CH(CH₃)₂, (2H) CH_2CHC_{quat} epoxide and (2H) $CH_2CHCOPh$), 2.53 (d, J = 7.1 Hz, 1H, $CH_2CH(CH_3)_2$), 2.54 (d, J = 7.1 Hz, 1H, $CH_2CH(CH_3)_2$), 2.98 (dd, J = 7.1, 5.8 Hz, 0.5 H, CHepoxide), 3.36 (dd, J = 7.5, 5.8 Hz,0.5H, CHepoxide), 3.46 (s, 3H, OCH₂OCH₃), 3.51-3.55 (m, 1H, CHCOPh), 3.57 (s, 3H, OCH₂OCH₃), 4.02–4.07 (m, 1H, CHC_{quat}epoxide), 4.28 (dd, J = 9.8, 6.3 Hz, 0.5H, CHCHCOPh), 4.52 (dd, J = 9.8, 6.6 Hz, 0.5H, CHCHCOPh), 5.05, 5.06 (s, 2H, OCH₂- OCH_3), 7.56 (d, J = 5.6 Hz, 1H, CH_{ortho}), 9.42 (s, 0.5H, CHO), 9.51 (s, 0.5H, CHO), 10.30, 10.31 (CHO) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 10.5, 10.7$ (CH₃CH₂), 14.3 (CH₃CH₂CH₂), 20.2, 20.3 (CH₂CH₃), 21.2, 21.3 (CH₂CH₂CH), 22.3, 22.4 ((CH₃)₂CH), 23.8, 24.1 ((CH₃)₂C), 24.3, 24.5 ((CH₃)₂C), 28.8 (CH(CH₃)₂), 29.0 (CH₂CHCOPh), 30.0, 30.2 (CH₂CHC_{quat}epoxide), 39.1 (CH₂CH-(CH₃)₂), 54.1, 54.2 (CHCOPh), 57.6, 57.7 (OCH₂OCH₃), 58.1, 58.2 (OCH₂OCH₃), 62.8 (CHepoxide), 63.8, 64.2 (CHCHCOPh), 66.2, 67.0 (C_{quat}epoxide), 67.1, 67.2 (CHC_{quat}epoxide), 100.9, 101.1 ((C(CH₃)₂), 102.2, 103.1 (OCH₂OCH₃), 124.0 (C_{quat}), 130.7, 130.8 (C_{quat}), 132.3 (C_{quat}), 136.7, 136.8 (CH_{ortho}), 157.1, 157.2 (C_{quat}), 159.6, 159.7 (C_{quat}), 189.8, 189.9 (CHO), 199.3, 199.4 (CHO), 203.2, 203.4 (C=O) ppm. HRMS (ESI): calcd for $C_{31}H_{46}O_{10}Na$ $[M + Na]^+$, 601.2983; found, 601.2990.

Luminacin D (1) and 6',8'-epi-Luminacin (6',8'-epi-1). A mixture of acetal **44** (21 mg, 0.036 mmol), THF (0.38 mL), AcOH (0.38 mL) and water (0.2 mL) was stirred for 3 h at 95 °C. After cooling, the mixture was concentrated in vacuo. The residue was diluted with toluene, and the solvent removed in vacuo. This was repeated several times to remove the acetic acid. The crude product was purified by flash chromatography (50% EtOAc/petroleum ether) to furnish pure luminacin D (1) (8 mg, 49%) and the epoxide diastereomer 6',8'-epi-1 (5 mg, 31%) as colorless oils: $R_f = 0.30$ (50% EtOAc/petroleum ether). To avoid decomposition, further

purification and separation should be done on diol-modified silica gel (Merck 40–63 μ m, 2% MeOH/CH₂Cl₂). The NMR spectra (¹H, ¹³C) data matched the reported ones. The epi-compound turned out to be a mixture (1:1) of anomers.

Luminacin D (1): First Spot. $R_f = 0.27$ (silica gel, 30%) acetone/hexane); 0.2 (diol-modified silica gel, 2% MeOH/DCM); $[\alpha]^{20}_{D} = -12.2$ (c 0.2 in CHCl₃). IR (film): $\nu_{max} = 3446$, 2958, 2930, 2853, 1735, 1693, 1461, 1384, 1253, 1199, 1133, 1075, 1039, 763 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): $\delta = 0.88$ (t, J = 7.5 Hz, 3H, 11'-CH₂CH₃), 0.89 (d, J = 6.6 Hz, 3H, (CH₃)₂CH), 0.90 (d, J= 6.4 Hz, 3H, $(CH_3)_2$ CH), 0.92 (t, J = 7.6 Hz, 3H, 10'-H), 1.19- $1.30 \text{ (m, 1H, } 11'-\text{C}H_2\text{C}H_3), 1.37-1.47 \text{ (m, 2H, } 11'-\text{C}H_2\text{C}H_3, 9-\text{H}'),}$ 1.50 (q, J = 12.1 Hz, 1H, 4'-H), 1.63-1.71 (m, 2H, 9'-H, 11'-H),1.83-1.91 (m, 2H, 11'-H, $(CH_3)_2CH$), 2.12 (ddd, J=12.7, 4.5, 1.9 Hz, 1H, 4'-H), 2.41 (dd, J = 13.9, 7.6 Hz, 1H, CH₂iPr), 2.45 (dd, J = 13.9, 7.6 Hz, 1H, CH₂iPr), 2.81 (br s, 1H, OH), 3.27 (t, J = 6.7 Hz, 1H, 8'-H), 3.54-3.58 (m, 1H, 2'-H), 4.38 (dd, J =11.4, 5.1 Hz, 1H, 5'-H), 4.45 (ddd, J = 11, 7.6, 1.5 Hz, 1H, 3'-H), 4.96 (s, 1H, 7'-H), 7.73 (s, 1H, 4-H), 10.39 (s, 1H, CHO), 12.97 (s, 1H, 6-OH), 14.15 (s, 1H, 2-OH) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 10.0$ (C-10'), 14.2 (11'-CH₂CH₃), 20.7 (11'-CH₂CH₃), 21.2 (C-9'), 22.2 ((CH₃)₂CH), 28.2 ((CH₃)₂CH), 31.7 (C-11'), 36.5 (C-4'), 37.9 (CH₂iPr), 49.0 (C-2'), 59.2 (C-8'), 62.8 (C-5'), 64.3 (C-6'), 69.8 (C-3'), 92.5 (C-7'), 109.2 (C-1), 112.5 (C-3), 120.8 (C-5), 139.7 (C-4), 167.4 (2), 167.9 (C-6), 194.3 (CHO), 206.5 (C-1') ppm. HRMS (ESI): calcd for $C_{24}H_{34}O_8Na$ [M + Na]⁺, 473.2146; found, 473.2143.

6',8'-epi-Luminacin (6',8'-epi-1): Second Spot. $R_f = 0.20$ (silica gel, 30% acetone/hexane); 0.31 (diol-modified silica gel, 4% MeOH/CH₂Cl₂); $[\alpha]^{20}_D = +6.3$ (c 0.3 in CHCl₃). IR (film): ν_{max} = 3450, 2958, 2873, 1633, 1461, 1384, 1253, 1199, 1133, 1075, 1039, 763 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): $\delta = 0.85$ (t, J =7.6 Hz, 3H, 11'-CH₂CH₃), 0.88 (d, J = 6.7 Hz, 1.5H, (CH₃)₂CH), 0.89 (d, J = 6.7 Hz, 1.5H, (CH₃)₂CH), 0.90 (d, J = 7.0 Hz, 3H, $(CH_3)_2$ CH), 1.05 (t, J = 7.3 Hz, 1.5H, 10'-H), 1.09 (t, J = 7.3 Hz, 1.5H, 10'-H), 1.16-1.27 (m, 2H, 11'-CH₂CH₃), 1.35-1.64 (m, 2H, 9'-H), 1.67 (dd, J = 12.1, 4.5 Hz, 1H, 4'-H), 1.75–1.82 (m, 2H, 4'-H, 11'-H), 1.86–1.96 (m, 2H, 11'-H, (CH₃)₂CH), 2.33–2.38 (m, 1H, CH₂*i*Pr), 2.43–2.50 (m, 1H, CH₂*i*Pr), 3.56–3.59 (m, 2H, 3'-H, 2'-H), 3.60-3.64 (m, 0.5H, 8'-H), 3.98 (dd, J = 11.4, 5 Hz, 0.5H, 5'-H), 4.23-4.27 (m, 0.5H, 8'-H), 4.35 (dd, J = 11.4, 5 Hz, 0.5H, 5'-H), 4.53 (s, 0.5H, 7'-H), 5.13 (s, 0.5H, 7'-H), 7.73 (s, 0.5H, 4-H), 7.74 (s, 0.5H, 4-H), 10.39 (s, 1H, CHO), 12.97 (s, 0.5H, 6-OH), 12.98 (s, 0.5H, 6-OH), 14.09 (s, 0.5H, 2-OH), 14.15 (s, 0.5H, 2-OH) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 11.1$, 11.3 (C-10'), 14.2 (11'-CH₂CH₃), 20.4, 20.5 (11'-CH₂CH₃), 22.2, 22.4 ((CH₃)₂CH), 23.6, 25.1 (C-9'), 28.2 ((CH₃)₂CH), 32.2, 32.5 (C-11'), 32.9, 33.3 (C-4'), 37.9 (CH₂iPr), 49.3, 49.6 (C-2'), 64.6 (C-5'), 69.2, 69.5 (C-8'), 72.0, 72.5 (C-3'), 74.3, 74.5 (C-6'), 94.6, 95.8 (C-7'), 109.3 (C-1), 112.4, 112.5 (C-3), 121.1, 121.3 (C-5), 139.3, 139.4 (C-4), 167.4 (C-2), 168.0, 168.1 (C-6), 194.2, 194.3 (CHO), 206.7, 207.0 (C-1') ppm. HRMS (ESI): calcd for C₂₄H₃₄O₈- $Na + H_2O [M + Na]^+$, 491.2251; found, 491.2254.

Acknowledgment. Financial support by the Deutsche Forschungsgemeinschaft (Grant Ma 1012/16-1) and the Fonds der Chemischen Industrie is gratefully acknowledged. In addition, we acknowledge partial support by COST D28. We also thank Degussa for a gift of amino acids.

Supporting Information Available: Experimental procedures and characterization for all other new compounds reported and copies of NMR spectra for important intermediates. This material is available free of charge via the Internet at http://pubs.acs.org.

JO061104G