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INTRAMOLECULAR ADDITION OF ALKYLLITHIUMS TO ACETYLENES:
REGIOSPECIFIC 4-, 5-, and 6-EXO-DIG CYCLIZATIONS

William F. Bailey* and Timo V. Ovaska
Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060

Summary. Primary acetylenic alkyliithiums bearing a phenyl substituent on the triple bond, which may be prepared in
virtually quantitative yield by low-temperature lithium-iodine interchange, undergo regiospecific exo-dig cyclization
via stereoselective syn-addition of CH,Li to the carbon-carbon triple bond to give four-, five-, and six-membered
carbocycles bearing an easily functionalized exocyclic lithiomethylidene moiety. Cyclization of the analogous alkyl
substituted acetylenic alkyllithiums is confined to the 5-exo-dig mode.

We recently described the generation and facile cyclization of 5-alkyn-1-yllithiums to give
functionalized cyclopentylidene-containing products.' As shown below,? this anionic cyclization is a
regiospecific 5-exo-dig process involving stereoselectively syn- addition to the triple bond. The
formation of 5-membered rings by intramolecular addition of a C-Li bond to an acetylenic moiety
appears to be a rather general phenomenon: cyclization of acetylenic aryllithiums was first reported
over 20 years ago® and Negishi's group has recently observed 5-exo-dig isomerization of acetylenic
organolithiums having lithium bound to sp2-hybridized carbon.* Herein we describe extension of this
methology to the construction of four- and six-membered rings by cyclization of appropriately
substituted acetylenic alkyllithiums.
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Acstylenic alkyllithiums are easily and cleanly prepared in a solution of n-pentane-diethyl ether
(3:2 by vol) by treatment of the appropriate primary iodides with 2 equiv of +-BuLi at -78°C using our
general protocol for low-temperature lithium-iodine interchange."*” Alkyl substituted 6-heptyn-1-
yllithiums such as 1 are stable for extended periods of time at +20°C, while in the presence of TMEDA,
which has been found to facilitate cyclization of olefinic alkyllithiums,® extensive prototropic
rearrangement ensues and the allene is the major product. Indeed, we have been unable to find
conditions that result in a synthetically useful cyclization of such alkyl-substituted substrates. The
pheny! substituted analog, 2, behaves quite differently: as shown on the following page, quench of a
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reaction mixture that had been warmed at +20°C for 1h afforded an approximately 1:1 mixture of allene
and benzylidene-cyclohexane.
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Allene formation can of course be entirely supressed by introduction of gem-dialkyl groups at
the propargylic position and the rate of cyclization of such substrates would be expected , moreover, to
benefit from operation of the Thorpe-Ingold effect.® indeed, as shown in Scheme 1, organolithium 4,
which is prepared from iodide 3 in virtually quantitative yield,” undergoes clean 6-exo-dig isomerization
upon warming at room temperature for 1h to deliver a vinyllithium that may be trapped by addition of
electrophiles to give high isolated yields of functionalized products (6 a-¢)." As indicated in Scheme
1, the products are stereoisomerically pure and were derived from reaction of the electrophiles with the
E-isomer of the vinyllithium (5). This stereochemical outcome is consistent with either: (1) an anti-
addition of the CHalLi to the alkyne moiety or, (2) a syn-addition followed by rapid and complete
isomerization of the configurationally labile Z-vinyllithium'' to the thermodynamically more stable E-
isomer'? at the elevated temperatures (ga.+20°C) needed to effect cyclization. In an effort to distinguish
between these two scenarios, we investigated the more rapid' 5-exo-dig cyclization of an analogously
substituted 5-hexyn-1-yllithium, 8, at various temperatures. The results of these experiments,
summarized in Scheme Il, clearly indicate that, while the cyclization proceeds in a stereoselectively
syn-manner, isomerization of the initially generated Z-vinyllithium to the more stable E-isomer'?is a
very facile process at elevated temperatures.'' On this basis, the formation of products derived from a
formally anti-addition in the 6-exo-dig cyclization is seen as a consequence of equilibration of an
initially formed Z-vinyllithium to the E-isomer under the conditions of the cyclization reaction.

The relatively rapid 5-exo-dig cyclization of 8 at -78°C coupled with the configurational stability
of the initially formed Z-vinyllithium (12) at these low temperatures can be exploited for the preparation
of functionalized products. As illustrated in Scheme Ilil, vinyllithium 12 may be trapped with
electrophiles prior to cis-trans isomerization to give stereoisomerically pure products (9 and 13 a-c) in
good yield."® Unfortunately, due to the higher temperatures needed to eftect cyclization of 4, it has not
proved possible to trap the putative Z-vinyllithium intermediate in the 6-exo-dig reaction.

The formation of four-membered rings by 4-exo-dig cyclization of a 6-phenyl-5-pentyn-1-
yllithium is an unexpectedly rapid and clean process as demonstrated by the results presented below.
While we have been unable to successfully isomerize an alkyl-substituted substrate, the cyclization of
15 to 16 is complete within 15 min at +20°C and addition of any of a variety of electrophiles provides
functionalized benzylidenecyclobutanes (17 a-d) in good to excellent isolated yields.'®
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CHLOH H 6a 86
CH,CHO CHZ;CHOH 6b 81
CHa(CHz)zCHO CHa(CHz)zCHOH 6c 78
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Temperature, °C  Time, min 9, % 10, % 11, %
- 100 5 2 - 98
-78 5 31 3 66
-78 60 88 6 6
-55 30 85 10 5
+20 15 32 63 5
+20 60 29 67 4
Scheme 1l
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E* E Product Yield, %
CHZOH H 9 88
CH4,CHO CH;CHOH 13 a 82
PhCHO PhCHOH 13 b 78
+BuCHO t+-BuCHOH 13 ¢ 84
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14 -78°%C 15 16
E* E Product Yield, %
MeOH H 17 a 93
DMF CHO 17 b 90
PhCHO PhCHOH 17 ¢ 84
H,CO CH,OH 17 d 62
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