2000 Vol. 2, No. 21 3359-3360

Rearrangement of Phenylethenes on Reaction with Iodine—Xenon Difluoride

Timothy B Patrick* and Suntian Qian

Department of Chemistry, Southern Illinois University, Edwardsville, Illinois 62026 tpatric@siue.edu

Received August 11, 2000

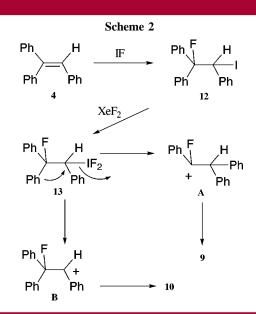
ABSTRACT

Ph H
$$\frac{I_2 / XeF_2}{RT 2-5 h}$$
 Ph-CF₂-CH₂-Ph

Phenyl-substituted ethenes react with iodine and xenon difluoride to provide difluorinated products. Iodofluoro intermediates react with xenon difluoride to produce transient iodine difluoride species that lose IF and F⁻ and produce carbocations.

Organic iodine compounds react with xenon difluoride to produce organoiodine difluorides that undergo transformations to organofluorine compounds. The reactions occur through mechanistic paths that involve carbocations. ^{1–10} In a study of the rearrangements that occur when organoiodine compounds are treated with xenon difluoride, we found that alkenes can be treated with iodine and xenon difluoride, Shellhamer's reagent, ¹¹ to produce intermediate organoiodine compounds that undergo rearrangement on reaction with the xenon difluoride as exemplified in Scheme 1. ^{12,13}

Scheme 1


$$CH_2 \xrightarrow{I_2 / XeF_2} F$$

$$0^{\circ} 0.5 \text{ h}$$

$$CDCl_3 \qquad 90 \%$$

In this Letter, we report a continuation of our studies on the reactions of I_2/XeF_2 alkenes that contain phenyl substituents. ¹⁴ The substrates and their reaction products are shown in Table $1.^{15}$

The mechanistic course of the reaction can be rationalized as shown in Scheme 2 with triphenylethene (4) as the model

substrate. The alkenes react with iodine fluoride generated from the reaction between xenon difluoride and iodine in a

⁽¹⁾ Ruppert, I. J. Fluorine Chem. 1980, 15, 173.

⁽²⁾ Zupan, M. Collect. Czech. Chem. Commun. 1977, 42, 266.

⁽³⁾ Gibson, J. A.; Janzen, A. F. J. Chem. Soc., Chem. Commun. 1973,

⁽⁴⁾ Gibson, J. A.; Marat, R. K.; Janzen, A. F. Can J. Chem. 1975, 53, 3044.

⁽⁵⁾ Alam, K.; Janzen, A. F. J. Fluorine Chem. 1987, 36, 179.

⁽⁶⁾ Forster, A. M.; Downs, A. J. Polyhedron 1985, 4, 1625.

⁽⁷⁾ Della, E. W.; Head, N. J. J. Org. Chem. 1992, 57, 2850.

⁽⁸⁾ Della, E. W.; Head, N. J.; Janowski, W. K.; Schiesser, C. H. J. Org. Chem. 1993, 58, 7876.

⁽⁹⁾ Eaton, P. E.; Yang, C.-X.; Xiong, Y. J. Am. Chem. Soc. 1990, 112, 3225

Table 1

Substrate	Product(s)	Yield
Ph H H	$Ph \underset{6}{\underbrace{\qquad \qquad }} F$	50 %
Ph H Ph	Ph F Ph 7 syn and anti	75 %
Ph H H	$Ph \xrightarrow{F} Ph$	55 %
Ph H Ph	Ph F Ph	40 %
	Ph F Ph F Ph Ph 10	35 %
Ph Ph Ph 5	Ph F Ph Ph F Ph	60 %

regioselective process that places the fluorine atom at the site of the more stable carbocation to produce the intermediate iodofluorinated intermediate 12. Intermediate 12 reacts with a second equivalent of xenon difluoride to produce the iodine difluoride intermediate 13. Similar intermediates have been postulated in earlier research.¹² The intermediate 13 loses IF and F⁻ with rearrangement to produce carbocation **A** or without rearrangement to produce carbocation **B**. The carbocations react with the fluoride ion to produce the final products. Carbocation stability likely governs the final product(s) produced. In all cases where rearrangement is observed (6, 8, 9), a fluorine-stabilized carbocation intermediate helps to drive the rearrangement.

In conclusion, the results show that unusual fluorinated products can be obtained in moderate to good yields by a relatively simple process that proceeds by predictable mechanistic routes.

Acknowledgment. We thank the National Science Foundation (RUI) and the Petroleum Research Fund (Type B) for support of this research.

OL006450D

(10) Rozen, S.; Brand, M. J. Org. Chem. 1981, 46, 733.

3360 Org. Lett., Vol. 2, No. 21, 2000

⁽¹¹⁾ Shellhamer, D. L.; Jones, B. C.; Pettus, B. J.; Pettus, J. M.; Stringer, J. M.; Heasley, V. L. J. Fluorine Chem. 1998, 88, 37.
(12) Patrick, T. B.; Zhang, L. Tetrahedron Lett. 1997, 38, 8925.

⁽¹³⁾ Patrick, T. B.; Zhang, L.; Li, Q. J. Fluorine Chem. 2000, 102, 11. (14) Iodine (0.3 mmol) is added to the alkene (0.3 mmol) in 2 mL of CDCl₃ at room temperature. XeF₂ (0.61 mmol) is added, and the mixture is stirred overnight. The purple reaction mixture is subjected to column chromatography on silica gel with hexanes-ethyl acetate eluent.

⁽¹⁵⁾ All compounds were characterized by NMR and high-resolution MS analysis. Representative NMR data follow. Compound 6: ¹H (TMS) δ 3.15 (\mathring{CH}_2 , t of \mathring{d} , $J_{HF} = 17.4$ Hz, $J_{HH} = 4.5$ Hz), 5.85 (\mathring{CH} , t of t, $J_{HF} =$ 57 Hz, $J_{HH} = 4.5$ Hz), 7–7.6 (aromatic); ¹⁹F (TFA) –39.2 (m); MS calcd 142.0594 amu, obsd 142.0580. Compound 7: 1 H δ 5.7 (CH, partial d of d), 6.6–7.8 (aromatic); $^{19}F - 109$ (m), -110.4 (m); $^{13}C \delta 94$ (d of d), 96 (d of d), 127-132 (aromatic); MS calcd 220.1064, obsd 220.1069. Compound 8: ${}^{1}\text{H }\delta 3.36 \text{ (t,CH}_{2}, J = 18 \text{ Hz), 6.9} - 7.6 \text{ (aromatic); } {}^{19}\text{F} - 19.2$ $(t, CF_2, J = 18 \text{ Hz}); {}^{13}C 45.9 (t, CH_2, J_{CF} = 11 \text{ Hz}), 121.9 (t, CF_2, J_{CF} = 11 \text{ Hz})$ 240 Hz), 130-140 (aromatic); MS calcd 220.1064, obsd 220.1051. Compound 9: 1 H δ 4.61 (t, CH, $J_{\rm HF}$ = 16.9 Hz), 7–7.8 (aromatic); 19 F –20.9 (d, CF₂, $J_{\rm HF}$ = 16.9 Hz); 13 C 59 (t, CH, $J_{\rm CF}$ = 13 Hz), 130–140 (aromatic); MS calcd 294.1221, obsd 294.1200. Compound **10**: 1 H δ 6.2 (dd, CH, $J_{\text{HFgem}} = 30 \text{ Hz}$, $J_{\text{HFvic}} = 9 \text{ Hz}$), 7.8 (aromatic), $^{19}\text{F} - 83.7$ (m, CF), -105.4 (d of m, CHF); $^{13}\text{C} 98.1$ (dd, CHF, $J_{\text{CF gem}} = 216 \text{ Hz}$, $J_{\text{CF vic}}$ = 21 Hz), 106.1 (dd, CF, $J_{\text{CF gem}}$ = 142 Hz, $J_{\text{CF vic}}$ = 21 Hz), 120–130 (aromatic); MS calcd 294.1221, obsd 294.1249. Compound 11: ${}^{1}\text{H}$ δ 6.9– 7.4 (aromatic); $^{19}\text{F} - 73.0$ (s, CF); ^{13}C 99.0 (d,d CF, $J_{\text{CFgem}} = 190$ Hz, J_{CFvic} = 30.4; MS calcd 349.9997, obsd 349.9984.