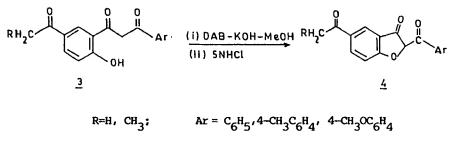

SYNTHETIC COMMUNICATIONS, 22(17), 2555-2561 (1992)

HYPERVALENT IODINE OXIDATION OF 5-ACYL- α -BENZOYL- ο-HYDROXY-ACETOPHENONES: A SELECTIVE SYNTHESIS OF 2,5-DIACYLCOUMARAN-3-ONES. Mahavir S.Khanna, Sangeeta, Chandra P.Garg and Ram P.Kapoor* Department of Chemistry, Kurukshetra University, Kurukshetra-132 119 INDIA

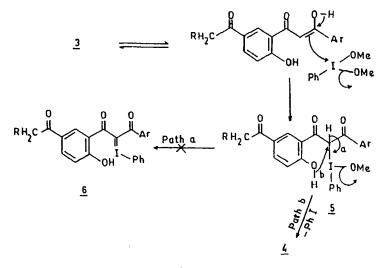
Abstract : Oxidation of 5-acyl- α -benzoyl- \underline{o} -hydroxyacetophenones 3a-e with (diacetoxyiodo)benzene in methanolic potassium hydroxide (DAB-KOH-MeOH) provides a selective synthesis of 2,5diacylcoumaran-3-one **4a-e** in good yield.


During the recent past, (diacetoxyiodo)benzene in methanolic potassium hydroxide (DAB-KOH-MeOH) has been shown to be a versatile system for accomplishing a large number of very useful and usingue transformations¹, e.g., oxidation of β -dicarbonyl compounds to iodonium ylide², enolizable ketones to α -hydroxy ketone dimethylacetals³. The latter reaction, however, does not work successfully, when applied on <u>o</u>-hydroxyacetophenones as it leads to the formation of coumaran-3-ones 2 by neighbouring group participation²⁻⁴ Scheme I.

*To whom correspondence should be addressed.

2555

KHANNA ET AL.



Scheme II

In continuation of our interest in oxidation using hypervalent iodine reagents⁵⁻⁸, with a view to compare the relative succeptibilities of β -diketones (for ylide formation), aryl alkylketone (for α -hydroxy dimethylacetal formation) and <u>o</u>-hydroxy group (for neighbouring group participation), we have examined the oxidation of 5-acyl- α -benzoyl-<u>o</u>-hydroxyacetophenones⁹ 3a-e (having all the above structural requirements) with DAB-KOH-MeOH under the similar condition⁴ and the results are summarized in Scheme II.

In a typical procedure 3a (one equivalent) upon treatment with (diacetoxyiodo)benzene in methanol containing a large excess of potassium hydroxide at $0-5^{\circ}C$ for 2-3 hr followed by acidification with 5N HCl afforded 4a in 79-86% yield. The structures of all the new compounds 4a-e were confirmed on the basis of elemental analysis ir, and ¹H-NMR spectral characteristics.

The most probable mechanistic course for the conversion of $3 \rightarrow 4$ is outlined in Scheme III. Initially electrophilic attack of

Scheme III

iodine(III) reagent $PhI(OMe)_2$ (formed in situ from $PhI(OAc)_2$ and $\stackrel{O}{OMe}$) upon the enol form of 3 to give an intermediate 5, which undergoes cyclization by a neighbouring group participation of <u>o</u>-hydroxy group with a concomitant reductive cleavage of C-I(III) bond (path b) to give the product 4. In a competing path the intermediate 5 could form iodonium ylide 6 after the lose of a proton (path a). Since the present oxidative approach provides 4 as exclusive products, neighbouring group participation by <u>o</u>-hydroxy group might be a more facile process than the formation of ylide 6.

In conclusion it may be added that the present oxidation provides a new convenient iodine(III) approach for the synthesis of 2,5-diacylcoumaran-3-ones in high yields in addition this is being selective as the aryl alkyl ketone moiety remains intact. Another

		Table I	: Oxidation of	3a-e to 4	Table I : Oxidation of 3a-e to 4a-e using DAB-KUH-MECH		
	Products ^a	Yield ^b	mp.(lit mp.)	IR (nujol)	.) ¹ H-NMR	Ana	Analysis
	4	(%)	(၁ ₀)	(C ^T - (C)		Found (C)	Found (Calculated) (C) (H)
a	R=H; Ar=C ₆ H ₅	82	182–83	1687, 1609	2.66(s,3H,COCH ₃ ,7.40-8.45 (m,8H,aromatic protons)	72.79 4.13 (72.85) (4.29)	4.13 (4.29)
ä	R=H; Ar=4CH ₃ C ₆ H ₄	80	165–66	1683 1607	2.46(s ,3H,4CH ₃ C ₆ H ₄),2.67 (s,3H;COCH ₃),7.25-8.45(m,7H, aromatic protons)	73.38 4.59 (73.47) (4.76)	4. 59 (4.76)
Ü	R=H; Ar=4CH ₃ OC ₆ H ₄	86	170	1687 1607	2.67(s,3H,COCH ₃),3.90(s, 3H,4CH ₃ OC ₆ H ₄),7.04-8.45 (7H,m,aromatic protons)	69.75 4.58 (69.68) (4.52)	4.58 (4.52)
q	R=CH ₃ ; Ar=4CII ₃ C ₆ H ₄	79	177-78	1687 1603	1.26(t,3H,COCH ₂ CH ₃ ,J=7.0Hz) 2.44(s,3H,4CH ₃ C ₆ H ₄),3.07(q, 2H,COCH ₂ CH ₃ ,J=7.0Hz),7.22 - 8.48(m,7H,aromatic protons)	73.91 5.26 (74.03) (5.19)	5.26 (5.19)
Ű	e; R=CH ₃ ; Ar=4CH ₃ OC ₆ H ₄	82	185-86	1683 1600	<pre>1.26(t,3H,COCH2CH,J=7.0Hz), 3.08(g,2H,COCH2CH3,J=7.0Hz), 3.89(s,3H,4CH3OC6H4),6.85- 8.40(m,7H,aromatic protons)</pre>	70.01 4.86 (70.37) (4.94)	4.86 (4.94)
a.	a; Crystallization wi	with ethanol.	b; Yields a	re based t	b; Yields are based upon the isolated solid products.	ts.	

Table 1 : Oxidation of 3a-e to 4a-e using DAB-KOH-MeOH

2558

SELECTIVE SYNTHESIS OF 2,5-DIACYLCOUMARAN-3-ONES

advantage of the procedure reported herein is that these compounds can not be prepared by commonly available methods for the synthesis of 2-acylcoumaran-3-ones¹⁰.

Experimental

Melting points were determined in sulphuric acid bath in an open capillaries and are uncorrected. IR spectra were recorded in nujol mulls on Perkin-Elmer 842 IR spectrophotometer and ¹H-NMR on Perkin-Elmer R-32 machine using CDCl₃ as solvent and TMS as an internal standard.

General Procedure :

A suspension of 5-Acyl- α -benzoyl-<u>o</u>-hydroxyacetophenone (3a; 0.01 mol) in methanol containing a large excess of KOH (0.05 mol) was stirred at 0-5°C. (Diacetoxyiodo)benzene (DAB; 0.11 mol) was then added in small portion with constant stirring. The stirring was continued at 0-5°C for 1 hr and then at roomtemperature for further 2 hr. The mixture was poured in 100 ml of cold water. It was then acidified with 5N HCl. The gummy mass so obtained, was extracted with CH₂Cl₂ (2x50 ml) washed with aqueous NaHCO₃ followed by water and dried (MgSO₄). The residual mass left after distilling off the solvent was purified by passing through a column of silica gel 'G' using Benzene :ethyl acetate (80:20) as an eluent.

All other 2,5 diacylcoumaran-3-ones **4b-e** which were prepared in a similar manner are listed in Table 1 with their spectral characteristics.

KHANNA ET AL.

Acknowledgements:

The authors (MSK) and (S) are thankful to UGC, New Delhi and Kurukshetra University, Kurukshetra for financial assistance.

References and Notes :

- 1. R.M.Moriarty and O.Prakash, Acc.Chem.Res. 1986, 18, 244.
- F.Karele and O.Neiland, Zh.Org.Khim, 1968, <u>4</u>, 1818;
 R.M.Moriarty, O.Frakash, R.K.Vaid and L.Zhao, J.Am.Chem.Soc. 1989, 111, 6443.
- R.M.Moriarty, H.Hu and S.C.Gupta, Tetrahedron Lett. 1981, <u>22</u>, 1283.
- R.M.Moriarty, O.Prakash, I.Prakash and H.A.Mussalam, J.Chem. Soc.Chem.Commum. 1984, 1342; O.Prakash, S.Goyal, S.Pahuja and S.P.Singh, Synthetic Commun, 1990, <u>20</u>, 1409.
- O.V.Singh, O.Prakash, C.P.Garg and R.P.Kapoor, Indian J.Chem. 1989, 28B, 814.
- 6. O.V.Singh, C.P.Garg and R.P.Kapoor, Synthesis; 1990, 1025.
- M.S.Khanna, Sangeeta, C.P.Garg, and R.P.Kapoor, Synthetic Commun. (In Press).
- O.V.Singh, C.P.Garg, A.Kapil, N.Moza and R.P.Kapoor, Indian J. Chem. 1992, <u>31B</u>, 249.
- Prepared in our laboratory following the well known Baker Venkataraman condition.¹¹ M.S.Khanna, O.V.Singh, S.Bhatti, Unpublished Result.

2560

SELECTIVE SYNTHESIS OF 2,5-DIACYLCOUMARAN-3-ONES

- P.N.Wadodkar and M.G.Marathey, Indian J.Chem, 1972, <u>10B</u>, 145;
 K.N.Wadodkar and K.B.Doifode, Ibid 1979, 10B, 548.
- 11. T.S.Wheelar, Org.Synth. Coll. IV. Ed. N. Rabjohn 1963, 478.

(Received in UK 29 April, 1992)

.