ORGANIC

Synthesis of Novel 11-Desmethyl Analogues of Laulimalide by Nozaki–Kishi Coupling

Ian Paterson,*,[†] Hermann Bergmann,[†] Dirk Menche,[†] and Albrecht Berkessel[‡]

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K., and Institut für Organische Chemie der Universität zu Köln, Greinstrasse 4, D-50939 Köln, Germany

ip100@cam.ac.uk

Received February 5, 2004

ABSTRACT

As a first entry into structurally simplified analogues of the anticancer agent laulimalide, 11-desmethyl compounds 2 and 3 were selected by molecular modeling. The unfavorable diastereoselectivity in the key synthetic step, a Nozaki–Kishi coupling between macrocyclic aldehyde 4 and vinyl iodide 5, was overcome either by use of catalytic amounts of DIANANE-type ligands or L-Selectride reduction of the derived enone. This methodology should allow modular introduction of other, unnatural, side chains.

By sharing the same microtubule-stabilizing mechanism as Taxol and having nanomolar growth inhibitory activity against cancer cell lines, including multidrug resistant cells, laulimalide (1, Scheme 1) presents a promising lead structure for development of new anticancer agents.^{1,2} However, in comparison to Taxol and other known microtubule-stabilizing agents, laulimalide appears to have a different (and as yet undefined) binding site on tubulin.³

This unique biological profile, together with the low natural abundance from its sponge sources, has triggered numerous synthetic efforts which have culminated in a multitude of total syntheses, including one from our group.^{4–6}

In contrast, a limited range of analogues, relying primarily on modifying the hydroxyls, the (*Z*)-enoate, or removal of the epoxide, have been reported to date for SAR studies.^{1a,3,6} Herein, we report the total synthesis of 11-*desmethyl*laulimalide (**2**) and its methyl ether **3** by a novel approach, relying on an asymmetric Nozaki–Kishi coupling of the macrocyclic aldehyde **4** with dihydropyran containing vinyl

[†] University of Cambridge.

[‡] Universität zu Köln.

^{(1) (}a) Mooberry, S. L.; Tien, G.; Hernandez, A. H.; Plubrukarn, A.; Davidson, B. S. *Cancer Res.* **1999**, *59*, 653. (b) Cragg, G. M.; Newman, D. J. *J. Nat. Prod.* **2004**, *67*, 232.

^{(2) (}a) Quinoa, E.; Kakou, Y.; Crews, P. J. Org. Chem. 1988, 53, 3642.
(b) Corley, D. G.; Herb, R.; Moore, R. E.; Scheuer, P. J.; Paul, V. J. J. Org. Chem. 1988, 53, 3644. (c) Jefford, C. W.; Bernardinelli, G.; Tanaka, J.; Higa, T. Tetrahedron Lett. 1996, 37, 159.

⁽³⁾ Pryor, D. E.; O'Brate, A.; Bilcer, G.; Diaz, J. F.; Wang, Yu.; Wang, Yo.; Kabaki, M.; Jung, M. K.; Andreu, J. M.; Ghosh, A. K.; Gianna-kakou, P.; Hamel, E. *Biochemistry* **2002**, *41*, 9109.

⁽⁴⁾ For reviews, see: (a) Crimmins, M. T. Curr. Opin. Drug Discovery Dev. 2002, 5, 944. (b) Mulzer, J.; Öhler, E. Chem. Rev. 2003, 103, 3753. (5) (a) Ghosh, A. K.; Wang, Y. J. Am. Chem. Soc. 2000, 122, 11027. (b) Ghosh, A. K.; Wang, Y. J. Am. Chem. Soc. 2001, 122, 11027. (c) Paterson, I.; De Savi, C.; Tudge, M. Org. Lett. 2001, 42, 796. (d) Paterson, I.; De Savi, C.; Tudge, M. Org. Lett. 2001, 42, 796. (d) Paterson, I.; De Savi, C.; Tudge, M. Org. Lett. 2001, 42, 796. (d) Paterson, I.; De Savi, C.; Tudge, M. Org. Lett. 2001, 42, 796. (d) Paterson, I.; De Savi, C.; Tudge, M. Org. Lett. 2001, 42, 796. (d) Paterson, I.; De Savi, C.; Tudge, M. Org. Lett. 2001, 42, 5001, 42, 796. (d) Paterson, I.; De Savi, C.; Tudge, M. Org. Lett. 2001, 42, 5001, 42, 796. (d) Paterson, I.; De Savi, C.; Tudge, M. Org. Lett. 2001, 42, 124, 5958. (d) Williams, D. R.; Mi, L.; Mullins, R. J.; Stintes, R. E. Tetrahedron Lett. 2002, 43, 4841. (i) Nelson, S. G.; Chueng, W. S.; Kassick, A. J.; Hilfiker, M. A. J. Am. Chem. Soc. 2002, 124, 13654. (j) Wender, P. A.; Hegde, S. G.; Hubbard, R. D.; Zhang, L. J. Am. Chem. Soc. 2002, 124, 4956. (d) Stave Sta

^{(6) (}a) Ahmed, A.; Hoegenauer, K.; Enev, V. S.; Hanbauer, M.; Kaehlig, H.; Öhler, E.; Mulzer, J. J. Org. Chem. **2003**, 68, 3026. (b) Wender, P. A.; Hegde, S. G.; Hubbard, R. D.; Zhang, L.; Mooberry, S. L. Org. Lett. **2003**, 5, 3507. (c) Gallagher, B. M., Jr.; Fang, F. G.; Johannes, C. W.; Pesant, M.; Tremblay, M. R.; Zhao, H.; Akasaka, K.; Li, X.-y.; Liu, J.; Littlefield, B. A. Bioorg. Med. Chem. Lett. **2004**, 14, 575.

iodide 5. Notably, this synthesis design should enable the modular construction of a wide range of laulimalide analogues with unnatural side chains.

Based on molecular modeling, 11-desmethyl analogues of laulimalide were chosen as a first, promising series of simplified structures.⁷ In particular, these were expected to adopt conformations closely related to 1 in the presumably crucial C_1 – C_4 and C_{15} – C_{20} regions.^{1a,6}

To allow for a high degree of convergence, our synthesis of the macrocyclic ring 4 (Scheme 2) was based on previously established^{5c} diastereoselective aldol coupling using chiral boron enolate methodology of the C_1-C_{14} subunit 7 with $C_{15}-C_{19}$ subunit 6, followed by a Mitsunobutype macrolactonization. Conjugate reduction of enone 8 using Stryker's reagent⁸ and Takai methylenation⁹ of the ketone group proceeded smoothly (77%) and allowed the preparation of building block 9 in a reliable and scalable process. This was transformed into aldehyde 4 by selective deprotection to reveal the primary hydroxyl (TBAF/AcOH) followed by Swern oxidation (60%).

1294

^{*a*} Conditions: (a) [CuHPPh₃]₆, benzene (wet), rt; (b) Zn, TMSCl, CH₂I₂, TiCl₄, PbI₂, THF; (c) TBAF/AcOH (pH 7), THF, 0 °C to rt, 72 h, 82%; (d) (COCl)₂ (15 equiv), DMSO (30 equiv), NEt₃ (70 equiv), CH₂Cl₂, -78 to -10 °C.

Following our earlier route,^{5d} the dihydropyran unit of the authentic side chain of laulimalide was conveniently prepared by application of the Jacobsen HDA reaction¹⁰ of aldehyde 10 and diene 11 (Scheme 3).^{5d} After homologation of

^{*a*} Conditions: (a) K₂CO₃, MeOH; (b) Cp₂ZrHCl, CH₂Cl₂; I₂.

aldehyde 12 with the Ohira-Bestmann reagent 13,¹¹ hydrozirconation of the derived alkyne 14, and trapping of the organometallic species with iodine,¹² the vinyl iodide 5 was obtained.

For the pivotal coupling of 5 with aldehyde 4, we chose an asymmetric variant of the Nozaki-Kishi reaction,¹³

⁽⁷⁾ The 3-dimensional structures of 1 and 2 were obtained by 10 000step Monte Carlo conformational searches with MacroModel 8.0 using the MM2*-force field and the generalized Born/surface area (CB/SA) solvent model and the crystal structure data of 1^{2c} as input geometries: (a) Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Kiskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. **1990**, *11*, 440. (b) Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, J. Am. Chem. Soc. **1990**, *112*, 6127. A series of closely related conformers of 1 and 2 were found within 3.00 kcal/mol of the global minima both in water and chloroform.

⁽⁸⁾ Mahoney, W. S.; Brestensky, D. M., Stryker, J. M. J. Am. Chem. Soc. 1988, 110, 291.

⁽⁹⁾ Takai, K.; Kakiuchi, T.; Kataoka, Y.; Utimoto, K. J. Org. Chem. **1994**, *59*, 2668.

⁽¹⁰⁾ Jacobsen, E. N.; Dossetter, A. G.; Jamison, T. F. Angew. Chem., Int. Ed. 1999, 38, 2398.

^{(11) (}a) Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521. (b) Ohira, S. Synth. Commun. 1989, 19, 561.

⁽¹²⁾ Schwartz, J.; Carr, D. B. J. Am. Chem. Soc. 1979, 101, 2927.

^{(13) (}a) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349. (b) Fürstner, A. Chem. Rev. 1999, 99, 991. (c) Choi, H.-W.; Nakajima, K.; Demeke, D.; Kang, F.-A.; Jun, H.-S.; Wan, Z.-K.; Kishi, Y. Org. Lett. 2002, 4, 4435.

^{*a*} Conditions: (a) (*R*,*R*)-**15** (10 mol %), CrCl₂ (10 mol %), NiCl₂ (2 mol %), NEt₃ (20 mol %), Mn, TMSCl, THF; (b) TBAF/AcOH (pH 7), THF, 0 °C to rt; (c) CrCl₂, NiCl₂, THF/DMF; (d) (COCl)₂, DMSO, NEt₃, CH₂Cl₂, -78 to -10 °C; (e) L-Selectride, THF, -78 °C; (f) HF/pyridine, THF; 0 °C to rt; (g) L-(+)-DIPT, Ti(O'Pr)₄, TBHP, 4 Å MS, CH₂Cl₂, -20 °C; (h) Me₃O⁺BF₄⁻, Proton Sponge, CH₂Cl₂.

developed by our groups using C2-symmetric DIANANEtype salen ligands (Scheme 4).¹⁴ Employing catalytic amounts of the chromium(II) complex of (R,R)-15, preformed in situ using our previously reported protocol,^{14a} overcame the substrate selectivity in this coupling and gave allylic alcohol 16 with the desired configuration and useful levels of stereoinduction (dr 78:22). In contrast, the matched reaction, using (S,S)-15, almost exclusively gave the undesired 20epi-16 (dr 94:6, not shown). Notably, these addition reactions represent one of the first examples of synthetically useful levels of asymmetric induction being realized for catalytic, enantioselective Nozaki-Kishi couplings in complex coupling partners.^{13c} With the recently developed^{14b} efficient large-scale enantioselective synthesis of the diamine backbone of 15 it is very promising to now develop and also evaluate structural analogues of these novel salen-type ligands. For preparative purposes, it proved convenient to enhance the diastereomeric ratio in favor of 16 by a twostep oxidation-reduction sequence via enone 17. Among the reagents screened, L-Selectride gave optimal results with respect to both chemo- and stereoselectivity.^{15,16} Subsequent TBS deprotection followed by a highly selective Sharpless epoxidation^{5d,e} completed the synthesis of 11-desmethyllaulimalide (2). Its methyl ether 3^{17} was prepared by utilizing

the same sequence after methylation of the C_{20} -hydroxyl in **16**. This derivative was selected to mitigate the inherent intramolecular nucleophilicity of the C_{20} -hydroxyl group toward the epoxide (leading to isolaulimalide), which will be crucial to transform laulimalide into a true drug candidate.¹⁸

In summary, based on conformational analysis, we have prepared 11-desmethyl analogues of laulimalide representing a structural simplification of this antimitotic macrolide. Our convergent approach relies on separate construction of the macrocyclic core and the side chain and assembly of these two units by a Nozaki–Kishi reaction. For this coupling, use of DIANANE-based salen ligands succeeded in overcoming the undesired substrate facial bias in a mismatched situation. This approach established herein should enable the introduction of a variety of different side chains.

Acknowledgment. We thank the EC (HPRN-CT-2000-00014 Research Training Network and Marie Curie Post-doctoral Fellowship for H.B.), EPSRC (GR/N08520), and Merck for support and Dr. Maria Silva (Cambridge) for helpful discussions over the modeling studies.

Supporting Information Available: Full characterization of all new compounds and copies of NMR spectra for **2**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL049791Q

^{(14) (}a) Berkessel, A.; Menche, D.; Sklorz, C.; Schröder, M.; Paterson, I. Angew. Chem., Int. Ed. 2003, 42, 1032. (b) Berkessel, A.; Schröder, M.; Sklorz, C. A.; Tabanella, S.; Vogl, N.; Lex, J.; Neudörfl, J. M. J. Org. Chem. 2004, 69, in press.

⁽¹⁵⁾ Use of oxazaborolidine mediated borane reduction with (*S*)-**18** gave better diastereoselectivity but proceeded with only moderate yields.

⁽¹⁶⁾ The configuration of **16** was deduced from model studies and is in agreement with the expected selectivity of the Nozaki–Kishi reaction^{14a} and was further confirmed by the close similarity of the NMR data for **2** and **1** and their precursors.^{5d}

⁽¹⁷⁾ During the course of our studies, the Wender group disclosed the synthesis and biological evaluation of the corresponding methyl ether of laulimalide; see ref 6b.

⁽¹⁸⁾ First, biological evaluation suggests 2 to be of very similar potency to laulimalide, while 3 is less active. Full details will be reported elsewhere.