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Indole is a versatile and useful heterocycle for the synthesis of
a wide range of physiologically important molecules.1 Indole serves
as an ambient nucleophile, and some sophisticated conditions are
required to achieve selective alkylation either at the 1-(N-) or
3-position.1 Regioselective allylic alkylation at the 3-position of
indoles2 lends itself to an efficient and straightforward method for
the synthesis of many naturally occurring indole alkaloids,3 e.g.,
the plant growth-promoting acidic materials, auxins,4 and of
unnatural potent HIV inhibitors, BMS-378806.5

Taking into consideration versatile reactivities of indoles as a
nucleophile andπ-allylpalladiums as an electrophile, it is rather
surprising that only a few articles have appeared on the palladium-
based allylation of indoles, which describe formation of either a
mixture of N- and 3-allylindoles together withN,3-diallylindole,
albeit in poor yields,6 or N-allylindoles selectively in modest yield.7

Nickel chemistry, on the other hand, seems to be more promising
in view of selectivity; 3-allylindole forms selectively in 59% yield
by the reaction of indole, allyl alcohol in an excess, and a Grignard
reagent in a stoichiometric quantity to indole and allyl alcohol.8

Regrettably, however, the scope has not been clarified yet.
Recently, we have disclosed that a Pd(0) species in the presence

of Et3B catalytically promotes allyl alcohols to undergo both
N-allylation of amines9 and C-allylation of active methylene
compounds.10 Herein, we report for the first time that the Pd-
Et3B system works nicely for the C3 selective allylation of indoles
and provides 3-allylindoles2 in excellent yields (eq 1). The reaction
can be performed very easily as exemplified by the following
procedure (Table 1, run 1): a homogeneous mixture of1a (R′ )
H, 1.0 mmol), allyl alcohol (1.0 mmol), Pd(PPh3)4 (5 mol %), and
Et3B (30 mol %) in THF (2.5 mL) was stirred at 50°C for 12 h
under N2. The product2awas isolated in 80-85% yields after usual
extractive workup and purification by column chromatography.11

The reaction shows a wide scope for the structural variation of
both allyl alcohols and indoles. Table 1 summarizes the allylation
of 1a with a variety of allyl alcohols. As one can see in runs 1-5
(cf., footnotea), the parent allyl alcohol,R-, γ-methyl, andR-,
γ-phenyl-substituted allyl alcohols are all reactive; reactions are
complete within 20 h at 50°C in the presence of 30 mol % of
Et3B and 100 mol % of an allyl alcohol and provide2 in almost
quantitative yields.â-Methyl, R,R-, andγ,γ-dimethylallyl alcohols

are reluctant (runs 6-8), and the use of excess amounts of both
alcohols (300 mol %) and Et3B (240 mol %) is required to obtain
2 in reasonable yields. Remarkably, no N-allylation products were
detected at all.12

Each of the three pairs of unsymmetrical allyl alcohols (runs 2
and 3, 4 and 5, and 7 and 8) showed almost the same regioselec-
tivities, suggesting that reactions proceed via common intermediates,
most likelyπ-allylpalladium species. At this moment, however, it
is premature to give a rationale for the contrasting regioselectivities
providing either a straight-chain isomer2c or a branched-chain
isomerR-2e almost exclusively.

Table 2 compiles the allylation of a variety of indoles1b-h
with allyl alcohol. As compared with others, 2- (1c) and 3-meth-
ylindoles (1d) showed a marked difference in reactivity (runs 2
and 3). The former was unreactive and required 3 equiv of allyl
alcohol and long heating, while the latter was so reactive that the
reaction was even complete at room temperature within 2 h.
Interestingly,N-methylindole did not undergo allylation under the
conditions and was recovered quantitatively. It should be noted that
the reaction tolerates both the electron-rich and electron-deficient† Graduate School of Science and Technology.

Table 1. Allylation of Indole (1a, R′ ) H) with Allyl Alcoholsa

a Reaction conditions:1a (1.0 mmol), an allyl alcohol (1.0 mmol in
runs 1-5, 3.0 mmol in runs 6-8), Pd(PPh3)4 (5 mol %), and Et3B (1 M
solution in hexane; 0.3 mmol in runs 1-5, 2.4 mmol in runs 6-8) in THF
(2.5 mL) at 50°C under N2. b cis/trans) 1:10.
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indoles and the otherwise reactive indolic N-H and phenolic OH
groups (run 5).

Encouraged by a facile reaction of1d, we examined allylation
of L-tryptophan methyl ester (1i). Selective alkylative amination
upon the indole C2-C3 bond took place and provided2m as a
single diastereomer in∼73-76% isolated yield without protecting
two kinds of amino groups (Scheme 1).13,14 The mode of stereo-
selectivity is opposite to that reported for the sulfenylation-
amination of the Boc derivative of1i, which selectively pro-
vides anexo-pyrroloindole product.15 The present stereoselective
alkylative amination may be utilized for the synthesis of, for
example, ardeemine and flustramine family alkaloids.14-16

In conclusion, this communication demonstrates that under
palladium catalysis, Et3B nicely promotes the C3-selective allylation
of indoles and tryptophans using a wide structural variety of allyl
alcohols as allylation agents. The yields of allylation are excellent
and in most cases exceed 80%. Mechanistic details that account
for the contrasting regioselectivity (providing either straight-chain
isomer2c or branched-chain isomerR-2e) and diastereoselectivity
(providing an endo-isomer of2m) are a subject to be addressed,
and the results together with synthetic applications will be reported
soon.
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Table 2. Pd-Catalyzed Allylation of Indoles 1 with Allyl Alcohola

a Reaction conditions:1 (1.0 mmol), Pd(PPh3)4 (5 mol %), allyl alcohol
(1.0 mmol), and Et3B (0.3 mmol) at 50°C under N2. b Allyl alcohol
(3 mmol) and Et3B (2.4 mmol).c At room temperature.d 63% conversion.

Scheme 1. Stereoselective Synthesis of Pyrroloindole
Frameworks (Figures Refer to the NOE Increments)
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