

Unified Strategy for Iodine(III)-Mediated Halogenation and Azidation of 1,3-Dicarbonyl Compounds

Marc J. Galligan, Ramulu Akula, and Hasim Ibrahim*

Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland

(5) Supporting Information

ABSTRACT: A mild and rapid (diacetoxyiodo)benzene-mediated formal electrophilic α -azidation of 1,3-dicarbonyl compounds using commercially available Bu₄NN₃ as the azide source is reported. The reaction conditions employed are based on optimization studies conducted on the analogous halogenations with Et₄NX (X = Cl, Br, I).

 α -Halo and α -azido 1,3-dicarbonyl compounds are fundamentally important synthetic intermediates with wide ranging applications.¹ Often the former is a synthetic precursor to the latter by nucleophilic substitution with NaN₃.² Many electrophilic methods exist to access α -halo 1,3-dicarbonyl compounds of which the most used involve the reaction of enolate nucleophiles with electrophilic halogenating agents as sources of X⁺.³ An attractive alternative is the use of in situ generated X⁺ equivalents by oxidation or Umpolung of halide salts.⁴ Hypervalent iodine(III) reagents⁵ in particular have proven to be suitable for such Umpolung strategies.^{6,7}

In contrast, direct electrophilic methods to access α -azido 1,3-dicarbonyl compounds are relatively rare. Such methods rely mostly on the use of arylsulfonyl azides as N₃⁺ equivalents; however, there is competition between the α -azido and α -diazo products with the former obtained in mostly moderate yields.⁸

The other sources of N_3^+ are ArI(N_3)₂.⁹ These reagents are generated in situ from 1 equiv of an aryl- λ^3 -iodane and 2 equiv of TMSN₃^{9,10a} or NaN₃^{10b} and consist of an Umpolung of one of the added azide equivalents. However, scope is limited to simple non- α -substituted 1,3-dicarbonyl compounds.

Iodine(III)-mediated formal electrophilic α -azidation of carbonyl compounds has also been reported. In these one-pot procedures, an in situ installed α -leaving group, such as the α -tosyloxy group with Koser's reagent, is substituted by N₃⁻¹¹ Once again, substrate scope is limited.

The α -azidation of enolizable substrates has very recently attracted much attention. Kirsch reported an iodine(V)mediated α -azidation method comprising the NaN₃/IBX-SO₃K tandem and substoichiometric amounts of NaI as an additive.¹² Subsequently, Gade¹³ and Waser¹⁴ published Lewis acid catalyzed α -azidation procedures utilizing cyclic azidoiodinanes, with the former reporting the first high enantioselectivites with chiral iron(II)-based catalysts. These reports prompted us to disclose our own investigation into the α azidation of 1,3-dicarbonyls, which was initiated with the goal to develop a system for α -halogenation that could be adopted for α -azidation. The method described herein requires no catalyst, additive, substrate modification, or the synthesis of N₃⁺ reagents.¹⁵

Ammonium salts are mildly acidic and can be easily modified to solubilize counterions in organic solvents. The use of ammonium halides (R₄NX) as sources for X⁻ in hypervalent iodine-mediated α -halogenation is rare.¹⁶ Thus, and with the above goal in mind, we attempted the α -chlorination of our test substrate 1a with NH₄Cl as the Cl⁻ source. Initially, we added 2 equiv of (diacetoxyiodo)benzene (DIB) to an equimolar mixture of 1a and NH₄Cl in MeCN, which resulted in a heterogeneous reaction mixture that gave the α -chloro product 2a in 60% conversion after 24 h (Table 1, entry 1).¹⁷ In an

Table 1. Optimization of the DIB-Mediated α -Chlorination^{*a*}

	O OB 1a	R ₄ Ph n so	NCI I(OAc) ₂ (<i>n</i> equiv) Ivent, rt, t	CI 2a	Bn
entry	R ₄ NCl (equiv)	п	solvent	t	$\operatorname{conv}^{b}(\%)$
1	$H_4NCl(1.1)$	2.0	MeCN	24 h	60
2	$H_4NCl(1.1)$	2.0	MeCN/H ₂ O (9:1)	24 h	60
3	$H_4NCl~(1.1)$	2.0	MeCN/H ₂ O (9:1)	6 h	70
	Et_4NCl (0.1)				
4	Et_4NCl (1.1)	2.0	MeCN	1 h	≥98 (90)
5	Et_4NCl (1.1)	2.0	MeCN/H ₂ O (9:1)	5 min	≥98 (91)
6	Et_4NCl (1.1)	1.2	$MeCN/H_2O$ (9:1)	5 min	≥98 (92)
an		1	(1.0 1)	,	· (a T)

"Reaction conditions: substrate (1.0 mmol), solvent (3 mL). ^bDetermined by ¹H NMR spectroscopy of the crude material; yield of isolated product after column chromatography is given in parentheses.

Received: December 4, 2013

attempt to improve conversion by increasing the solubility of NH₄Cl, we carried out the reaction in MeCN/H₂O (9:1) but observed no improvement (entry 2). A marked acceleration of the reaction was observed when we added 10 mol % of Et₄NCl as phase-transfer catalyst. The reaction mixture became homogeneous with 70% conversion reached after 6 h. This experiment prompted us to examine Et₄NCl as the sole Cl⁻ source in MeCN. Gratifyingly, this gave a complete conversion to the product in 1 h, with **2a** isolated in 90% yield after chromatography (Table 1, entry 4). Moreover, when using a MeCN/H₂O mixture as the solvent, the reaction time could be shortened to just 5 min (entry 5). Further optimization revealed that 1.2 equiv of DIB was equally effective (entry 6).

With the optimized conditions from Table 1, entry 6, in hand, we examined the substrate scope of this reaction and were pleased to find that β -keto esters 1b and 1d, lactone 1e, as well as 1,3-diketones 1f—h were α -chlorinated in high yields (Table 2). α -Allyl-substituted substrate 1c gave poor results in

Table 2. α -Halogenation of 1,3-Dicarbonyl Compounds with the Et₄NX/DIB System (X = Cl, Br, I)^{α}

entry	substrate	product	t (min)	yield ^t (%)
1	1a	2a	5	92
2	Ph OEt 1b	Ph OEt Cl 2b	360	85
3	OBn 1c	CI 2c	2	61°
4	O O O OEt 1d	O CI 2d	5	91
5			5	85
6	Ph If	Ph Cl 2f	50	97
7	1g	Cl 2g	5	88
8		Cl 2h	3	75
9	1a	2i (Br)	5	80
10	1e	2j (Br)	5	72
11	1g	2 k (Br)	5	73
12	1g	2l (I)	5	72

^{*a*}Reaction conditions: substrate (1.0 mmol), Et_4NX (1.1 mmol), DIB (1.2 mmol), MeCN/H₂O (9:1, 3 mL). ^{*b*}Isolated yield after column chromatography. ^{*c*}MeCN/AcOH (9:1, 3 mL) was used as solvent.

MeCN/H₂O. However, carrying out the reaction in MeCN/AcOH (9:1) gave 2c in an acceptable 61% yield, presumably due to the higher enol content of 1c in AcOH.

The use of Et_4NX was general with respect to the other halides. Using Et_4NBr as the Br^- source, α -bromination occurred in good yields with substrates **1a**, **1e**, and **1g** (entries 9–11). Similarly, α -iodination of **1g** proceeded within 5 min in 72% yield with Et_4NI as the I^- source. Having established that the Et₄NX/DIB tandem is an efficient system for α -halogenation, we proceeded to test commercially available Bu₄NN₃ as a N₃⁻ source for α -azidation. Initial experiments with **1a** under the same conditions for halogenation, that is, adding DIB to a mixture of **1a**/Bu₄NN₃ or adding Bu₄NN₃ to a mixture of **1a**/DIB, were either irreproducible or gave product mixtures.^{17,18} However, when combining Bu₄NN₃ and DIB in MeCN/H₂O first, followed by the immediate addition of the substrate in one portion, we were able to detect a rapid consumption of the starting material in a slightly exothermic reaction. To our delight, workup confirmed complete conversion to the α -azido product **3a** which was isolated in 84% yield (Table 3, entry 1). In contrast, all other

Table 3. Optimization of the DIB-Mediated α -Azidation of $1a^{\alpha}$

	O O OBn 1a	N_3 source (1.1 equiv PhI(OAc) ₂ (1.2 equiv solvent, rt, 1 h	$\xrightarrow{)}_{N_3}$	DBn
entry	N ₃ source	solvent	$\operatorname{conv}^{b}(\%)$	yield ^c (%)
1	Bu_4NN_3	$MeCN/H_2O$ (9:1)	≥98	84 ^d
2	Bu_4NN_3	MeCN	85	70
3	Bu_4NN_3	CH_2Cl_2	82	69
4	Bu_4NN_3	toluene	79	64
5	Bu_4NN_3	Et ₂ O	74	71
6	Bu_4NN_3	THF	67	46
7	TMSN ₃	MeCN		
8	NaN ₃	$MeCN/H_2O$ (9:1)	trace	

^{*a*}Reaction conditions: substrate (1.0 mmol), solvent (3 mL). ^{*b*}Determined by ¹H NMR spectroscopy of the crude material. ^{*c*}Isolated yield after column chromatography. ^{*d*}Reaction time: 5 min.

solvents tested were inferior to the MeCN/H₂O solvent system (Table 3, entries 2–6), confirming our findings with Et₄NX. Other N₃⁻ sources were also tested, with no reaction observed with TMSN₃ (entry 7)¹⁹ and only traces of **3a** detected with NaN₃ (entry 8).^{10b,20} These experiments clearly demonstrate the unique properties of Bu₄NN₃ as a source of N₃⁻ in our *α*-azidation reaction.

The α -azidation conditions from Table 3, entry 1, were amenable to a variety of cyclic and acyclic β -keto esters (Table 4, entries 1–9) and a 1,3-diketone (entry 10), with the majority of the corresponding α -azido compounds obtained in fair-to-good yields. Ketones were unreactive under these conditions.

In contrast to α -halo transfer to carbonyl compounds from hypervalent I–X reagents,^{6b,21} there is only very limited understanding of α -N₃ transfer to carbonyl compounds from hypervalent I–N₃ reagents. Azidation studies on other substrates have suggested the involvement of azido radicals (N₃[•])^{19c} or free radical chain mechanisms.^{19a,22} In an attempt to probe a radical pathway, we first subjected β -keto ester **1m** with a α -cyclopropyl radical clock to our standard reaction conditions.²³ After 1 h, no α -azido product **3m** was detected with the starting material recovered unchanged, presumably due to steric arguments. Moreover, products **4** and/or **5** originating from a cyclopropylcarbinyl to 3-butenyl radical rearrangement and subsequent hydrogen atom abstraction and/ or N₃[•] trapping were also not observed (Scheme 1a).^{19c,24}

In a second experiment, we conducted the azidation of **1a** in the presence of the radical trap *N*-*tert*-butyl- α -phenylnitrone (6).^{19a} This reaction was not significantly inhibited by the

entry	substrate	product	t (min)	yield ^b (%)
1	1a	3a	5	84
2	Et O Ph Ii	$ \begin{array}{c} 0 \\ \hline $	5	83
3	Ph OEt	Ph OEt N ₃ 3b	50	40
4	O O OBn	OBn N3 3c	5	77°
5	O O O ^t Bu Bn 1j	O Bn N ₃ 3j	5	61
6			5	67
7	O O OEt	O O O O O O O O O O O O O O O O O O O	5	74
8	O O U OBn	OBn N3 3I	5	53
9		N ₃ 3e	5	88
10		N ₃ 30	5	79

Table 4. α -Azidation of 1,3-Dicarbonyl Compounds with the Bu₄NN₃/DIB System^{*a*}

^{*a*}Reaction conditions: substrate (1.0 equiv), Bu₄NN₃ (1.1 equiv), DIB (1.2 equiv), MeCN/H₂O (9:1, 3 mL). ^{*b*}Isolated yield after column chromatography. ^{*c*}Bu₄NN₃ (2.1 equiv), DIB (2.1 equiv).

Scheme 1. Probing the Involvement of a Radical Pathway

presence of **6**, with **3a** formed in 80% conversion under our standard reaction conditions (Scheme 1b).

These experiments support an ionic pathway for the α azidation reaction. On the basis of the stoichiometry used, we propose that the initial mixing of equimolar amounts of Bu₄NN₃ and PhI(OAc)₂ generates azidoiodinane 7 (Scheme 2).²⁵ Such mixed-ligand azido λ^3 -iodanes are predicted to be highly reactive due to the unfavorable combination of *trans* influences of the OAc/N₃ ligand set²⁶ and the absence of a Scheme 2. Proposed Mechanism for α -Azidation

stabilizing cyclic benziodoxolone structure.²² Subsequent C–I bond forming attack by the substrate enol tautomer onto 7 can occur by two pathways. The first, resulting from ligand exchange with AcO⁻, generates intermediate **8a** which upon reductive elimination of iodobenzene gives the α -azido product **10** (pathway **A**). Alternatively, ligand exchange can occur with the N₃ ligand to give intermediate **8b** (pathway **B**). This can be rationalized by the fact that the I–N bond in 7 is likely to be longer and more polarized than the I–OAc bond.^{22,26} Subsequent S_N2 substitution of the hypernucleofuge in **8b** by N₃⁻ furnishes **10**.^{2,27} Support for pathway **B** can also be drawn from the fact that competing formation of the α -OAc product is observed when an excess of AcOH or AcO⁻ over N₃⁻ ion is present in the reaction mixture.^{18,28}

In conclusion, we have developed a novel, mild and rapid hypervalent iodine-mediated α -azidation of 1,3-dicarbonyl compounds by employing commercially available Bu₄NN₃ as the N₃⁻ source. The success of this procedure depended on studies conducted with the analogous α -halogenations with Et₄NX that led to crucial choices with respect to solvent and the type of ammonium salt used. This study reports, to the best of our knowledge, the first conditions for the use of the putative azidoiodinane 7 at room temperature and could set precedent for the use of ammonium salts as sources of nucleophiles in hypervalent iodine chemistry.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and analytical data of all α -azido compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: hasim.ibrahim@ucd.ie.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by SFI and UCD's School of Chemistry and Chemical Biology.

REFERENCES

 For a key review on α-azido carbonyl compounds, see: Patonay, T.; Konya, K.; Juhasz-Toth, E. Chem. Soc. Rev. 2011, 40, 2797.

(2) For example, see: Shibatomi, K.; Soga, Y.; Narayama, A.; Fujisawa, I.; Iwasa, S. J. Am. Chem. Soc. 2012, 134, 9836.

(3) For recent developments on electrophilic α -halogenation, see: (a) Czekelius, C.; Tzschucke, C. C. Synthesis **2010**, 543. (b) Ueda, M.; Kano, T.; Maruoka, K. Org. Biomol. Chem. **2009**, 7, 2005.

(4) (a) Klimczyk, S.; Huang, X.; Farès, C.; Maulide, N. Org. Biomol. Chem. 2012, 10, 4327. (b) Akula, R.; Galligan, M. J.; Ibrahim, H. Synthesis 2011, 347. (c) Kim, J.-J.; Kweon, D.-H.; Cho, S.-D.; Kim, H.-K.; Lee, S.-G.; Yoon, Y.-J. Synlett 2006, 194. (d) Khan, A. T.; Goswami, P.; Choudhury, L. H. Tetrahedron Lett. 2006, 47, 2751.

(5) (a) Brown, M.; Farid, U.; Wirth, T. Synlett 2013, 424. (b) Merritt, E. A.; Olofsson, B. Synthesis 2011, 517. (c) Zhdankin, V. V. ARKIVOC 2009, *i*, 1. (d) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.

(6) (a) Liu, W. L.; Chen, C.; Zhang, Q.; Zhu, Z.-B. Beilstein J. Org. Chem. 2012, 8, 344. (b) Akula, R.; Galligan, M. J.; Ibrahim, H. Chem. Commun. 2009, 6991. (c) Coats, S. J.; Wasserman, H. H. Tetrahedron Lett. 1995, 36, 7735.

(7) For iodine(III)-mediated halogenation of other substrates, see: Nocquet-Thibault, S.; Retailleau, P.; Cariou, K.; Dodd, R. H. *Org. Lett.* **2013**, *15*, 1842 and references therein.

(8) (a) Kashinath, D.; Budin, G.; Baati, R.; Meunier, S.; Wagner, A. *Tetrahedron Lett.* 2009, *50*, 5379. (b) Benati, L.; Nanni, D.; Spagnolo, P. J. Org. Chem. 1999, *64*, 5132. (c) Benati, L.; Calestani, G.; Nanni, D.; Spagnolo, P. J. Org. Chem. 1998, *63*, 4679.

(9) Moriarty, R. M.; Vaid, R. K.; Ravikumar, V. T.; Vaid, B. K.; Hopkins, T. E. Tetrahedron 1988, 44, 1603.

(10) (a) Telvekar, V. N.; Patile, H. V. Synth. Commun. 2010, 41, 131.
(b) Fadnavis, N. W.; Vadivel, S. K.; Sharfuddin, M.; Bhalareo, U. T. Tetrahedron: Asymmetry 1997, 8, 4003.

(11) (a) Kumar, D.; Sundaree, S.; Rao, V. S. Synth. Commun. 2006, 36, 1893. (b) Prakash, O.; Pannu, K.; Prakash, R.; Batra, A. Molecules 2006, 11, 523. (c) Lee, J. C.; Lee, J. S. Bull. Korean Chem. Soc. 2005, 26, 1493. (d) Lee, J. C.; Kim, S.; Shin, W. C. Synth. Commun. 2000, 30, 4271.

(12) Harschneck, T.; Hummel, S.; Kirsch, S. F.; Klahn, P. Chem.— Eur. J. **2012**, *18*, 1187.

(13) Deng, Q. H.; Bleith, T.; Wadepohl, H.; Gade, L. H. J. Am. Chem. Soc. 2013, 135, 5356.

(14) Vita, M. V.; Waser, J. Org. Lett. 2013, 15, 3246.

(15) The method was employed to showcase functional group transfer from a bulky aryl- λ^3 -iodane: Murray, S. J.; Müller-Bunz, H.; Ibrahim, H. Chem. Commun. **2012**, 48, 6268.

(16) Salgaonkar, P. D.; Shukla, V. G.; Akamanchi, K. G. Synth. Commun. 2007, 37, 275.

(17) Galligan, M. J. Ph.D. Thesis, University College Dublin, 2012; 2.0 equiv of DIB was used in line with studies on the DIB-mediated α -acetoxylation with NH₄OAc.

(18) When Bu_4NN_3 was added to a mixture of 1a and DIB, 58% conversion to 3a and 23% conversion to the α -OAc product were detected by ¹H NMR analysis of the crude material.

(19) (a) Pedersen, C. M.; Marinescu, L. G.; Bols, M. Org. Biomol. Chem. 2005, 3, 816. (b) Tohma, H.; Egi, M.; Ohtsubo, M.; Watanabe, H.; Takizawa, S.; Kita, Y. Chem. Commun. 1998, 173. (c) Magnus, P.; Lacour, J.; Evans, P. A.; Roe, M. B.; Hulme, C. J. Am. Chem. Soc. 1996, 118, 3406. (d) Magnus, P.; Lacour, J. J. Am. Chem. Soc. 1992, 114, 767.
(e) Arimoto, M.; Yamaguchi, H.; Fujita, E.; Nagao, Y.; Ochiai, M. Chem. Pharm. Bull. 1989, 37, 3221. (f) Ehrenfreund, J.; Zhiral, E. Tetrahedron 1972, 28, 1697.

(20) Moriarty, R. M.; Khosrowshahi, J. S. Tetrahedron Lett. **1986**, 27, 2809.

(21) Braddock, D. C.; Cansell, G.; Hermitage, S. A. Synlett 2004, 461.
(22) Zhdankin, V. V.; Krasutsky, A. P.; Kuehl, C. J.; Simonsen, A. J.;
Woodward, J. K.; Mismash, B.; Bolz, J. T. J. Am. Chem. Soc. 1996, 118, 5192.

(23) Bowry, V. W.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1991, 113, 5687.

(24) At rt, homolytic cleavage of the I–N₃ bond in 7 (vide infra) forms N₃[•], which is capable of α -H abstraction. The failure to detect 4 and/or 5 strongly suggests that such a pathway is not operating.

(25) Cech, F.; Zbiral, E. Tetrahedron 1975, 31, 605.

(26) Ochiai, M.; Sueda, T.; Miyamoto, K.; Kiprof, P.; Zhdankin, V. V. Angew. Chem., Int. Ed. **2006**, 45, 8203.

(27) Ochiai, M. Top. Curr. Chem. 2003, 224, 6-68.

(28) (a) Yu, J.; Tian, J.; Zhang, C. Adv. Synth. Catal. 2010, 352, 531.
(b) Mizukami, F.; Ando, M.; Tanaka, T.; Imamura. J. Bull. Chem. Soc. Jpn. 1978, 51, 335.

D