www.publish.csiro.au/journals/ajc

Full Paper

Aust. J. Chem. 2009, 62, 27-41

Diversity-Oriented Synthesis of Substituted Furo[2,3-b]pyrazines

Vaibhav P. Mehta,^A Sachin G. Modha,^A Denis Ermolat'ev,^A Kristof Van Hecke,^B Luc Van Meervelt,^B and Erik V. Van der Eycken^{A,C}

^ALaboratory for Organic and Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.

^BBiomolecular Architecture, Department of Chemistry, Katholieke Universiteit Leuven,

Celestijnenlaan 200F, 3001, Leuven, Belgium.

^CCorresponding author. Email: erik.vandereycken@chem.kuleuven.be

A highly efficient method for the synthesis of diversely substituted furo[2,3-b]pyrazines has been elaborated. The Ag⁺- or iodine-mediated electrophilic cyclization of readily generated 5-chloro-3-substituted ethynyl-1-(4-methoxybenzyl)-pyrazin-2(1*H*)-ones affords substituted furo[2,3-b]pyrazines, which undergo various palladium catalyzed reactions to generate a library of difficult to attain diversely substituted furo[2,3-b]pyrazines.

Manuscript received: 3 September 2008. Final version: 25 October 2008.

Introduction

The construction of the furan ring, which is found in many natural and biologically important compounds,^[1-3] is attracting considerable attention.^[4] Heteroannulation processes for the synthesis of ring-fused furans have been described by the palladium-catalyzed annulation of alkynes.^[5,6] Electrophilic cyclization of unsaturated compounds has been proven to be an efficient method for the one-step construction of substituted furans.^[7-10] Different methods have been explored for the electrophilic halocyclization of α-alkynyl carbonyl compounds.^[7,11] Several syntheses of fused furan moieties like benzo[b]furans,^[12] furopyridines,^[13] and furopyrimidines^[14] are reported. The synthesis of $furo[2,3-b]pyrazines^{[15]}$ is described by the cyclization of chloroketones.^[16] However this method is restricted to the synthesis of 2- or 2,3-disubstituted furo[2,3-b]pyrazines. Being oxo-analogues of aloisines, which are known to be selective kinase inhibitors for CDK 1/2/3 and GSK-3 α/β ,^[17] we were keen to explore the synthesis of diversely substituted furo[2,3-b]pyrazines. We have previously

elaborated a novel cyclization protocol for the synthesis of furo[2,3-*b*]pyrazines starting from 1-(4-methoxybenzyl)-3,5dichloropyrazine-2(1*H*)-ones by a Ag⁺-catalyzed cyclization with concomitant cleavage of the 4-methoxybenzyl (PMB) protecting group (Scheme 1).^[18] We now wish to describe a novel approach for the synthesis of this interesting framework by an iodocyclization^[19] reaction. We will also comment on the subsequent palladium-catalyzed cross-coupling reactions for the decoration of both generated scaffolds to yield densely substituted furo[2,3-*b*]pyrazines.

Results and Discussion

Analogously to our previously developed route^[18] our sequence starts with a regioselective Sonogashira cross-coupling reaction at the reactive 3-position of the 3,5-dichloropyrazin-2(1*H*)one $1^{[20]}$ to generate the 5-chloro-3-substituted ethynyl-1-(4-methoxybenzyl)-pyrazin-2(1*H*)-ones **3** (Scheme 2 and Table 1).^[21] These substrates were further evaluated for the cyclization to 2-chloro or 2-chloro-7-iodo substituted

Scheme 1. Synthesis of tri-substituted furo[2,3-b]pyrazine.

Scheme 2. Ag⁺- or I₂-mediated cyclization to generate 2-chloro and 2-chloro-7-iodo substituted furo[2,3-*b*]pyrazines. MW, microwave.

Entry	4 or 5	Product	Cyclization time [min] ^B	Yield of 3 [%] ^C	Yield of 4 [%] ^C	Yield of 5 [%] ^C
1	4a		5	99	96	_
2	4b		5	92	92	_
3	4c		20	83	91	_
4	4d		20	85	79	_
5	4e	Bn N O Me	5	99	91	-
6	5a		5	82	_	76
7	5b		7	94	-	86

 Table 1. Synthesis of substituted 2-chloro and 2-chloro-7-iodo furo[2,3-b]pyrazines^A

(Continued)

Entry	4 or 5	Product	Cyclization time [min] ^B	Yield of 3 [%] ^C	Yield of 4 [%] ^C	Yield of 5 [%] ^C
8	5c		10	99	-	88
9	5d		5	99	-	91
10	5e		10	88	-	96
11	5f		6	96	-	96
11	5g		10	84	-	68

Table 1. (Continued)

^AThe Sonogashira cross-coupling reaction was run on a 5 mmol scale, using acetylene (1.20 equiv.), Pd(PPh₃)₂Cl₂ (1 mol%), and CuI (3 mol%) in DMF/Et₃N (1:1, 20 mL) under microwave irradiation at a maximum power of 80 W and 80°C ceiling temperature for 10 min. Cyclization reactions was run on a 2 mmol scale, using AgOTf (2 mol%), TFA (5.0 equiv.) in DCM (12 mL) at room temperature for the stipulated time. The iodocyclization was run on 2 mmol scale using I₂ (2.0 equiv.) in DCM (12 mL) at room temperature for the stipulated time.

^BCyclization time as determined by TLC.

^CIsolated yields (single runs).

furo[2,3-*b*]pyrazines **4** and **5** using Ag⁺ or I₂ respectively. Applying 2 mol% AgOTf in 20% TFA/CH₂Cl₂ resulted in smooth formation of the desired compounds **4a**–**e** in 5–20 min at room temperature. For the iodocyclization, compounds **3e–k** were reacted with 2.0 equiv. of I₂ in dichloromethane to afford the requested compounds **5a–g** in 5–15 min at room temperature. These mild and selective procedures provide mono- and dihalo-substituted furo[2,3-*b*]pyrazines, which are susceptible to various transition-metal catalyzed coupling reactions for the decoration of the scaffold (Scheme 2 and Table 1).^[18]

We were keen to know whether it should be possible to perform a regioselective Suzuki–Miyaura cross-coupling on the 7-position of the dihalogenated substrates **5**, as a higher reactivity at the site of the iodine could be expected. As a proof of concept the reaction of 2-chloro-6-cyclopentyl-7-iodofuro[2,3*b*]pyrazine **5a** with *p*-MeO-phenylboronic acid **6a** was investigated applying microwave irradiation (Scheme 3, Table 2, entry 1).^[22] The reaction proceeded to full conversion in a mere 20 min to afford the mono-substituted compounds **7a** and **7"a** as well as the di-substituted compound **7'a**. Several attempts were made to obtain regioselective arylation of the 7-position (Table 2). Finally the best conditions for mono arylation were found to be 1.25 equiv. of boronic acid, 1 mol% of Pd(PPh₃)₄, 2.0 equiv. of K₂CO₃ in 4 mL of *N*,*N*-dimethylformamide (DMF) at a ceiling temperature of 120°C using 200 W maximum power during 20 min, which afforded the required compound **7a** in 91% isolated yield with only trace amounts of **7'a** and **7''a** (Table 2, entry 4).

Having optimized the conditions, we reacted an array of differently substituted 2-chloro^[18] and 2-chloro-7-iodo furo[2,3*b*]pyrazines **4a–c,e** and **5a–g** with various boronic acids **6a–l** that bear electron withdrawing or electron donating groups (Scheme 4, Table 3). The corresponding arylated products **7b–j** and **8a–d** were obtained in excellent yields regardless of the bulkiness of the R₁ and R₂-substitutents of the boronic acid. Even when 4-cyano-phenylboronic acid was used the corresponding arylated product was obtained in an excellent 91% yield after 45 min of microwave irradiation (Table 3, entry 9).

Scheme 3. Optimization of the conditions for the regioselective Suzuki-Miyaura cross-coupling reaction.

Table 2. Optimization of the conditions for the regioselective Suzuki-Miyaura cross-coupling reaction^A

Entry	Boronic acid equiv.	Base (equiv.)	Solvent	Temp. [°C]	Time [min]	Ratio [%] of 7a/7' a/7'' a/5a ^B
1	1 25	$Na_2CO_2(2,0)$	$DMF \cdot H_2O(1.1)$	100	20	70.21.8.0
2	1.05	Na_2CO_3 (2.0)	$DMF:H_2O(1:1)$	90	20	60:15:0:15
3	1.25	$K_2CO_3(2.0)$	$Dioxan:H_2O(1:1)$	110	20	74:20:0:0
4	1.25	K_2CO_3 (2.0)	DMF	120	10	95 ^C :4:0:0
5	1.25	K ₂ CO ₃ (2.0)	DMF	110	10	85:5:0:10

^AThe Suzuki–Miyaura cross-coupling reaction was run on a 0.3 mmol scale of **5a**, using boronic acid **6a** (1.05–1.25 equiv.), Pd(PPh₃)₄ (1 mol%), and base (2.0 equiv.) in the indicated solvent (4 mL) under microwave irradiation at a maximum power of 200 W and stipulated temperature for the indicated time. ^BRatios were determined by GC-MS analysis.

^CThe isolated yield was 91% (single run).

Scheme 4. Microwave (MW)-assisted Suzuki-Miyaura cross-coupling of compounds 4 and 5.

The structure of compound **8d** was unambiguously assigned by X-ray analysis (Fig. 1).^[23]

Having successfully established the protocol for the Suzuki– Miyaura cross-coupling, we were next interested in checking whether Sonogashira cross-coupling^[24] could be performed on substrates **4** and **5**. Substrate **4a** was reacted with acetylene (1.3 equiv.) in the presence of tetrabutylammonium iodide (TBAI) (1.2 equiv.) as additive, Pd(PPh₃)Cl₂ (5 mol%) and CuI (10 mol%) as catalytic system in DMF/triethylamine (TEA) (1:1, 4 mL) under microwave irradiation at 80 W maximum power and 100°C ceiling temperature for 15 min.^[25] Gratifyingly, we obtained the desired alkynylated product **9a** in an excellent yield of 85%. Remarkably, if no TBAI was added; only the starting material was recovered even after 1 h of microwave irradiation. Analogously compounds **9b,c** were synthesized in 92% and 96% yield (Table 4, entries 2 and 3). We then investigated whether it should be possible to perform a regioselective Sonogashira cross-coupling reaction on the 7-position of the dihalogenated substrates **5**. However, using the same conditions as for the substrates **4a–c**, the reaction turned out to be rather sluggish and resulted in the formation of a complex mixture of compounds. To our satisfaction we found that when TBAI was omitted from the reaction mixture, the conversion proceeded well when **5e** was reacted with 3-ethynylthiophene **2i** (1.05 equiv.) upon microwave irradiation for 7 min at a ceiling temperature of 95°C and a maximum power of 150 W. The monoalkynylated compound **10a** was obtained in 89% yield next to only traces of the dialkynylated product (4%) (Scheme 5, Table 4, entry 4). Similarly compounds **10b,c** were regioselectively synthesized applying this protocol (Scheme 5, Table 4, entries 5 and 6).

We then investigated whether the selectively generated 7substituted 2-chloro furo[2,3-*b*]pyrazines 7 could be further decorated at their 2-position (Scheme 6). Three different starting compounds **7b,d,e** were subjected to the optimized Suzuki–Miyaura and Sonogashira conditions for chloro substitution to result in the formation of the corresponding substituted furo[2,3-*b*]pyrazines in good to excellent yields (Table 5).

Finally, we have investigated the Suzuki cross-coupling to generate symmetrically substituted furo[2,3-*b*]pyrazines starting from the 2-chloro-,7-iodo-substituted compound **5g** (Scheme 7). A mixture of this compound together with a large excess of boronic acid **6o** (3.0 equiv.), Pd(PPh₃)₄ (5 mol%) and K₂CO₃ (5.0 equiv.) in DMF (4 mL) was irradiated for 25 min at 140°C ceiling temperature using 300 W maximum power. The desired disubstituted compound **12a** could be isolated in 93% yield.

Conclusion

In conclusion we have developed a novel procedure for the generation of difficult to attain diversely substituted furo[2,3b]pyrazines starting from 3,5-dichloropyrazin-2(1H)-ones pyrazinones protected with a p-methoxybenzylether at their N1 position. The key step of this sequence is a mild, one step Ag⁺- or iodine-mediated electrophilic cyclization with concomitant cleavage of the protecting *p*-methoxybenzylether. The corresponding compounds were evaluated for selective palladiumcatalyzed cross-coupling reactions. The chloro substituent, inactive in the pyrazinone, becomes sensitive to substitution in the generated pyrazines. We have also demonstrated that in the case of the generated 2-chloro,7-iodo furo[2,3-b]pyrazines, regioselective Suzuki-Miyaura and Sonogoshira cross-coupling reactions are possible at the 7-position. The application of microwave irradiation during the different steps of the sequence has been shown to be highly valuable for speeding up reactions.

Experimental

General Experimental Methods

¹H NMR spectra were recorded on a Bruker Avance 300 MHz instrument using CDCl₃ as solvent unless otherwise stated. The ¹H and ¹³C chemical shifts are reported in parts per million relative to tetramethylsilane using the residual solvent signal as an internal reference. Mass spectra were recorded by using a Kratos MS50TC and a Kratos Mach III system. The ion source temperature was 150–250°C, as required. High-resolution electron impact (EI) mass spectra were performed with a resolution of 10000. The low-resolution spectra were obtained with a HP5989A MS instrument. For TLC, analytical TLC plates (Alugram SIL G/UV₂₅₄) and 70–230 mesh silica gel (E. M. Merck) were used.

Microwave Irradiation Experiments

A multimode Milestone MicroSYNTH microwave reactor (Laboratory Microwave Systems) was used in the standard configuration as delivered, including proprietary software. All experiments were carried out in sealed microwave process vials (15, 50 mL). Temperature control was performed using both external infrared and internal fibre optic sensors. After completion of the reaction, the vial was cooled to 25°C with air jet cooling before opening.

A Typical Procedure for the Preparation of 1-(4-Methoxybenzyl)-3,5-dichloropyrazin-2(1H)-ones **1a-d**

In a 1 L round-bottomed flask NaHSO₃ (26.1 g, 0.25 mol) was dissolved in 400 mL water and aldehyde was added dropwise

under an argon atmosphere. After stirring for 45 min, a solution of 4-methoxybenzylamine (32 mL, 0.25 mol) in methanol (100 mL) was added dropwise to the reaction mixture and stirring was continued for 2 h at 60°C. NaCN (14.7 g, 0.25 mol) was then added and the reaction mixture was left stirring overnight at 60°C (in a fumehood!). The reaction mixture was cooled to room temperature and extracted with dichloromethane $(3 \times 300 \text{ mL})$. The organic phases were combined, washed with brine $(1 \times 200 \text{ mL})$, and then dried for 2 h over Na₂SO₄ and concentrated. The residue was dissolved in dry ether (500 mL) and the resulting solution was cooled to 0°C. Dry HCl gas was bubbled through the solution upon vigorous stirring for 20 min and the precipitate was filtered off and dried. The precipitate was then suspended in a 1 L flask in dry toluene (400 mL) and oxalyl chloride (86 mL, 1 mol, 4.0 equiv.) was added dropwise under an argon atmosphere. After stirring for 45 min, triethylamine hydrochloride (52 g, 0.38 mol, 1.5 equiv.) was added in small portions, DMF (2 mL, 25 mmol, 0.1 equiv.) was added and the reaction mixture was kept stirring for 2 days. The reaction mixture was concentrated and the residue was purified by silica gel column chromatography (from 10% to 30% EtOAc in petroleum ether) to afford 3,5-dichloropyrazin-2(1H)-one 1 as a white solid.

3,5-Dichloro-1-(4-methoxybenzyl)pyrazin-2(1H)-one (1a)

53% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.29 (d, *J* 7.2, 2H), 7.18 (s, 1H), 6.91 (d, *J* 7.2, 2H), 5.04 (s, 2H), 3.81 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 160. 4, 152.0, 147.4, 130.6, 126.1, 125.5, 124.2, 114.9, 55.5, 53.4. *m/z* (HR-MS EI) Found 285.0119. C₁₂H₁₀Cl₂N₂O₂ requires 285.0119.

3,5-Dichloro-1-(4-methoxybenzyl)-6-methyl-pyrazin-2(1H)-one (**1b**)

51% yield. $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.16 (d, J 7.1, 2H), 6.86 (d, J 7.3, 2H), 5.29 (s, 2H), 3.79 (s, 3H), 2.44 (s, 3H). $\delta_{\rm C}$ (100 MHz, CDCl₃) 159.6, 153.2, 143.7, 136.2, 128.7, 125.9, 123.9, 114.5, 55.4, 49.6, 16.8. DEPT (100 MHz, CDCl₃) 128.6, 114.5, 113.8, 55.3, -49.8, 16.9. *m/z* (HR-MS EI) Found 298.0279. $C_{13}H_{12}Cl_2N_2O_2$ requires 298.0276.

6-Benzyl-3,5-dichloro-1-(4-methoxybenzyl)pyrazin-2(1H)-one (**1c**)

32% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.40–7.32 (m, 3H), 7.12–7.07 (m, 4H), 6.88 (d, *J* 9.6, 2H), 5.10 (s, 2H), 4.15 (s, 2H), 3.80 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 159.7, 153.4, 145.3, 137.4, 133.9, 129.6, 128.2, 127.9, 127.5, 126.3, 125.4, 114.7, 55.5, 49.3, 32.3. DEPT (75 MHz, CDCl₃) 129.9, 128.5, 128.2, 127.8, 115.0, 55.7, -49.6, -35.6. *m/z* (HR-MS EI) Found 250.0879. C₁₃H₁₅ClN₂O requires 250.0873; Found 374.0596. C₁₉H₁₆Cl₂N₂O₂ requires 374.0589.

3,5-Dichloro-1-(4-methoxybenzyl)-6-(4methoxyphenyl)pyrazin-2(1H)-one (**1d**)

76% yield. $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.04 (d, *J* 7.2, 2H), 6.97 (d, *J* 7.3, 2H), 6.81 (d, *J* 7.2, 2H), 6.72 (d, *J* 7.1, 2H), 5.05 (s, 2H), 3.88 (s, 3H), 3.76 (s, 3H). $\delta_{\rm C}$ (100 MHz, CDCl₃) 161.1, 159.5, 152.9, 145.8 138.6, 130.9, 129.4, 126.9, 124.7, 122.3, 114.5, 113.9, 55.5, 55.3, 50.8. DEPT (100 MHz, CDCl₃) 130.9, 129.4, 114.4, 113.8, 55.4, 55.3, -50.7. *m/z* (HR-MS EI) Found 390.0549. C₁₉H₁₆Cl₂N₂O₃ requires 390.0538.

Entry	Compd	Product	Yield [%] ^C	Entry	Compd	Product	Yield [%] ^C
1	7b	CI N CI N CI CI N CI	78	8	7i	MeO	89
2	7c	Me N O CI N O OEt	86	9	7j ^D	Bn N O Me	91
3	7d	Bn N O S CI N COCH ₃	87	10	8a	MeO N N Me	85
4	7e	Me CI N OMe	89	11	8b	MeO Me Me Me Me	90
5	7f	MeO	78	12	8c	MeO N O BiPh CF ₃	87
6	7g	Me Ne CI Ne Me	90	13	8d	Bn N O Me	100

Table 3. Microwave-assisted Suzuki–Miyaura cross-coupling of compounds 4^A and 5^B

(Continued)

2	2

Table 3. (Continued)

^AReaction conditions for **8a–d**: the Suzuki–Miyaura cross-coupling reaction was run on a 0.3 mmol scale of **4a–c**, wing boronic acid (1.50 equiv.), Pd(PPh₃)₄ (1 mol%), and Na₂CO₃ (2.0 equiv.) in DMF/H₂O (1:1, 4 mL), under microwave irradiation at a maximum power of 100 W and 100°C ceiling temperature for 10 min.

^BReaction conditions for **7b–j**: the Suzuki–Miyaura cross-coupling reaction was run on a 0.3 mmol scale of **5a–g**, using boronic acid (1.25 equiv.), Pd(PPh₃)₄ (1 mol%), and K₂CO₃ (2 equiv.) in DMF (4 mL) under microwave irradiation at a maximum power of 200 W and 120°C ceiling temperature and 20–30 min. ^CIsolated yields (single runs).

^D45 min of irradiation was needed.

Fig. 1. X-Ray crystal structure^[23] of 8d. Thermal ellipsoids at the 50% probability level.

Sonogashira Coupling Reaction on 1-(4-Methoxybenzyl)-3,5-dichloropyrazin-2(1H)-ones **1a–d**. A Typical Procedure

In a 50 mL microwave vial were successively dissolved in DMF/Et₃N (1:1, 20 mL), pyrazinone **1** (5 mmol), acetylene **2** (6.25–7.5 mmol), Pd(PPh₃)Cl₂ (35 mg, 1 mol%), and CuI (28 mg, 3 mol%). The reaction tube was sealed and irradiated in a microwave reactor at a ceiling temperature of 80°C at 80 W maximum power for 10 min. Afterwards the reaction mixture was cooled with an air flow for 15 min, extracted with dichloromethane (2×150 mL), and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was subjected to silica gel column chromatography (from

10% to 30% EtOAc in petroleum ether) to afford compounds 3a-k.

1-(4-Methoxybenzyl)-5-chloro-6-(4-methoxyphenyl)-3-(2-(4-methoxyphenyl)ethynyl)-pyrazin-2(1H)-one (**3a**)

99% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.63 (d, J 8.91, 2H), 7.06 (d, J 8.79, 2H), 6.96 (d, J 8.43, 2H), 6.90 (d, J 8.85, 2H), 6.84 (d, J 8.49, 2H), 6.73 (d, J 8.55, 2H), 5.05 (s, 2H), 3.87 (s, 3H), 3.84 (s, 3H), 3.76 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 160.9, 159.3, 139.6, 138.1, 134.5, 131.0, 129.3, 127.6, 123.0, 114.3, 113.9, 98.9, 85.3, 55.5, 55.4, 55.3, 49.9. m/z (HR-MS EI) Found: 486.1353. C₂₈H₂₃O₄N₂Cl requires 486.1346.

V. P. Mehta et al.

Scheme 5. Microwave (MW)-assisted Sonogashira cross-coupling reactions on substrates 4 and 5.

Table 4. Evaluation of the microwave-assisted Sonogashira cross-coupling reaction

^AReaction conditions for **9a–c**: the reaction was run on a 0.3 mmol scale of **4a–c**, using acetylene (1.3 equiv.), Pd(PPh₃)₂Cl₂ (5 mol%), CuI (10 mol%), and tetrabutylammonium iodide (TBAI) (2.0 equiv.), in DMF/Et₃N (1:1, 4 mL) under microwave irradiation at a maximum power of 80 W at 100°C ceiling temperature for 15 min.

^BReaction conditions for **10a–c**: the reaction was run on a 0.3 mmol scale of **5c**, e, using acetylene (1.05 equiv.), Pd(PPh₃)₂Cl₂ (1 mol%), and CuI (3 mol%), in DMF/Et₃N (1:1, 4 mL) under microwave irradiation at a maximum power of 80 W and 95°C ceiling temperature for 7–10 min. ^CIsolated yields (single runs); yields in parenthesis indicate dialkynylated product.

1-(4-Methoxybenzyl)-5-chloro-3-(2-(4-ethylphenyl) ethynyl)-6-(4-methoxyphenyl)pyrazin-2(1H)-one (**3b**) 92% yield & (300 MHz, CDCI-) 7.60 (d. 1.8.1, 2H), 7.22

92% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.60 (d, J 8.1, 2H), 7.22 (m, 2H), 7.05 (d, J 8.4, 2H), 6.95 (d, J 8.4, 2H), 6.83 (d, J

8.5, 2H), 6.73 (d, J 8.5, 2H), 5.06 (s, 2H), 3.88 (s, 3H), 3.77 (s, 3H), 2.66 (m, 2H), 1.25 (t, J 15.3, 7.5, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 161.3, 159.7, 156.2, 146.9, 139.8, 138.8, 133.2, 131.3, 129.6, 128.4, 127.9, 127.7, 123.3, 119.1, 114.7, 114.3, 99.0, 85.9,

Scheme 6. Microwave (MW)-assisted decoration of the 7-substituted 2-chloro furo[2,3-b]pyrazines.

Entry	Compd	Product	Yield [%] ^B
I	11a	Bn N O S tBu COCH ₃	87
2	11b	OEt ^N Bu	92
3	11c		95
4	11d	Me COCH	86

Table 5. Microwave-assisted decoration of the 7-substituted 2-chloro furo[2,3-b]pyrazines^A

^AReaction conditions for **11a**–**c**: the reaction was run on a 0.3 mmol scale of 7, using boronic acid (1.5 equiv.), Pd(PPh₃)₄ (1 mol%), and Na₂CO₃ (2 equiv.) in DMF/H₂O (1:1, 4 mL) under microwave irradiation using a maximum power of 100 W at 100°C ceiling temperature for 10 min; reaction condition for **11d**: the reaction was run on a 0.3 mmol scale of 7, using acetylene (1.3 equiv.), Pd(PPh₃)₂Cl₂ (5 mol%), CuI (10 mol%), and TBAI (1.2 equiv.) as additive, in DMF/Et₃N (1:1, 4 mL) under microwave irradiation using a maximum power of 80 W and 100°C ceiling temperature for 15 min.

^BIsolated yields (single run).

Scheme 7. Suzuki cross-coupling to generate symmetrically substituted furo[2,3-b]pyrazines. MW, microwave.

55.8, 55.7, 50.3, 29.4, 15.6. *m/z* (HR-MS EI) Found: 484.1577. C₂₉H₂₅O₃N₂Cl requires 484.1554.

3-(1,1'-Biphenyl-4-ylethynyl)-5-chloro-1-(4methoxybenzyl)-6-(4-methoxyphenyl)pyrazin-2(1H)-one (**3c**)

83% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.75 (d, *J* 8.2, 2H), 7.61 (m, 5H), 7.43 (m, 3H), 7.07 (d, *J* 8.7, 2H), 6.97 (d, *J* 8.8, 2H), 6.84 (d, *J* 8.6, 2H), 6.73 (d, *J* 8.5, 2H), 5.07 (s, 2H), 3.88 (s, 3H), 3.77 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 160.9, 159.3, 155.8, 142.5, 140.0, 139.1, 138.6, 133.1, 132.9, 130.9, 129.2, 128.9, 127.9, 127.6, 127.2, 127.1, 122.8, 120.4, 114.3, 113.9, 98.1, 86.5, 55.4, 55.2, 49.9. *m/z* (HR-MS EI) Found: 532.1549. C₃₃H₂₅O₃N₂Cl requires 532.1554.

1-(4-Methoxybenzyl)-5-chloro-6-(4-methoxyphenyl)-3-(2-(pyridin-4-yl)ethynyl)pyrazin-2-(1H)-one (**3d**)

85% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.65 (d, *J* 5.2, 2H), 7.50 (d, *J* 6.0, 2H), 7.07 (d, *J* 8.4, 2H), 6.97 (d, *J* 8.7, 2H), 6.83 (d, *J* 8.6, 2H), 6.74 (d, *J* 8.4, 2H), 5.08 (s, 2H), 3.89 (s, 3H), 3.77 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 161.1, 159.4, 155.7, 149.9, 140.2, 130.7, 129.7, 129.3, 128.6, 128.4, 127.8, 126.9, 126.0, 114.4, 113.9, 93.7, 89.0, 55.5, 55.3, 50.1. *m/z* (HR-MS EI) Found: 457.1208. C₂₆H₂₀ClN₃O₃ requires 457.1193.

1-(4-Methoxybenzyl)-6-benzyl-5-chloro-3-(2-p-tolylethynyl)pyrazin-2(1H)-one (**3e**)

99% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.56 (d, *J* 8.07, 2H), 7.38–7.33 (m, 3H), 7.19–7.10 (m, 6H), 6.88 (d, *J* 8.79, 2H), 5.11 (s, 2H), 4.17 (s, 2H), 3.79 (s, 3H), 2.38 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 159.5, 156.2, 140.4, 138.9, 137.3, 134.3, 132.6, 129.5, 128.3, 127.7, 126.6, 118.5, 114.6, 98.8, 85.3, 55.4, 48.4, 35.6, 21.8. *m/z* (HR-MS EI) Found 454.1464. C₂₈H₂₃O₂N₂Cl requires 454.1448.

1-(4-Methoxybenzyl)-5-chloro-3-(2cyclopentylethynyl)pyrazin-2(1H)-one (**3f**)

Yellow solid in 82% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.28 (d, *J* 9.12, 2H), 7.10 (s, 1H), 6.90 (d, *J* 9.12, 2H), 4.99 (s, 2H), 3.81 (s, 3H), 2.96–2.91 (m, 1H), 2.24–1.99 (m, 2H), 1.78 (s, 4H), 1.60 (s, 2H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 160.1, 155.0, 141.4, 130.5, 126.4, 125.9, 125.4, 114.7, 106.0, 55.4, 52.5, 33.5, 31.0, 25.4. *m/z* (HR-MS EI) Found 342.1141. C₁₉H₁₉O₂N₂Cl requires 342.1135.

1-(4-Methoxybenzyl)-5-chloro-6-methyl-3-(2-o-tolylethynyl)pyrazin-2(1H)-one (**3g**)

Orange solid in 94% yield. mp 144–147°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.61 (d, *J* 7.32, 1H), 7.29–7.16 (m, 5H), 6.87 (d, *J* 8.22, 2H), 5.32 (s, 2H), 3.79 (s, 3H), 2.60 (s, 3H), 2.48 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 159.5, 156.1, 141.7, 137.5, 136.3, 132.9, 129.8, 128.5, 126.8, 126.3, 125.7, 121.5, 114.5, 96.8, 89.4, 55.4, 48.9, 20.8, 17.3. *m/z* (HR-MS EI) Found 378.1141. C₂₂H₁₉O₂N₂Cl requires 378.1135.

1-(4-Methoxybenzyl)-5-chloro-3-(2-(3-fluorophenyl) ethynyl)-6-(4-methoxyphenyl)pyrazin-2(1H)-one (**3h**)

Yellow solid in 99% yield. mp 142–145°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.46 (d, *J* 7.32, 1H), 7.38–7.32 (q, *J* 5.49, 2.73, 2H), 7.11–7.05 (m, 3H), 6.97 (d, *J* 8.22, 2H), 6.83 (d, *J* 9.03, 2H), 6.72 (d, *J* 9.12, 2H), 5.06 (s, 2H), 3.88 (s, 3H), 3.76 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 163.9, 161.0, 159.4, 155.84, 139.3, 138.7, 130.9, 130.2, 129.3, 128.6, 127.6, 127.2, 123.5, 122.7, 119.5, 117.3, 114.4, 113.9, 96.1, 86.3, 55.5, 50.0. *m/z* (HR-MS EI) Found 474.1154. $C_{27}H_{20}O_3N_2$ CIF requires 474.1146.

1-(4-Methoxybenzyl)-6-benzyl-5-chloro-3-(2-(thiophen-3-yl)ethynyl)pyrazin-2(1H)-one (**3i**)

88% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.76 (s, 1H), 7.38–7.30 (m, 5H), 7.14–7.09 (m, 4H), 6.88 (d, *J* 8.94, 2H), 5.11 (s, 2H), 4.17 (s, 2H), 3.79 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 159.5, 156.2, 138.7, 137.5, 134.3, 132.2, 130.3, 129.5, 128.3, 127.6, 126.5, 125.7, 120.8, 114.6, 93.5, 85.5, 55.4, 48.4, 35.6. *m/z* (HR-MS EI) Found 446.0858. C₂₅H₁₉O₂N₂SCI requires 446.0856.

1-(4-Methoxybenzyl)-3-(2-(4-tert-butylphenyl)ethynyl)-5-chloro-6-(4-methoxyphenyl)pyrazin-2(1H)-one (**3j**)

Yellow solid in 96% yield. mp 178–180°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.62 (d, *J* 9.4, 2H), 7.39 (d, *J* 9.1, 2H), 7.05 (d, *J* 9.6, 2H), 6.96 (d, *J* 9.2, 2H), 6.84 (d, *J* 9.3, 2H), 6.73 (d, *J* 9.4, 2H), 5.06 (s, 2H), 3.88 (s, 3H), 3.77 (s, 3H), 1.33 (s, 9H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 160.9, 159.3, 155.9, 153.4, 139.5, 138.4, 132.6, 131.0, 129.5, 129.3, 127.6, 127.4, 125.6, 123.0, 122.3, 118.6, 114.4, 113.9, 98.7, 85.6, 55.5, 55.3, 50.0, 35.1, 31.2. *m/z* (HR-MS EI) Found 512.1867. C₃₁H₂₉O₃N₂Cl requires 512.1867.

1-(4-Methoxybenzyl)-5-chloro-3-(2cyclopropylethynyl)-6-methylpyrazin-2(1H)-one (**3k**)

84% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.17 (d, J 8.22, 2H), 6.85 (d, J 9.12, 2H), 5.25 (s, 2H), 3.78 (s, 3H), 2.44 (s, 3H), 1.61–1.57 (s, 1H), 0.97–0.93 (m, 4H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 159.4, 156.2, 137.6, 135.5, 128.6, 126.4, 114.4, 103.7, 55.3, 48.8, 17.1, 9.5. m/z (HR-MS EI) Found: 328.0982. C₁₈H₁₇O₂N₂Cl requires 328.0979.

A Typical Procedure for the Preparation of Furopyrazines **4a–e**

In a 25 mL flask pyrazinone **3** (2 mmol) was dissolved in dry dichloromethane (12 mL). AgOTf (11 mg, 2 mol%) and trifluoroacetic acid (0.8 mL, 10 mmol, 5 equiv.) were then added and the reaction mixture was stirred at room temperature for 5-20 min. After reaction completion the solvent was evaporated and the residue was subjected to silica gel column chromatography (from 20% to 50% CH₂Cl₂ in petroleum ether) to afford compounds **4a–e**.

2-Chloro-3,6-bis(4-methoxyphenyl)furo [2,3-b]pyrazine (**4a**)

Yellow solid in 96% yield. mp 118–119°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.88 (d, *J* 9.1, 2H), 7.83 (d, *J* 8.2, 2H), 7.04–6.99 (m, 5H), 3.89 (s, 6H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 161.9, 161.7, 160.5, 154.1, 144.5, 143.1, 140.1, 131.4, 129.2, 129.1, 128.9, 127.5, 121.3, 114.7, 114.6, 113.7, 88.9, 55.6, 55.5. *m/z* (HR-MS EI) Found 366.0793. C₂₀H₁₅O₃N₂Cl requires 366.0771.

2-Chloro-6-(4-ethylphenyl)-3-(4methoxyphenyl)furo[2,3-b]pyrazine (**4b**)

92% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.85 (m, 4H), 7.34 (d, J 8.1, 2H), 7.12 (s, 1H), 7.03 (d, J 8.3, 2H), 3.89 (s, 3H), 2.72 (m, 2H), 1.28 (t, J 7.4, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 162.3, 160.8, 154.4, 147.9, 145.2, 143.5, 140.1, 131.7, 129.4, 129.1, 126.5, 126.1, 114.0, 100.3, 55.8, 29.3, 15.7. *m/z* (HR-MS EI) Found 364.0975. C₂₁H₁₇O₂N₂Cl requires 364.0979.

6-(1,1'-Biphenyl-4-yl)-2-chloro-3-(4-methoxy-phenyl)furo[2,3-b]pyrazine (**4c**)

91% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.03 (d, *J* 9.00, 2H), 7.86 (d, *J* 9.00, 2H), 7.77–7.65 (m, 4H), 7.52–7.47 (m, 3H), 7.21 (s, 1H), 7.05 (d, *J* 9.00, 2H), 3.90 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 161.3, 160.5, 145.2, 143.5, 139.9, 131.3, 129.0, 128.1, 127.8, 127.1, 126.2, 113.7, 100.6, 55.4. *m/z* (HR-MS EI) Found 412.0983. C₂₅H₁₇O₂N₂Cl requires 412.0979.

2-Chloro-3-(4-methoxyphenyl)-6-pyridin-4ylfuro[2,3-b]pyrazine (**4d**)

79% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.84 (br, 2H), 7.89 (m, 4H), 7.48 (s, 1H), 7.05 (d, *J* 8.8, 2H), 3.90 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 160.9, 157.3, 154.4, 149.4, 147.6, 144.4, 138.0, 136.9, 132.1, 131.5, 128.5, 128.4, 119.5, 113.8, 104.9, 55.4. *m/z* (HR-MS EI) Found 337.0621. C₁₈H₁₂O₂N₃Cl requires 337.0618.

3-Benzyl-2-chloro-6-p-tolylfuro[2,3-b]pyrazine (4e)

White solid in 91% yield. mp 214–216°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.80 (d, *J* 9.0, 2H), 7.38 (d, *J* 8.3, 2H), 7.33–7.22 (m, 5H), 7.05 (s, 1H), 4.37 (s, 2H), 2.42 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 161.6, 154.0, 146.5, 144.7, 141.3, 140.2, 137.6, 131.4, 129.9, 128.7, 126.9, 125.9, 125.7, 99.8, 42.3, 21.7 *m/z* (HR-MS EI) Found 334.0858. C₂₀H₁₅ON₂Cl requires 334.0873.

A Typical Procedure for the Preparation of Furopyrazines **5a**–**g**

In a 25 mL flask pyrazinone **3** (2 mmol) was dissolved in dry dichloromethane (12 mL). I₂ (2.0 equiv.) was then added and the reaction mixture was stirred at room temperature for 5–15 min. After reaction completion the solvent was evaporated and the residue was subjected to silica gel column chromatography (from 5% to 10% CH_2Cl_2 in petroleum ether) to afford compounds **5a–g**.

2-Chloro-6-cyclopentyl-7-iodofuro[2,3-b]pyrazine (5a)

White solid in 76% yield. mp 128–131°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.17 (s, 1H), 3.56–3.45 (m, 1H), 2.13–2.07 (m, 2H), 1.93 (s, 4H), 1.76 (s, 2H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 169.2, 153.4, 142.2, 136.8, 62.2, 39.5, 31.7, 26.2. *m/z* (HR-MS EI) Found 347.9547. C₁₁H₁₀ON₂ICl requires 347.9526.

2-Chloro-7-iodo-3-methyl-6-o-tolylfuro [2,3-b]pyrazine (**5b**)

Yellow solid in 86% yield. mp 158–161°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.61 (d, *J* 7.32, 1H), 7.45 (m, 1H), 7.34 (m, 2H), 2.77 (s, 3H), 2.41 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 160.9, 153.3, 147.3, 145.7, 139.8, 138.4, 131.1, 128.2, 125.8, 64.6, 22.6, 20.6. *m/z* (HR-MS EI) Found 383.9522. C₁₄H₁₀ON₂ICl requires 383.9526.

2-Chloro-6-(3-fluorophenyl)-7-iodo-3-(4methoxyphenyl)furo[2,3-b]pyrazine (**5c**)

Light yellow solid in 88% yield. mp 210–214°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.13 (d, J 8.22, 1H), 8.03 (d, J 10.05, 1H), 7.85 (d, J 8.22, 2H), 7.53 (m, 1H), 7.24 (d, J 2.73, 1H), 7.03 (d, J 8.22, 2H), 3.89 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 160.9, 156.4, 144.5, 131.6, 130.7, 128.4, 123.6, 118.2, 117.1, 114.9, 114.6, 113.8, 55.5. *m/z* (HR-MS EI) Found 479.9565. C₁₉H₁₁O₂N₂ICIF requires 479.9538.

3-Benzyl-2-chloro-7-iodo-6-p-tolylfuro [2,3-b]pyrazine (**5d**)

Yellow solid in 91% yield. mp 157–159°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.16 (d, *J* 9.15, 2H), 7.37–7.26 (m, 7H), 4.40 (s, 2H), 2.44 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 158.0, 152.8, 148.5, 145.5, 141.6, 141.2, 137.3, 129.6, 129.4, 128.7, 127.9, 126.9, 125.8, 59.7, 41.2, 21.7. *m/z* (HR-MS EI) Found 459.9829. C₂₀H₁₄ON₂ICl requires 459.9839.

3-Benzyl-2-chloro-7-iodo-6-(thiophen-3-yl)furo [2,3-b]pyrazine (5e)

Yellow solid in 96% yield. mp 168–171°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.40 (d, *J* 1.83, 1H), 7.98 (d, *J* 5.49, 7H), 7.50–7.48 (m, 1H), 7.37–7.23 (m, 5H), 4.40 (s, 2H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 155.3, 152.5, 148.5, 145.6, 141.0, 137.2, 130.1, 129.1, 128.7, 127.8, 126.9, 126.2, 59.6, 41.2. *m/z* (HR-MS EI) Found 451.9242. C₁₇H₁₀ON₂SICI requires 451.9247.

6-(4-tert-Butylphenyl)-2-chloro-7-iodo-3-(4-methoxy phenyl)furo[2,3-b]pyrazine (**5f**)

Yellow solid in 96% yield. mp 146–150°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.26 (d, *J* 9.12, 2H), 7.85 (d, *J* 9.12, 2H), 7.58 (d, *J* 8.22, 1H), 7.03 (d, *J* 9.15, 5H), 3.89 (s, 3H), 1.38 (s, 9H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 160.7, 158.4, 154.8, 152.9, 146.9, 144.1, 141.0, 131.5, 128.7, 127.8, 125.9, 113.8, 59.8, 55.5, 35.2, 31.2. *m/z* (HR-MS EI) Found 518.0268. C₂₃H₂₀O₂N₂ICl requires 518.0258.

2-Chloro-6-cyclopropyl-7-iodo-3-methylfuro [2,3-b]pyrazine (**5g**)

Yellow solid in 68% yield. mp 82–85°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 2.69 (s, 3H), 2.34–2.25 (m, 1H), 1.31–1.19 (m, 4H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 164.9, 152.2, 145.1, 140.2, 130.1, 114.3, 60.7, 22.3, 11.0, 9.4. *m/z* (HR-MS EI) Found 333.9363. C₁₀H₈ON₂ICl requires 333.9370.

A Typical Procedure for Selective Suzuki–Miyaura Reaction on Compounds **5a–g**

In a 15 mL microwave vial were successively dissolved in DMF (4 mL) furopyrazine **5a**–**g** (0.3 mmol), boronic acid **6a**,**f**–**1** (0.375 mmol, 1.25 equiv.), Pd(PPh₃)₄ (3 mg, 1 mol%), and K₂CO₃ (82 mg, 2 equiv.). The reaction tube was sealed and irradiated at a ceiling temperature of 120°C at 100 W maximum power for 10–30 min. After the reaction the mixture was cooled

with an air flow for 15 min, extracted with dichloromethane $(2 \times 50 \text{ mL})$, and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was subjected to silica gel chromatography (from 5% to 20% EtOAC in heptane) to afford compounds **7a**–j.

2-Chloro-6-cyclopentyl-7-(4-methoxyphenyl)furo [2,3-b]pyrazine (**7a**)

Yellow oil in 91% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.16 (s, 1H), 7.54 (d, J 9.15, 2H), 7.04 (d, J 9.15, 2H), 3.86 (s, 3H), 3.55–3.50 (m, 1H), 2.05–1.94 (m, 6H), 1.74–1.68 (m, 2H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 164.8, 159.4, 153.4, 145.1, 140.9, 135.4, 130.4, 121.6, 115.7, 114.5, 55.4, 37.7, 32.4, 26.4. *m/z* (HR-MS EI) Found 328.0987. $C_{18}H_{17}O_2N_2CI$ requires 328.0979.

7-(4-tert-Butylphenyl)-2-chloro-6-cyclopentylfuro [2,3-b]pyrazine (**7b**)

White solid in 78% yield. mp 97–99°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.17 (s, 1H), 7.57–7.50 (m, 4H), 3.59–3.53 (m, 1H), 2.06–1.94 (m, 6H), 1.75–1.71 (m, 2H), 1.36 (s, 9H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 165.2, 153.5, 151.1, 145.2, 140.9, 135.5, 128.9, 126.4, 126.0, 116.0, 37.8, 34.8, 32.5, 31.4, 26.4. *m/z* (HR-MS EI) Found 354.1506. C₂₁H₂₃ON₂Cl requires 354.1499.

2-Chloro-6-cyclopropyl-7-(4-ethoxyphenyl)-3-methylfuro[2,3-b]pyrazine (**7c**)

White solid in 86% yield. mp 82–85°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.71 (d, *J* 8.22, 2H), 7.03 (d, *J* 9.12, 2H), 4.12–4.05 (q, 2H), 2.68 (s, 3H), 2.35–2.33 (m, 1H), 1.45 (t, *J* 13.71, 6.39, 3H), 1.29–1.26 (m, 4H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 160.3, 158.6, 152.5, 144.3, 143.6, 138.9, 130.1, 121.9, 115.0, 63.6, 22.4, 14.9, 9.5, 8.9. *m/z* (HR-MS EI) Found 328.0987. C₁₈H₁₇O₂N₂Cl requires 328.0979.

1-(4-(3-Benzyl-2-chloro-6-(thiophen-3-yl)furo [2,3-b]pyrazin-7-yl)phenyl)ethanone (**7d**)

White solid in 87% yield. mp 209–214°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.08 (d, *J* 8.22, 2H), 7.84 (d, *J* 2.76, 1H), 7.75 (d, *J* 8.22, 2H), 7.40–7.23 (m, 7H), 4.40 (s, 2H), 2.66 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 197.7, 153.2, 152.9, 147.7, 145.2, 139.0, 137.4, 137.0, 134.4, 130.1, 129.2, 128.7, 127.0, 126.9 126.0, 114.5, 41.4, 29.8, 26.8. *m/z* (HR-MS EI) Found 444.0691. C₂₅H₁₇O₂N₂SCl requires 444.0699.

2-Chloro-7-(4-methoxyphenyl)-3-methyl-6-o-tolylfuro[2,3-b]pyrazine (**7e**)

White solid in 89% yield. mp 136–140°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.53 (d, *J* 8.22, 2H), 7.44 (d, *J* 8.19, 1H), 7.38 (d, *J* 7.32, 1H), 7.32–7.23 (m, 2H), 6.88 (d, *J* 9.15, 2H), 3.80 (s, 3H), 2.76 (s, 3H), 2.22 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 159.4, 155.8, 153.7, 145.6, 144.7, 138.1, 131.1, 130.9, 130.4, 129.8, 129.4, 126.1, 122.1, 117.0, 114.3, 55.3, 22.7, 20.3. *m/z* (HR-MS EI) Found 364.0984. C₂₁H₁₇O₂N₂Cl requires 364.0979.

Ethyl 4-(2-Chloro-6-(3-fluorophenyl)-3-(4methoxyphenyl)furo[2,3-b]pyrazin-7-yl)benzoate (**7f**)

White solid in 78% yield. mp 163–167°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.18 (d, *J* 7.29, 2H), 7.87 (d, *J* 9.12, 2H), 7.73 (d, *J* 8.22, 2H), 7.52–7.45 (m, 2H), 7.39–7.32 (q, 1H), 7.16–7.10 (m, 1H), 7.04 (d, *J* 9.12, 2H), 4.46–4.39 (q, 2H), 3.89 (s, 3H), 1.45–1.40 (t, *J* 14.61, 7.29, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 166.3, 164.5, 161.2, 160.8, 154.8, 153.5, 146.8, 144.0, 138.3, 133.8, 131.5, 130.9,

130.6, 129.7, 128.8, 123.6, 117.8, 116.7, 114.9, 113.3, 61.3, 55.5, 14.5. *m/z* (HR-MS EI) Found 502.1089. C₂₈H₂₀O₄N₂ClF requires 502.1096.

2-Chloro-3-methyl-6-o-tolyl-7-p-tolylfuro [2,3-b]pyrazine (**7g**)

White solid in 90% yield. mp 97–99°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.48–7.39 (m, 4H), 7.36–7.22 (m, 2H), 7.15 (d, *J* 7.32, 2H), 2.76 (s, 3H), 2.34 (s, 3H), 2.22 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 156.2, 153.7, 145.7, 144.8, 138.1, 137.9, 131.1, 130.4, 129.5, 128.5, 126.8, 126.1, 117.4, 22.7, 21.4, 20.3. *m/z* (HR-MS EI) Found 348.1013. C₂₁H₁₇ON₂Cl requires 348.1029.

3-Benzyl-7-(3-bromophenyl)-2-chloro-6-p-tolylfuro [2,3-b]pyrazine (**7h**)

79% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.73 (s, 1H), 7.62–7.49 (m, 4H), 7.39–7.28 (m, 5H), 7.26–7.18 (m, 3H), 4.40 (s, 2H), 2.39 (s, 3H). *m/z* (HR-MS EI) Found 488.0303. C₂₆H₁₈ON₂BrCl requires 488.0291.

7-(2-(Benzyloxy)phenyl)-6-(4-tert-butylphenyl)-2chloro-3-(4-methoxyphenyl)furo[2,3-b]pyrazine (**7i**)

White solid in 89% yield. mp 61–65°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.83 (d, *J* 9.12, 2H), 7.67 (d, *J* 8.22, 2H), 7.50–7.35 (m, 4H), 7.17–7.13 (m, 3H), 7.11–7.00 (m, 6H), 4.96 (s, 2H), 3.87 (s, 3H), 1.31 (s, 9H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 207.0, 160.4, 156.9, 156.6, 153.5, 153.3, 145.0, 143.1, 140.1, 136.6, 132.1, 131.3, 130.2, 129.3, 128.2, 127.6, 127.3, 127.0, 126.8, 125.6, 121.4, 119.1, 113.6, 113.0, 55.4, 34.9, 31.1. *m/z* (HR-MS EI) Found 574.2027. $C_{36}H_{31}O_{3}N_{2}CI$ requires 574.2023.

4-(3-benzyl-2-chloro-6-p-tolylfuro[2,3-b]pyrazin-7-yl)benzonitrile (**7j**)

White solid in 91% yield. mp 158–162°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.74 (m, 4H), 7.58 (d, *J* 8.22, 2H), 7.38 (d, *J* 7.32, 2H), 7.33–7.21 (m, 5H), 4.46 (s, 2H), 2.41 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 157.2, 153.4, 148.0, 145.1, 141.6, 138.6, 137.3, 134.8, 132.7, 130.2, 129.8, 129.1, 128.7, 128.0, 126.9, 125.6, 118.7, 114.0, 111.9, 41.3, 21.6. *m/z* (HR-MS EI) Found 435.1132. C₂₇H₁₈ON₃Cl requires 435.1138.

A Typical Procedure for the Preparation of Furopyrazines **8a–d**

In a 15 mL microwave vial were successively dissolved in DMF/H₂O (1:1, 4 mL) furopyrazine **4a–c**, **e** (0.3 mmol), boronic acid **6b–e** (0.45 mmol, 1.50 equiv.), Pd(PPh₃)₄ (3 mg, 1 mol%), and Na₂CO₃ (64 mg, 2 equiv.). The reaction tube was sealed and irradiated at a ceiling temperature of 100°C at 100 W maximum power for 10 min. After the reaction the mixture was cooled with an air flow for 15 min, extracted with dichloromethane $(2 \times 50 \text{ mL})$, and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was subjected to silica gel flash chromatography (from 10% to 50% CH₂Cl₂ in petroleum ether) to afford compounds **8a–d**.

6-(4-Ethylphenyl)-3-(4-methoxyphenyl)-2-p-tolylfuro-[2,3-b]pyrazine (**8a**)

Light yellow solid in 85% yield. mp 172–175°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.89 (d, *J* 8.22, 2H), 7.43 (d, *J* 9.12, 2H), 7.36–7.33 (m, 4H), 7.20 (s, 1H), 7.14 (d, *J* 8.22, 2H), 6.83 (d, *J* 8.22, 2H), 3.81 (s, 3H), 2.76–2.68 (m, 2H), 2.36 (s, 3H), 1.31–1.26 (t, *J* 14.61, 7.29, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃)

160.7, 159.8, 154.4, 150.3, 147.1, 146.0, 139.9, 138.0, 137.0, 131.5, 129.8, 128.7, 126.7, 125.7, 113.7, 100.6, 55.3, 29.0, 21.4, 15.5. *m/z* (HR-MS EI) Found 420.1821. C₂₈H₂₄O₂N₂Cl requires 420.1838.

2-(3,5-Dimethylphenyl)-3,6-bis(4-methoxyphenyl)furo-[2,3-b]pyrazine (**8b**)

Yellow solid in 90% yield. mp 72–75°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.92 (d, *J* 9.15, 2H), 7.43 (d, *J* 9.12, 2H), 7.11 (s, 1H), 7.05–6.96 (m, 5H), 6.82 (d, *J* 9.12, 2H), 3.89 (s, 3H), 3.81 (s, 3H), 2.26 (s, 6H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 161.4, 160.6, 159.7, 154.4, 150.4, 145.6, 140.0, 137.9, 131.5, 129.8, 129.4, 128.8, 128.0, 127.7, 127.3, 121.9, 114.6, 113.5, 99.6, 55.5, 21.4. *m/z* (HR-MS EI) Found 436.1793. $C_{28}H_{24}O_3N_2$ requires 436.1787.

6-(Biphenyl-4-yl)-3-(4-methoxyphenyl)-2-(3-(trifluoromethyl)phenyl)furo[2,3-b]pyrazine (**8c**)

Yellow solid in 87% yield. mp 150–153°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.06 (d, *J* 8.22, 2H), 7.84 (s, 1H), 7.76 (d, *J* 8.22, 2H), 7.67 (d, *J* 7.32, 2H), 7.60 (d, *J* 7.29, 2H), 7.51–7.37 (m, 7H), 7.31 (s, 1H), 6.85 (d, *J* 8.22, 2H), 3.82 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 160.7, 160.1, 148.7, 146.5, 143.3, 140.6, 140.0, 133.4, 131.6, 130.8, 130.5, 129.1, 128.7, 128.1, 127.2, 126.9, 126.2, 124.9, 113.9, 101.2, 55.4. *m/z* (HR-MS EI) Found 522.1566. C₃₂H₂₁O₂N₂F₃ requires 522.1555.

3-Benzyl-2-(naphthalen-1-yl)-6-p-tolylfuro [2,3-b]pyrazine (**8d**)

100% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.89 (m, 4H), 7.52 (m, 2H), 7.35 (m, 5H), 7.16 (s, 1H), 7.10 (m, 3H), 6.90 (m, 2H), 3.95 (m, 2H), 2.44 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 160.6, 154.6, 150.5, 148.4, 140.0, 136.2, 133.7, 131.9, 129.8, 128.9, 128.4, 128.2, 127.7, 126.6, 126.2, 126.1, 125.3, 100.5, 41.3, 21.6. *m/z* (HR-MS EI) Found 426.1735. C₃₀H₂₂ON₂ requires 426.1732.

Sonogashira Coupling Reaction on Substituted 2-Chloro-furo[2,3-b]pyrazine **4a–c**. A Typical Procedure

In a 15 mL microwave vial were successively dissolved in DMF/Et₃N (1:1, 4 mL) pyrazine 4a-c (0.3 mmol), acetylene 2e,l,m (0.375 mmol, 1.25 equiv.), Pd(PPh₃)Cl₂ (17 mg, 5 mol%), and CuI (5.7 mg, 10 mol%). The reaction tube was sealed and irradiated in a microwave reactor at a ceiling temperature of 100°C at 80 W maximum power for 15 min. After the reaction the mixture was cooled with an air flow for 15 min, extracted with dichloromethane (2 × 150 mL), and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was subjected to silica gel column chromatography (from 10% to 30% EtOAc in heptane) to afford compounds 9a-c.

2-(2-Cyclohexylethynyl)-3,6-bis(4-methoxyphenyl)furo [2,3-b]pyrazine (**9***a*)

Yellow solid in 85% yield. mp 140–143°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.09 (d, *J* 9.15, 2H), 7.89 (d, *J* 8.22, 2H), 7.03–6.98 (m, 5H), 3.89 (s, 6H), 2.66–2.62 (m, 1H), 1.88–1.86 (m, 2H), 1.73–1.70 (m, 2H), 1.56–1.52 (m, 6H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 161.4, 160.4, 153.6, 148.3, 139.9, 133.9, 131.1, 129.9, 129.1, 128.7, 127.3, 121.5, 114.5, 114.0, 113.3, 99.1, 79.7, 55.4, 31.9, 29.9, 25.8, 24.9. *m/z* (HR-MS EI) Found 438.1964. C₂₈H₂₆O₃N₂ requires 438.1943.

6-(4-Ethylphenyl)-3-(4-methoxyphenyl)-2-(2-p-tolylethynyl)furo[2,3-b]pyrazine (**9b**)

Yellow solid in 92% yield. mp 156–159°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.17 (d, *J* 8.22, 2H), 7.89 (d, *J* 8.22, 2H), 7.43 (d, *J* 8.22, 2H), 7.35 (d, *J* 8.22, 2H), 7.16 (d, *J* 8.22, 2H), 7.05 (d, *J* 8.22, 2H), 3.91 (s, 3H), 2.77–2.69 (m, 2H), 2.37 (s, 3H), 1.31–1.26 (t, *J* 15.54, 7.32, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 161.4, 160.6, 149.0, 147.3, 139.9, 133.6, 131.7, 131.1, 129.2, 128.6, 126.2, 125.7, 119.2, 113.4, 100.1, 93.1, 55.4, 28.9, 21.6, 15.3. *m/z* (HR-MS EI) Found 444.1841. C₃₀H₂₄O₂N₂ requires 444.1838.

6-(Biphenyl-4-yl)-3-(4-methoxyphenyl)-2-(phenylethynyl)furo[2,3-b]pyrazine (**9c**)

Yellow solid in 96% yield. mp 191–194°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.16 (d, *J* 9.15, 2H), 8.04 (d, *J* 8.22, 2H), 7.75 (d, *J* 9.15, 2H), 7.66 (d, *J* 7.32, 2H), 7.55–7.46 (m, 4H), 7.42–7.36 (m, 4H), 7.24 (s, 1H), 7.07 (d, *J* 8.22, 2H), 3.91 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 160.9, 154.1, 149.5, 143.3, 140.0, 133.7, 131.9, 131.3, 129.7, 129.2, 128.5, 128.1, 127.8, 127.6, 127.1, 126.2, 122.4, 113.6, 101.0, 93.0, 88.4, 55.5. *m/z* (HR-MS EI) Found 478.1671. C₃₃H₂₂O₂N₂ requires 478.1681.

A Typical Procedure for Selective Sonogashira Coupling Reaction on Dihalo-Substituted Furo[2,3-b]pyrazine **5c**,e

In a 15 mL microwave vial were successively dissolved in DMF/Et₃N (1:1, 4 mL) pyrazine **5c**, **e** (0.3 mmol), acetylene **2i**, **e**, **n** (0.315 mmol, 1.05 equiv.), Pd(PPh₃)Cl₂ (3.4 mg, 1 mol%), and CuI (2.0 mg, 3 mol%). The reaction tube was sealed and irradiated in a microwave reactor at a ceiling temperature of 95°C at 80 W maximum power for 7–10 min. After reaction the mixture was cooled with an air flow for 15 min, extracted with dichloromethane (2 × 150 mL), and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was subjected to silica gel column chromatography (from 5% to 10% EtOAc in heptane) to afford compounds **10a–c**.

3-Benzyl-2-chloro-6-(thiophen-3-yl)-7-(2-(thiophen-3-yl)ethynyl)furo[2,3-b]pyrazine (**10a**)

Yellow solid in 89% yield. mp 140–144°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.32 (d, *J* 1.83, 1H), 7.97 (d, *J* 5.49, 1H), 7.66 (d, *J* 4.0, 1H), 7.48–7.45 (m, 2H), 7.35–7.28 (m, 6H), 4.39 (s, 2H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 155.4, 152.6, 148.8, 145.2, 141.3, 137.4, 130.6, 129.2, 128.7, 128.2, 127.8, 126.9, 126.2, 125.8, 125.9, 116.0, 89.0, 77.8, 41.2. *m/z* (HR-MS EI) Found 432.0145. C₂₃H₁₃ON₂S₂Cl requires 432.0158.

3-Benzyl-2-chloro-6-(thiophen-3-yl)-7-(2-p-tolylethynyl)furo[2,3-b]pyrazine (**10b**)

Yellow solid in 86% yield. mp 121–125°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.33 (s, 1H), 7.98 (d, J 5.49, 1H), 7.53 (d, J 8.22, 2H), 7.47–7.43 (m, 1H), 7.37–7.19 (m, 7H), 4.39 (s, 2H), 2.39 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 157.8, 153.0, 147.9, 145.3, 139.4, 138.4, 137.3, 132.0, 130.5, 129.4, 128.7, 126.9, 125.7, 119.5, 98.8, 98.3, 41.3, 21.7. m/z (HR-MS EI) Found 440.0746. $\rm C_{26}H_{17}ON_2SCl$ requires 440.0750.

2-Chloro-6-(3-fluorophenyl)-3-(4-methoxyphenyl)-7-(oct-1-ynyl)furo[2,3-b]pyrazine (**10c**)

Yellow solid in 74% yield. mp 97–100°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.14 (m, 2H), 7.85 (d, *J* 8.19, 2H), 7.52–7.47 (m, 1H), 7.21–7.15 (m, 1H), 7.03 (d, *J* 9.15, 2H), 3.89 (s, 3H), 2.66–2.61 (t, *J* 13.71, 7.32, 2H), 1.79–1.69 (m, 2H), 1.57–1.54 (m, 2H),

 $\begin{array}{l} 1.37-1.35\ (m, 4H), 0.94-0.89\ (t, J13.71, 6.39, 3H). \, \delta_{\rm C}\ (75\ MHz, \ CDCl_3)\ 164.5, 161.2, 160.8, 158.9, 152.9, 147.0, 144.1, 139.0, \ 131.5,\ 130.5,\ 128.7,\ 122.2,\ 117.6,\ 113.8,\ 113.2,\ 102.3,\ 69.1, \ 55.5,\ 31.4,\ 28.9,\ 28.4,\ 22.6,\ 20.3,\ 14.1.\ m/z\ (HR-MS\ EI)\ Found \ 462.1516.\ C_{27}H_{24}O_2N_2CIF\ requires\ 462.1510. \end{array}$

A Typical Procedure for the Preparation of Furopyrazines **11a–c**

In a 15 mL microwave vial were successively dissolved in DMF/H₂O (1:1, 4 mL) furopyrazine **7b,d,e** (0.3 mmol), boronic acid **6f,m,n** (0.45 mmol, 1.50 equiv.), Pd(PPh₃)₄ (3 mg, 1 mol%), and Na₂CO₃ (64 mg, 2 equiv.). The reaction tube was sealed and irradiated at a ceiling temperature of 100°C at 100 W maximum power for 10 min. After the reaction the mixture was cooled with an air flow for 15 min, extracted with dichloromethane (2 × 50 mL), and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was subjected to silica gel flash chromatography (from 10% to 30% CH₂Cl₂ in petroleum ether) to afford compounds **11a–c**.

1-(4-(3-Benzyl-2-(4-tert-butylphenyl)-6-(thiophen-3yl)furo[2,3-b]pyrazin-7-yl)phenyl)ethanone (**11a**)

White solid in 87% yield. mp 149–152°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.04 (d, *J* 8.22, 2H), 7.84–7.80 (m, 3H), 7.44–7.43 (m, 4H), 7.31 (s, 2H), 7.24–7.10 (m, 5H), 4.33 (s, 2H), 2.63 (s, 3H), 1.36 (s, 9H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 197.8, 153.5, 152.2, 151.6, 148.0, 139.4, 136.6, 135.3, 130.5, 129.3, 128.9, 126.7, 126.4, 125.4, 115.0, 41.2, 34.8, 31.5, 26.8. *m/z* (HR-MS EI) Found 542.2029. $C_{35}H_{30}O_2N_2S$ requires 542.2028.

7-(4-tert-Butylphenyl)-6-cyclopentyl-2-(3ethoxyphenyl)furo[2,3-b]pyrazine (**11b**)

White solid in 92% yield. mp 102–104°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.60 (s, 1H), 7.70 (d, *J* 8.22, 2H), 7.61–7.53 (m, 4H), 7.41–7.36 (t, *J* 16.44, 8.22, 1H), 6.98 (d, *J* 9.12, 1H), 4.15–4.08 (m, 2H), 3.67–3.56 (m, 1H), 2.11–1.96 (m, 6H), 1.74–1.72 (m, 2H), 1.47–1.39 (m, 12H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 161.4, 160.6, 149.0, 147.3, 139.9, 133.6, 131.7, 131.1, 129.2, 128.6, 126.2, 125.7, 119.2, 113.4, 100.1, 93.1, 55.4, 28.9, 21.6, 15.3. *m/z* (HR-MS EI) Found 440.2461. C₂₉H₃₂O₂N₂ requires 440.2464.

2-(2-Fluorophenyl)-7-(4-methoxyphenyl)-3-methyl-6-o-tolylfuro[2,3-b]pyrazine (**11c**)

95% yield. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.61 (m, 10H), 6.84 (d, *J* 8.22, 2H), 3.77 (s, 3H), 2.60 (s, 3H), 2.26 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 161.7, 159.1, 158.4, 154.9, 154.4, 146.9, 146.1, 138.1, 132.0, 131.0, 130.5, 129.9, 127.6, 126.1, 124.4, 122.7, 117.3, 115.9, 114.2, 55.2, 22.2, 20.3. *m*/*z* (HR-MS EI) Found 542.2035. C₂₇H₂₁O₂N₂F requires 542.2028.

A Typical Sonogashira Coupling for 11d

In a 15 mL microwave vial were successively dissolved in DMF/Et₃N (1:1, 4 mL) pyrazine **7d** (0.3 mmol), acetylene **2e** (0.39 mmol, 1.3 equiv.), Pd(PPh₃)Cl₂ (17 mg, 5 mol%), and CuI (5.7 mg, 10 mol%). The reaction tube was sealed, and irradiated in a microwave reactor at a ceiling temperature of 100°C at 80 W maximum power for 15 min. After the reaction the mixture was cooled with an air flow for 15 min, extracted with dichloromethane (2 × 150 mL), and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was subjected to silica gel column chromatography (from 10% to 30% EtOAc

in heptane) to afford 1-(4-(3-benzyl-6-(thiophen-3-yl)-2-(2-*p*-tolylethynyl)furo[2,3-*b*]pyrazin-7-yl)phenyl) ethanone (**11d**) as a light yellow solid in 86% yield. mp 210–215°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.08 (d, *J* 8.22, 2H), 7.79–7.76 (m, 3H), 7.50–7.44 (m, 4H), 7.33–7.12 (m, 8H), 4.54 (s, 2H), 2.66 (s, 3H), 2.39 (s, 3H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 197.8, 152.9, 152.4 139.7, 139.3, 138.5, 136.9, 136.1, 134.8, 131.9, 130.3, 129.4, 128.7, 126.9, 126.0, 119.1, 114.7, 94.8, 86.5, 41.9, 26.8, 21.7. *m/z* (HR-MS EI) Found 524.1551. C₃₄H₂₄O₂N₂S requires 524.1558.

Disubstituted Suzuki Cross-Coupling. A Typical Procedure

In a 15 mL microwave vial were successively dissolved in DMF (4 mL) furopyrazine 5g (0.3 mmol), boronic acid 60 (0.9 mmol, 3.0 equiv.), Pd(PPh₃)₄ (16 mg, 5 mol%), and K₂CO₃ (166 mg, 5 equiv.). The reaction tube was sealed and irradiated at a ceiling temperature of 140°C at 300W maximum power for 25 min. After the reaction the mixture was cooled with an air flow for 15 min, extracted with dichloromethane $(2 \times 50 \text{ mL})$, and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was subjected to silica gel flash chromatography (from 0% to 5% EtOAc in heptane) to afford 6-cyclopropyl-2,7-bis(4-fluorophenyl)-3-methylfuro[2,3-b]-pyrazine (12a) as a white solid in 93% yield. mp 81–84°C. $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.86–7.81 (m, 2H), 7.58–7.54 (m, 2H), 7.20–7.13 (m, 4H), 2.64 (s, 3H), 2.37–2.32 (m, 1H), 1.35–1.13 (m, 4H). $\delta_{\rm C}$ (75 MHz, CDCl₃) 164.5, 163.9, 161.2, 160.6, 159.8, 152.8, 149.5, 143.9, 138.6, 135.6, 131.4, 130.7, 126.3, 116.0, 115.5, 115.1, 23.3, 9.5, 8.8. m/z (HR-MS EI) Found 362.1225. C₂₂H₁₆ON₂F₂ requires 362.1231.

Accessory Publication

General experimental methods and spectroscopic and analytical data for compounds are available from the journal's website.

Acknowledgement

The authors thank the F.W.O. (Fund for Scientific Research – Flanders (Belgium)) and the Research Fund of the Katholieke Universiteit Leuven for financial support to the laboratory. D.E. is grateful to the Katholieke Universiteit Leuven for obtaining a scholarship. V.P.M. is grateful to the IRO (Interfacultaire Raad voor Ontwikkelingssamenwerking) for obtaining a doctoral scholarship. The authors thank Ir. B. Demarsin for HRMS measurements.

References

(a) B. Konig, in *Hetarenes and Related Ring Systems; Science of Synthesis* (Ed. G. Maas) 2001, Category 2, Vol. 9, p. 183 (George Thieme: Stuttgart).

(b) C. P. Dell, in *Hetarenes and Related Ring Systems; Science of Synthesis* (Ed. E. J. Thomas) **2000**, Category 2, Vol. 10, p. 11 (George Thieme: Stuttgart).

(c) X. L. Hou, H. Y. Cheung, T. Y. Hon, P. L. Kwan, T. H. Lo, S. Y. Tong, H. N. C. Wong, *Tetrahedron* **1998**, *54*, 1955. doi:10.1016/S0040-4020(97)10303-9

(d) W. Eberbach, in *Houben-Weyl* (Ed. I. Teil) **1994**, p. 16 (George Thieme Verlag: Stuttgart).

- [2] J. Mendez-Andino, L. A. Paquette, Org. Lett. 2000, 2, 4095 and references therein. doi:10.1021/OL000325K
- [3] D. A. Horton, G. T. Bourne, M. L. Smythe, *Chem. Rev.* 2003, 103, 893. doi:10.1021/CR020033S
- [4] (a) T. L. Gilchrist, J. Chem. Soc., Perkin Trans. 1 2001, 2491. doi:10.1039/A904578C

(b) T. L. Gilchrist, J. Chem. Soc., Perkin Trans. 1 1999, 2849. doi:10.1039/A808162J

- [5] (a) R. C. Larock, in *Perspectives in Organopalladium Chemistry* for the XXI Century (Ed. J. Tsuji) 1999, p. 111 (Elsevier Press: Lausanne).
 (b) R. C. Larock, *Pure Appl. Chem.* 1999, 71, 1435. doi:10.1351/ PAC199971081435
 (c) R. C. Larock, *J. Organomet. Chem.* 1999, 576, 111. doi:10.1016/S0022-328X(98)01053-5
 (d) R. C. Larock, E. K. Yum, M. J. Doty, K. K. C. Sham, *J. Org. Chem.* 1995, 60, 3270. doi:10.1021/JO00116A003
 [6] A. V. Kel'in, V. Gevorgyan, *J. Org. Chem.* 2002, 67, 95. doi:10.1021/JO010832V
 [7] (a) A Arcadi S. Cacchi S. Di Giuseppe G. Fabrizi F. Marinelli, Org.
- [8] (a) C. J. Nichols, J. J. Parks, *J. Undergrad. Chem. Res.* 2002, *1*, 27.
 (b) See also: D. W. Knight, A. L. Redfern, J. Gilmore, *J. Chem. Soc., Perkin Trans. 1* 2002, 622. doi:10.1039/B110751H
 (c) G. M. M. El-Taeb, A. B. Evans, S. Jones, D. W. Knight, *Tetrahedron Lett.* 2001, *42*, 5945. doi:10.1016/S0040-4039(01)01112-1
 (d) S. P. Bew, J. M. Bark, D. W. Knight, R. J. Middleton, *Tetrahedron Lett.* 2000, *41*, 4447. doi:10.1016/S0040-4039(00)00613-4
 (e) S. P. Bew, D. W. Knight, *Chem. Commun.* 1996, 1007. doi:10.1039/CC9960001007
 [9] Anionic process (*n*-BuLi/I₂) leads also to iodofuran derivatives:
- D. R. Buckle, C. J. M. Rockell, *J. Chem. Soc., Perkin Trans. 1* 1985, 2443. doi:10.1039/P19850002443
- [10] X.-F. Ren, E. Turos, *Tetrahedron Lett.* **1993**, *34*, 1575. doi:10.1016/ 0040-4039(93)85010-T
- [11] (a) D. Yue, R. C. Larock, J. Org. Chem. 2002, 67, 1905. doi:10.1021/JO011016Q
 (b) R. C. Larock, D. Yue, Tetrahedron Lett. 2001, 42, 6011. doi:10.1016/S0040-4039(01)01149-2
 [12] (a) Y. Liang, S. Tang, X.-D. Zhang, L.-Q. Mao, Y.-X. Xie, J.-H. Li, Org. Lett. 2006, 8, 3017. doi:10.1021/OL060908F
 (b) D. Yue, T. Yao, R. C. Larock, J. Org. Chem. 2005, 70, 10292. doi:10.1021/JO051299C

(c) F. Colobert, A.-S. Castanet, O. Abillard, *Eur. J. Org. Chem.* 2005, 3334. doi:10.1002/EJOC.200500166

(d) Y. Hu, Y. Zhang, Z. Yang, R. Fathi, J. Org. Chem. 2002, 67, 2365. doi:10.1021/JO010839C

(e) M. G. Banwell, B. L. Flynn, A. C. Willis, E. Hamel, *Aust. J. Chem.* **1999**, *52*, 767. doi:10.1071/CH99022

- [13] I. Aillaud, E. Bossharth, D. Conreaux, P. Desbordes, N. Monteiro, G. Balme, Org. Lett. 2006, 8, 1113. doi:10.1021/OL053048W
- [14] (a) Z. Liu, D. Li, S. Li, D. Bai, X. He, Y. Hu, *Tetrahedron* 2007, *63*, 1931. doi:10.1016/J.TET.2006.12.077
 (b) M. S. Rao, N. Esho, C. Sergeant, D. Roman, *J. Org. Chem.* 2003,
- 68, 6788. doi:10.1021/JO0345648
 [15] (a) For a few non-flexible approaches to furo[2,3-b]pyrazines, see: T. Imbert, B. Monse, W. Koek, *Int. Patent Appl. WO 03/037904 A1* 2003.

(b) Y. Aoyagi, T. Fujiwara, A. Ohta, *Heterocycles* 1991, *32*, 2407.
(c) Y. C. Tong, H. O. Kerlinger, *J. Heterocyclic Chem.* 1983, *20*, 365.
(d) C. G. Kruse, P. B. M. W. M. Timmermans, C. Van der Laken, A. Van der Gen, *Rec. Trav. Chim. Pays-Bas* 1978, *97*, 151.

(e) P. B. M. W. M. Timmermans, C. G. Kruse, A. Van der Gen, *Rec. Trav. Chim. Pays-Bas* **1978**, *97*, 81.

- [16] D. S. Chekmarev, S. V. Shorshnev, A. E. Stepanov, A. N. Kasatkin, *Tetrahedron* 2006, 62, 9919. doi:10.1016/J.TET.2006.08.018
- [17] Y. Mettey, M. Gompel, V. Thomas, M. Garnier, M. Leost, I. Ceballos-Picot, M. Noble, J. Endicott, J.-M. Vierfond, L. Meijer, J. Med. Chem. 2003, 46, 222. doi:10.1021/JM020319P
- [18] D. S. Ermolat'ev, V. P. Mehta, E. V. Van der Eycken, *Synlett* **2007**, *20*, 3117.
- [19] (a) For other examples of iodine-promoted cyclization of alkynes to give heterocycles, see: B. L. Flynn, P. Verdier-Pinard, E. Hamel, *Org. Lett.* 2001, *3*, 651. doi:10.1021/OL0067179
 (b) E. Djuardi, E. McNelis, *Tetrahedron Lett.* 1999, *40*, 7193. doi:10.1016/S0040-4039(99)01561-0
 (c) J. A. Marshall, M. M. Yanik, *J. Org. Chem.* 1999, *64*, 3798. doi:10.1021/JO990439D
 (d) A. L. Redfern, J. Gilmore, *Synlett* 1998, 731.

(e) X.-F. Ren, M. I. Konaklieva, H. Shi, H. Dicy, D. V. Lim, J. Gonzales, E. Turos, *J. Org. Chem.* **1998**, *63*, 8898. doi:10.1021/JO9811219

[20] (a) N. Kaval, P. Appukkuttan, E. Van der Eycken, in *Microwave-Assisted Synthesis of Heterocycles, Topics in Heterocyclic Chemistry* (Eds. E. Van der Eycken, C. Oliver Kappe) 2006, Vol. 1, p. 267 (Springer: Berlin).
(b) N. Kaval, K. Bisztray, W. Dehaen, C. O. Kappe, E. Van der Eycken,

Mol. Divers. **2003**, *7*, 125. doi:10.1023/B:MODI.0000006807. 43408.D5

- [21] See supporting information for the improved synthesis of 3,5dichloropyrazine-2(*1H*)-ones. A detailed numbering for various acetylene 2a-n and boronic acid 6a-o used during the course of the study are also documented.
- [22] (a) V. P. Mehta, A. Sharma, K. Van Hecke, L. Van Meervelt, E. Van der Eycken, *J. Org. Chem.* 2008, *73*, 2382. doi:10.1021/JO702656V
 (b) P. Appukkuttan, A. B. Orts, R. P. Chandran, J. L. Goeman, J. Van der Eycken, W. Dehaen, E. Van der Eycken, *Eur. J. Org. Chem.* 2004, 3277. doi:10.1002/EJOC.200400213
 (c) M. Larhed, A. Hallberg, *J. Org. Chem.* 1996, *61*, 9582. doi:10.1021/JO9612990
 (d) N. Miyaura, A. Suzuki, *Chem. Rev.* 1995, *95*, 2457.

(d) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457. doi:10.1021/CR00039A007

- [23] CCDC 698969 contains the supplementary crystallographic data for this structure 8d. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc. com.ac.uk/data_request/cif.
- [24] (a) K. Sonogashira, *Tetrahedron Lett.* 1975, 4467. doi:10.1016/S0040-4039(00)91094-3
 (b) E. I. Negishi, L. Anastasia, *Chem. Rev.* 2003, *103*, 1979. doi:10.1021/CR020377I
 (c) R. Chinchilla, C. Najera, *Chem. Rev.* 2007, *107*, 874. doi:10.1021/CR050992X
 (d) H. Douchet, J. C. Hierso, *Angew. Chem. Int. Ed.* 2007, *46*, 834. doi:10.1002/ANIE.200602761
- [25] D. Ermolat'ev, V. P. Mehta, E. V. Van der Eycken, *QSAR Combi. Sci.* 2007, 26, 1266. doi:10.1002/QSAR.200740123