Beiträge zur Kristallchemie und zum thermischen Verhalten von wasserfreien Phosphaten. XXXIII [1]

$In_2P_2O_7$, ein Indium(I)-diphosphato-indat(III) und $In_4(P_2O_7)_3$ – Darstellung, Kristallisation und Kristallstrukturen

H. Thauern [2] und R. Glaum*

Bonn, Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität

Bei der Redaktion eingegangen am 13. November 2002.

Professor Hartmut Bärnighausen zum 70. Geburtstag gewidmet

Inhaltsübersicht. Über Festkörperreaktionen unter Beteiligung der Gasphase wurde im System In/P/O das gemischtvalente Indium(I, III)-diphosphat In₂P₂O₇ erstmalig synthetisiert und mittels Einkristallstrukturanalyse charakterisiert. Farblose Kristalle von In₂P₂O₇ für die Strukturverfeinerung entstanden beim isothermen Tempern (800°C; 7d) mit Iod als Mineralisator aus InPO₄ und InP. In In₂P₂O₇ [*P*2₁/c, a = 7,550(1) Å, b = 10,412(1) Å, c = 8,461(2) Å, b = 105,82(1)°, 2813 unabhängige Reflexe, 101 Parameter, R1 = 0,031, wR2 = 0,078] werden erstmals isolierte In⁺-Ionen in einer Umgebung von Sauerstoffionen beobachtet. Die Abstände d(In^I-O) sind

ungewöhnlich lang (d_{min}(In^I-O) = 2,82 Å) und sprechen für überwiegenden s-Charakter des freien Elektronenpaares am In⁺-Ion. In₄(P₂O₇)₃ konnte mittels chemischer Transportexperimente im Temperaturgradienten (1000 \rightarrow 900°C, P/I-Gemenge als Transportmittel) kristallisiert und phasenrein dargestellt werden. Im Unterschied zu Literaturangaben über die isostrukturellen Diphosphate M₄(P₂O₇)₃ (M = V, Cr, Fe) wurde für die Indiumverbindung monokline Symmetrie gefunden [*P*2₁/a, a = 13,248(3) Å, b = 9,758(1) Å, c = 13,442(2) Å, b = 108,94(1)°, 7221 unabhängige Reflexe, 281 Parameter, R1 = 0,027, wR2 = 0,067].

Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXIII [1] $In_2P_2O_7$ an Indium(I)-diphosphatoindate(III), and $In_4(P_2O_7)_3$ – Synthesis, Crystallization, and Crystal Structure

Abstract. Solid state reactions via the gas phase lead to the new mixed-valence indium(I,III)-diphosphate $In_2P_2O_7$. Colourless single crystals of $In_2P_2O_7$ have been grown by isothermal heating of stoichiometric amounts of $InPO_4$ and $InP (800^{\circ}C;7d)$ using iodine as mineralizer. The structure of $In_2P_2O_7$ [$P 2_1/c$, a = 7.550(1) Å, b = 10.412(1) Å, c = 8.461(2) Å, $b = 105.82(1)^{\circ}$, 2813 independent reflections, 101 parameter, R1 = 0.031, wR2 = 0.078] is the first example for an In⁺ cation in pure oxygen coordination. Observed distances $d(In^{I}-O)$ are exceptionally long ($d_{min}(In^{I}-O) = 2.82$ Å) and support assumption of mainly s-character for the lone-pair at the In⁺ ion.

Single crystals of $In_4(P_2O_7)_3$ were grown by chemical vapour transport experiments in a temperature gradient (1000 \rightarrow 900°C) using P/I mixtures as transport agent. In contrast to the isostructural diphosphates $M_4(P_2O_7)_3$ (M = V, Cr, Fe) monoclinic instead of orthorhombic symmetry has been found for $In_4(P_2O_7)_3$ [P2₁/a, a = 13.248(3) Å, b = 9.758(1) Å, c = 13.442(2) Å, b = 108.94(1)^\circ, 7221 independent reflexes, 281 parameter, R1 = 0.027, wR2 = 0.067].

Keywords: Indium; Phosphates; Crystal structure; Lone-pair effect

Einleitung

Im System Indium/Phosphor/Sauerstoff waren zu Beginn unserer Untersuchungen die Phosphate InPO₄ (Cmcm [3], Pnma [4]), In(PO₃)₃ (*C*-*Typ*; Subzelle und Überstruktur [5, 6]) sowie das gemischtvalente Orthophosphat In₆(PO₄)₄ [7]

Institut für Anorganische Chemie Universität Bonn Gerhard-Domagk-Straße 1 D-53121 Bonn e-mail: rglaum@uni-bonn.de Fax: 0228 / 73 56 60 mit $(In_2)^{4+}$ -Paaren, bekannt. Weiterhin gab es Hinweise [8] auf ein Indium(III)-diphosphat in Analogie zu den isostrukturellen Verbindungen V₄(P₂O₇)₃ [9], Cr₄(P₂O₇)₃ [10] und Fe₄(P₂O₇)₃ [11]. Von diesen wurde bisher in der Literatur über die Verfeinerung der Kristallstruktur des Vanadium(III)-diphosphats berichtet, die allerdings nur einen R-Wert von 9,4% erreichte.

Da mit $(In_2)_3(PO_4)_4$ bereits eine Verbindung mit Indium in der formalen Oxidationsstuffe +2 bekannt war, stellte sich die Frage nach weiteren Phosphaten des Indiums in niederer Oxidationsstufe. Von Indium(I)-Verbindungen sind nur die Halogenide bekannt (α -InCl [12], β -InCl [13, 14], InBr [15], InI [16]). Dazu existieren eine Reihe von gemischtvalenten Indiumhalogeniden (z. B.: In₂Cl₃ [17],

^{*} Prof. Dr. Robert Glaum

In₇Cl₉ [18], In₂Br₃ [20], In₅Br₇ [21], InI₂ [21], sowie dort zitierte Literatur). Verbindungen mit Indium(I) in reiner Sauerstoffumgebung waren unbekannt. Es erschien daher reizvoll, in Analogie zu den Phosphaten des schwereren Homologen Thallium (TIPO₄ [3], Tl₃PO₄ [22], Tl₄P₄O₁₂ [23]) die Synthese von Indium(I)-phosphaten zu versuchen.

Zusätzliche Motivation für unsere Arbeiten war die Aussicht, Indiumphosphate mit nicht-linear optischem Verhalten, ähnlich wie bei dem schon länger bekannten Thallium(I)-orthophosphat [22], zu finden.

Die gut bekannte Flüchtigkeit von Indiumhalogeniden, wie auch die Möglichkeit zur Kristallisation von In_2O_3 in chemischen Transportexperimenten [24] ließen die Anwendung der Methode zur Darstellung, Kristallisation und Reinigung von Indiumphosphaten aussichtsreich erscheinen. Dabei interessierte uns neben der Suche nach neuen Phosphaten auch die Einkristallzüchtung von $In_4(P_2O_7)_3$ zur Klärung von dessen Kristallstruktur. Die Synthese und Charakterisierung von $In_4(P_2O_7)_3$ steht im Zusammenhang mit Untersuchungen zur Stabilisierung und spektroskopischen Charakterisierung von 3d-Metallionen in ungewöhnlichen Oxidationsstufen (z. B. Ti³⁺, V³⁺, Mo³⁺ oder Mn³⁺) in Mischkristallen mit Phosphaten dreiwertiger d⁰- bzw. d¹⁰-Ionen wie Sc³⁺ oder In³⁺.

Experimentelles

Das als Ausgangssubstanz für die weiteren Synthesen benötigte InPO₄ wurde aus Indium(III)-nitrat und Phosphorsäure (Fa. Merck, 85%, reinst) hergestellt. Dazu wurde metallisches Indium (Fa. Merck, 99,9%) in halbkonzentrierter Salpetersäure gelöst und anschließend eine äquimolare Menge H₃PO₄ hinzugegeben. Die Lösung wurde bei ca. 300°C bis zur Trockene eingedampft. Dabei entstand das Monohydrat InPO₄ · H₂O [25].

Das Monohydrat wurde anschließend in einer offenen Kieselglasampulle an Luft langsam auf 900°C erhitzt und bei dieser Temperatur 24 Stunden geglüht. Hierdurch entstand "guinierrein" das wasserfreie Indium(III)-orthophosphat. Dieses kann in chemischen Transportexperimenten (1000 \rightarrow 900°C, 10 mg Iod + 2 mg P als Transportmittel (TM), Ampullenabmessungen: q = 2,0 cm², 1 = 12 cm, V = 24 cm³, Transportrate (TR) \geq 1,9 mg / h) kristallisiert werden.

Indiummonophosphid [26] wurde aus den Elementen erhalten und mittels chemischer Transportexperimente ($800 \rightarrow 700^{\circ}$ C, TM: 50 mg Iod, q = 2,0 cm², l = 12 cm, V = 24 cm³, TR = 3,4 mg / h) gereinigt und kristallisiert.

Die Darstellung des Indium(I, III)-diphosphats erfolgte durch isothermes Tempern eines stöchiometrischen Gemenges von $InPO_4$ und InP bei 800°C in einer evakuierten Kieselglasampulle mit Iod (10 mg) als Mineralisator. Hierbei bildete sich farbloses, mikrokristallines $In_2P_2O_7$ (Gl. 1) sowie einige für Röntgenbeugungsuntersuchungen geeignete Einkristalle.

$$7 \text{ InPO}_{4,s} + \text{ InP}_{s} = 4 \text{ In}_{2} P_{2} O_{7,s}$$
(1)

Bei Versuchen zum chemischen Transport von $In_2P_2O_7$ (800 \rightarrow 750°C, TM: 10 mg Iod, q = 2,0 cm², 1 = 12 cm, V = 24 cm³) wurde Zersetzung in InPO₄ (Senke) und InP (Quelle) beobachtet. Auch Erhitzen eines Gemenges von InPO₄ und InP (molares Verhältnis 7 : 1; Sm = 1050 mg; 5 mg Iod) auf 1000°C führt zur Bildung von deutlichen Mengen an InPO₄ neben $In_2P_2O_7$. Aus diesen Beobachtungen folgt, daß $In_2P_2O_{7,s}$ gegenüber einem Zerfall in InPO_{4,s} und InP_s, das durch Iod in der Gasphase gelöst wird (Gl. (2)), nur wenig stabilisiert ist.

$$4 \operatorname{In}_{2} P_{2} O_{7,s} + 3 I_{2,g} = 7 \operatorname{In} PO_{4,s} + \operatorname{In} I_{3,g} + PI_{3,g}$$
(2)

Mikrokristallines $In_4(P_2O_7)_3$ wurde durch Erhitzen von 300 mg InPO₄ mit 150 mg Iod und 10 mg Phosphor auf 1000°C in einer evakuierten Kieselglasampulle dargestellt (Gl. (3)).

21 InPO_{4,s} +
$$3/4$$
 P_{4,g} + $15/2$ I_{2,g} = 5 InI_{3,g} + 4 In₄(P₂O₇)_{3,s} (3)

Die Kristallisation des Indium(III)-diphosphates erfolgt ebenfalls über chemischen Transport (1000°C \rightarrow 900°C; evakuierte Kieselglasampulle, Einwaage: 300 mg InPO₄, TM: Gemenge aus 100 mg Iod und 10 mg Phosphor, TR = 1,4 mg In₄(P₂O₇)₃/h).

Eine detaillierte Arbeit zur Thermochemie des chemischen Transports von Indiumphosphaten und zu den Phasengleichgewichten im Dreistoffsystem In/P/O ist in Vorbereitung [27].

Zur Identifizierung und Überprüfung aller Proben auf Reinheit wurden Guinieraufnahmen nach der *image plate* Technik herangezogen. Details zur Methode wurden bereits an anderer Stelle beschrieben [1].

Einkristallstrukturanalysen. Von $In_2P_2O_7$ und $In_4(P_2O_7)_3$ wurden geeignete Einkristalle unter einem Polarisationsmikroskop ausgesucht und an einem Vierkreisdiffraktometer (CAD-4, Fa. Enraf-Nonius) vermessen. Die Strukturlösung erfolgte in beiden Fällen mit dem Programm SHELXS-97 [28] im Programmpaket WinGX [29]. Über Direkte Methoden konnten so Startpunktlagen für die Indium- und Phosphoratome ermittelt werden. Nach Lokalisierung der Sauerstoffatome aus sukzessiven Δ -Fourier-Synthesen wurden beide Strukturen schließlich unter Berücksichtigung anisotroper Auslenkungsparameter mit SHELXL-97 [30] verfeinert.

Zur Verfeinerung der Kristallstruktur von $In_4(P_2O_7)_3$ sind einige zusätzliche Bemerkungen angebracht. Für die isostrukturellen Verbindungen $V_4(P_2O_7)_3$ [9], $Cr_4(P_2O_7)_3$ [10] und $Fe_4(P_2O_7)_3$ [11] werden in der Literatur orthorhombische Elementarzellen (a ~ 7,3 Å, b ~ 21,3 Å, c ~ 9,5 Å) angegeben. Verfeinerungen der Strukturen von $V_4(P_2O_7)_3$ [9] (Raumgruppe *Pmnb*) und Fe₄(P₂O₇)₃ [31] (Raumgruppe P2₁/n bei orthorhombischer Metrik) liefern nach Literaturangaben nur sehr unbefriedigende Ergebnisse mit schlechten Gütefaktoren und zum Teil kristallchemisch nicht akzeptablen interatomaren Abständen. Eine sorgfältige Inspektion der von uns für In₄(P₂O₇)₃ erhaltenen Röntgenbeugungsdaten, mit einem Vergleich der Intensitäten symmetrieäquivalenter Reflexe, führte im Unterschied zu den Literaturangaben zu einer monoklinen Elementarzelle und systematischen Auslöschungen, die mit der Raumgruppe $P2_1/a$ verträglich sind. Für die gewählte Symmetrie spricht weiterhin, daß in den Verfeinerungsrechnungen keine Korrelationen zwischen unabhängigen Parametern beobachtet wurden und auch eine nachträgliche Transformation der Kristallstruktur von $In_4(P_2O_7)_3$ in die genannte orthorhombische Elementarzelle zu keiner akzeptablen Verfeinerung führte. Der metrische Zusammenhang zwischen der orthorhombischen und der von uns verwendeten mono**Tabelle 1** Kristallographische Daten sowie Angaben zur Daten-
sammlung und Strukturverfeinerung von $In_2P_2O_7$ und $In_4(P_2O_7)_3$.

I. Kristallographische Date	en	
Formel	$In_2P_2O_7$	$In_4(P_2O_7)_3$
Kristallsystem	monoklin	monoklin
Raumgruppe	$P 2_1/c$	$P 2_1/a$
Gitterparameter	a = 7,5498(10) Å	a = 13,248(3) Å
(aus Einkristall-	b = 10,4120(13) Å	b = 9,7576(14) Å
untersuchungen)	c = 8,4611(19) Å	c = 13,442(2) Å
	$\beta = 105,817(13)$	$\beta = 108,938(14)$
Ζ; μ	4; 7,693 mm ^{-1}	4; 6,246 mm ⁻¹
V (Å ³):	639,93(18)	1643,5(6)
Dichterön	4,189 g/cm ³	3,965 g/cm ³
Farbe	farblos	farblos
Kristallform und -größe	Bruchstück	Bruchstück
	$0,18 \cdot 0,12 \cdot 0,07 \text{ mm}^3$	$0,6 \cdot 0,2 \cdot 0,2 \text{ mm}^3$
Molgewicht	403,58	981,10
F(000)	736	1816
II. Intensitätsmessungen		
Temperatur [K]	293(2)	293(2)
Wellenlänge (MoKa)	0,71073 Å	0,71073 Å
Meßbereich θ	2,80-34,98	2,63-34,97
Absorptionskorrektur	psi-scan [58]	psi-scan [58]
Anzahl der Reflexe		
gemessen	10977	28178
unabhängig	2813	7221
h _{min} -h _{max}	-12-12	-21-21
k _{min} -k _{max}	-16 - 16	-15-15
l _{min} -l _{max}	-13-13	-21-21
III. Verfeinerung		
benutzte Programme	SHELXL-97 [30]	SHELXL-97 [30]
Parameter	101	281
Gütefaktoren R ₁ ^{a)}	0,031	0,027
wR ₂ ^{b)}	0,078	0,067
Wichtungsschema	A=0,0375; B=0,8295	A=0,0228; B=3,9750

^{a)} $\mathbf{R}_1 = \Sigma \|\mathbf{F}_0\| - \|\mathbf{F}_c\| / \Sigma \|\mathbf{F}_0\|, \ \mathbf{F}^2 > 2\sigma \ (\mathbf{F}^2)$

^{b)} Wichtungsschema w = 1 / $[\sigma^2 (F_0^2) + (AP)^2 + BP]$, P = $(F_0^2 + 2F_c^2)/3$

Tabelle 2 Atomkoordinaten und isotrope Auslenkungsparameter für In₂P₂O₇. Standardabweichungen in Klammern.

Atom	х	у	Z	$U_{eq}/\mathring{A}^{2a)}$
In(1)	0,73772(3)	0,10025(2)	0,25850(3)	0,00713(7)
In(2)	0,32312(5)	0,18483(4)	0,44527(5)	0,02948(10)
P(1)	0,63357(12)	0,09498(8)	0,82650(11)	0,00872(15)
P(2)	0,93754(12)	0,13571(8)	0,68858(11)	0,00823(15)
O(1)	0,6400(5)	0,0880(4)	0,0034(4)	0,0253(7)
O(2)	0,9532(4)	0,2222(2)	0,2321(4)	0,0149(5)
O(3)	0,4911(4)	0,0059(3)	0,2786(3)	0,0118(4)
O(4)	0,5770(4)	0,2277(3)	0,7537(4)	0,0159(5)
O(5)	0,8371(4)	0,0665(3)	0,8116(4)	0,0128(5)
O(6)	1,1281(4)	0,0781(3)	0,7282(4)	0,0178(6)
O(7)	0,8174(5)	0,1062(4)	0,5191(4)	0,0235(6)

^{a)} $U_{eq} = (1/3)\Sigma_i\Sigma_jU_{ij}a_i^*a_j^*a_i\cdot a_j$

klinen Elementarzelle wird durch die Transformationsmatrix (mono \rightarrow ortho) T = (1/2 0 1/2 1 0 -1 0 1 0) beschrieben.

Weitere Einzelheiten zu den kristallographischen Daten, den Messungen und den Strukturverfeinerungen sind in Tabelle 1 zusammengestellt. Lageparameter und interatomare Abstände für $In_2P_2O_7$ und $In_4(P_2O_7)_3$ geben die Tabellen 2 bis 5 wieder.

Listen der anisotropen Auslenkungsparameter sowie der kompletten Geometrie von $In_2P_2O_7$ (CSD-412855) und $In_4(P_2O_7)_3$ (CSD-412856), wurden beim FIZ hinterlegt. Kopien sind zu erhalten bei:

Tabelle 3 In ₂ P ₂ O ₇ .	Interatomare	Abstände/Å	in	den	Polyedern
[InO _x] und [PO ₄]. S	tandardabweicl	hungen in Kla	amr	nern.	

[In(1)O ₆]		[In(2)O ₁₀] ^{a)}	
In(1)-O(1)	2,086(3)	In(2)-O(4)	2,821(3)
In(1)-O(6)	2,104(3)	In(2)-O(3)	2,836(3)
In(1)-O(7)	2,122(3)	In(2)-O(2)	2,909(3)
In(1)-O(2)	2,123(3)	In(2)-O(4)	2,971(3)
In(1)-O(3)	2,153(3)	In(2)-O(3)	3,096(3)
In(1)-O(4)	2,158(3)	In(2)-O(6)	3,187(3)
		In(2)-O(7)	3,251(4)
		In(2)-O(1)	3,305(4)
		In(2)-O(6)	3,325(3)
		In(2)-O(5)	3,406(3)
$[P(1)O_4]$		$[P(2)O_4]$	
P(1)-O(1)	1,486(3)	P(2)-O(7)	1,505(3)
P(1)-O(3)	1,524(3)	P(2)-O(6)	1,510(3)
P(1)-O(4)	1,526(3)	P(2)-O(2)	1,521(3)
P(1)-O(5)	1,603(3)	P(2)-O(5)	1,615(3)
Brückenwinkel	\angle (P,O,P) = 126,6(2)°)	

^{a)} Zur Koordination wurden alle Sauerstoffatome gerechnet, die näher am Indium liegen als das nächste Kation (d(In^I-P^V) = 3,56 Å). Das erste, nicht mehr berücksichtigte Sauerstoffatom befindet sich in einem Abstand d(In^I-O) = 3,70 Å.

Tabelle 4 Atomkoordinaten und isotrope Auslenkungsparameter für $In_4(P_2O_7)_3$. Standardabweichungen in Klammern.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Atom	х	у	Z	$U_{eq}/ \mathring{A}^{2a)}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	In(1)	0,481514(11)	0,778883(17)	0,479918(11)	0,00623(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	In(2)	0,279790(11)	0,727841(16)	0,267666(12)	0,00633(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	In(3)	0,019643(12)	0,260246(17)	0,022874(11)	0,00636(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	In(4)	0,221860(11)	0,243580(16)	0,233426(11)	0,00608(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(1)	-0.01659(4)	0,35803(6)	0,26087(4)	0,00563(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2)	-0.01089(4)	0,32594(6)	-0,23458(4)	0,00584(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(3)	0,32962(4)	0,46917(6)	0,42279(4)	0,00494(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(4)	0,19513(4)	0,51698(6)	0,06525(4)	0,00624(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(5)	0,29808(4)	1,02012(6)	0,43408(4)	0,00574(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(6)	-0,17449(4)	0,02991(6)	-0.07568(4)	0,00556(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1)	0,04077(15)	0,2726(2)	-0,12426(14)	0,0141(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2)	0,46124(15)	0,8384(2)	0,62283(13)	0,0145(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(3)	0,34886(12)	0,62437(17)	0,41576(13)	0,0077(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(4)	0,56929(15)	0,6098(2)	0,54232(18)	0,0177(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(5)	0,04650(13)	0,29003(19)	0,19624(13)	0,0097(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(6)	0,04379(13)	0,25611(18)	-0,30674(13)	0,0073(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(7)	-0,13047(14)	0,3110(2)	0,22311(16)	0,0155(3)
$\begin{array}{cccccccc} 0(9) & -0,12949(13) & 0,3108(2) & -0,27862(16) & 0,0165(4)\\ 0(10) & 0,22271(15) & 1,1043(2) & 0,34871(15) & 0,0146(3)\\ 0(11) & -0,13603(13) & -0,10887(18) & -0,10387(13) & 0,0096(3)\\ 0(12) & 0,28044(16) & 0,5854(2) & 0,15321(16) & 0,0164(3)\\ 0(13) & 0,17589(14) & 0,36803(19) & 0,09055(13) & 0,0113(3)\\ 0(14) & 0,25248(17) & 0,4221(2) & 0,31977(14) & 0,0164(4)\\ 0(15) & 0,38675(15) & 1,0993(2) & 0,51094(15) & 0,0154(3)\\ 0(16) & -0,08983(15) & 0,1026(2) & 0,00950(15) & 0,0154(3)\\ 0(17) & -0,22579(19) & 0,1072(2) & -0,17434(16) & 0,0220(4)\\ 0(18) & -0,01966(17) & 0,5166(2) & 0,23308(17) & 0,0188(4)\\ 0(19) & 0,72531(16) & 0,5521(2) & 0,49138(15) & 0,0145(3)\\ 0(20) & 0,23227(15) & 0,5111(3) & -0,03347(15) & 0,0206(4)\\ 0(21) & 0,09057(16) & 0,5884(2) & 0,02742(19) & 0,02236(4) \end{array}$	O(8)	0,34313(13)	0,89548(18)	0,39265(12)	0,0081(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(9)	-0,12949(13)	0,3108(2)	-0.27862(16)	0,0165(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(10)	0,22271(15)	1,1043(2)	0,34871(15)	0,0146(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(11)	-0,13603(13)	-0,10887(18)	-0.10387(13)	0,0096(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(12)	0,28044(16)	0,5854(2)	0,15321(16)	0,0164(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(13)	0,17589(14)	0,36803(19)	0,09055(13)	0,0113(3)
$\begin{array}{cccccccc} O(15) & 0,38675(15) & 1,0993(2) & 0,51094(15) & 0,0149(3) \\ O(16) & -0,08983(15) & 0,1026(2) & 0,00950(15) & 0,0154(3) \\ O(17) & -0,22579(19) & 0,1072(2) & -0,17434(16) & 0,0220(4) \\ O(18) & -0,01966(17) & 0,5166(2) & 0,23308(17) & 0,0188(4) \\ O(19) & 0,72531(16) & 0,5521(2) & 0,49138(15) & 0,0145(3) \\ O(20) & 0,23227(15) & 0,5111(3) & -0,03347(15) & 0,0206(4) \\ O(21) & 0,09057(16) & 0,5884(2) & 0,02742(19) & 0,0236(4) \\ \end{array}$	O(14)	0,25248(17)	0,4221(2)	0,31977(14)	0,0164(4)
$\begin{array}{ccccccc} O(16) & & -0,08983(15) & 0,1026(2) & 0,00950(15) & 0,0154(3) \\ O(17) & & -0,22579(19) & 0,1072(2) & & -0,17434(16) & 0,0220(4) \\ O(18) & & -0,01966(17) & 0,5166(2) & 0,23308(17) & 0,0188(4) \\ O(19) & 0,72531(16) & 0,5521(2) & 0,49138(15) & 0,0145(3) \\ O(20) & 0,23227(15) & 0,5111(3) & -0,03347(15) & 0,0206(4) \\ O(21) & 0,09057(16) & 0,5884(2) & 0,02742(19) & 0,0236(4) \\ \end{array}$	O(15)	0,38675(15)	1,0993(2)	0,51094(15)	0,0149(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(16)	-0.08983(15)	0,1026(2)	0,00950(15)	0,0154(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(17)	-0,22579(19)	0,1072(2)	-0,17434(16)	0,0220(4)
O(19) 0,72531(16) 0,5521(2) 0,49138(15) 0,0145(3) O(20) 0,23227(15) 0,5111(3) -0,03347(15) 0,0206(4) O(21) 0,09057(16) 0,5884(2) 0,02742(19) 0,0236(4)	O(18)	-0.01966(17)	0,5166(2)	0,23308(17)	0,0188(4)
O(20) 0,23227(15) 0,5111(3) -0,03347(15) 0,0206(4) O(21) 0,09057(16) 0,5884(2) 0,02742(19) 0,0236(4)	O(19)	0,72531(16)	0,5521(2)	0,49138(15)	0,0145(3)
O(21) 0,09057(16) 0,5884(2) 0,02742(19) 0,0236(4)	O(20)	0,23227(15)	0,5111(3)	-0,03347(15)	0,0206(4)
	O(21)	0,09057(16)	0,5884(2)	0,02742(19)	0,0236(4)

^{a)} $U_{eq} = (1/3)S_iS_jU_{ij}a_i^*a_j^*a_i \cdot a_j$

Fachinformationszentrum Karlsruhe, Abt. IDNT, D-76344 Eggenstein-Leopoldshafen (e-mail: crysdata@fiz-karlsruhe.de).

Die Messung des Raman-Spektrums von $In_4(P_2O_7)_3$ im Bereich von 200 cm⁻¹ bis 3500 cm⁻¹ erfolgte bei Raumtemperatur an Proben pulverisierter Einkristalle mit einem Gerät RFS 100 (Fa. Bruker). Die für Diphosphate typische Deformationsschwingung δ (P-O-P) liegt im Spektrum bei $\tilde{v} = 734$ cm⁻¹ und ist deutlich strukturiert. Mehrere Banden im Frequenzbereich der P-O Steckschwingung

$[In(1)O_6]$		[In(2)O ₆]	[In(2)O ₆]		[In(3)O ₆]		[In(4)O ₆]	
In(1)-O(4) In(1)-O(15) In(1)-O(2) In(1)-O(8) In(1)-O(6) In(1)-O(3)	2,036(2) 2,082(2) 2,105(2) 2,153(2) 2,253(2) 2,263(2)	In(2)-O(17) In(2)-O(12) In(2)-O(9) In(2)-O(3) In(2)-(O6) In(2)-O(8)	2,023(2) 2,076(2) 2,078(2) 2,153(2) 2,239(2) 2,299(2)	In(3)-O(21) In(3)-O(16) In(3)-O(1) In(3)-O(11) In(3)-O(13) In(3)-O(5)	2,032(2) 2,081(2) 2,089(2) 2,157(2) 2,235(2) 2,259(2)	In(4)-O(10) In(4)-O(14) In(4)-O(7) In(4)-O(11) In(4)-O(13) In(4)-O(5)	2,058(2) 2,059(2) 2,075(2) 2,184(2) 2,185(2) 2,258(2)	
[P(1)O ₄] P(1)-O(7) P(1)-O(2) P(1)-O(5) P(1)-O(18)	1,499(2) 1,508(2) 1,538(2) 1,589(2)	[P(2)O ₄] P(2)-O(9) P(2)-O(1) P(2)-O(6) P(2)-O(18)	1,495(2) 1,509(2) 1,544(2) 1,587(2)	[P(3)O ₄] P(3)-O(4) P(3)-O(14) P(3)-O(3) P(3)-O(19)	1,483(2) 1,501(2) 1,543(2) 1,564(2)	[P(4)O ₄] P(4)-O(21) P(4)-O(12) P(4)-O(13) P(4)-O(20)	1,485(2) 1,501(2) 1,532(2) 1,559(2)	
[P(5)O ₄] P(5)-O(10) P(5)-O(15) P(5)-O(8) P(5)-O(19)	1,498(2) 1,502(2) 1,536(2) 1,581(2)	[P(6)O ₄] P(6)-O(17) P(6)-O(16) P(6)-O(11) P(6)-O(20)	1,485(2) 1,496(2) 1,537(2) 1,569(2)	Brückenwinkel P(2)-O(18)-P(1) P(3)-O(19)-P(5) P(4)-O(20)-P(6)	162,27(16) 143,42(14) 145,09(14)			

Tabelle 5 In₄(P₂O₇)₃. Interatomare Abstände/Å in den Polyedern [InO₆] und [PO₄]. Standardabweichungen in Klammern.

 $(\tilde{v} = 1008 \text{ cm}^{-1}, \tilde{v} = 1077 \text{ cm}^{-1}, \tilde{v} = 1110 \text{ cm}^{-1}, \tilde{v} = 1147 \text{ cm}^{-1} \text{ und}$ $\tilde{v} = 1190 \text{ cm}^{-1}$) deuten auf unterschiedlich lange Abstände d(P-O).

Um die Zahl der symmetrieunabhängigen Phosphorlagen, die in der Strukturverfeinerung von $In_4(P_2O_7)_3$ gefunden wurde, zu verifizieren, wurde ein ³¹**P-MAS-NMR-Spektrum** aufgenommen. Die Messungen der pulverisierten Kristalle (aus den Transportexperimenten) erfolgte mit einem Festkörperresonanz-Spektrometer (Infinity; Fa. Varian) bei Rotationsfrequenzen von 12 kHz und 20 kHz. Es zeigte sich jedoch, daß durch Kopplung von Kreuztermen der dipolaren Wechselwirkung zwischen Indium und Phosphor mit dem Quadrupolmoment der Indiumkerne (I = 9/2) eine Linienverbreiterung resultiert, die eine Auflösung der einzelnen Phosphorlagen verhindert.

Anhand von **EDX-Analysen** mit einer Mikrosonde (Rastertunnelmikroskop, DMS 940, Zeiss) wurden die Zusammensetzungen der Proben überprüft. Für das Indium(III)-diphosphat ergab sich ein Gehalt von 33,8% Indium und 66,2% Phosphor, für das Orthophosphat 57,7% Indium und 42,3% Phosphor und für $In_2P_2O_7$ 55,5% Indium und 44,5% Phosphor. Zusätliche Elemente wurden nicht gefunden.

Kristallstrukturen

 $In_2P_2O_7$ ist isostrukturell zu einer ganzen Serie quaternärer Diphosphate mit der allgemeinen Formel $A^{I}M^{III}P_{2}O_{7}$ (A = K, Cs, Rb, Tl, M = V, Cr, Fe, Ti, Yb, Y und Mo) (KAlP₂O₇) [32], KFeP₂O₇ [33], KMoP₂O₇ [34], KVP₂O₇ [35], KYP₂O₇ [36], KCrP₂O₇ [37], KFeP₂O₇ [38], KGaP₂O₇ [38], Cs-MoP₂O₇ [39], CsVP₂O₇ [40], CsYbP₂O₇ [41], CsCrP₂O₇ [42], Cs/RbFeP₂O₇ [43], RbVP₂O₇ [44], RbTiP₂O₇ [45], $TlCrP_2O_7$ [46]), es ist jedoch die einzige bislang bekannte ternäre Verbindung dieses Formeltyps. In der Kristallstruktur von $In_2P_2O_7$, die weder mit der Struktur von $Hg_2P_2O_7$ [47], noch mit den Diphosphaten $M_2P_2O_7$ (M = Cr-Zn [48]) der Thortveitit-Familie verwandt ist, sind zwei kristallographisch unabhängige Positionen für Indium vorhanden. Die eine ist mit In³⁺-Ionen besetzt, welche eine wenig verzerrte oktaedrische Koordination durch sechs Sauerstoffatome (2,09 Å \leq d(In^{III}-O) \leq 2,16 Å) annehmen (Abb. 1a). Die zweite Lage wird von In⁺-Ionen besetzt. Das Kation

wird von zehn Sauerstoffatomen mit Abständen d(In^I-O) zwischen 2,82 Å und 3,41 Å koordiniert (Abb. 1b). Das Koordinationspolyeder zeigt eine auffällig große Lücke in der räumlichen Anordnung der umgebenden Sauerstoffatome. Auf diese Eigenart des Koordinationspolyeders wird in der Diskussion noch eingegangen.

Die Phosphattetraeder [P(1)O₄] und [P(2)O₄] in In₂P₂O₇ sind über das Sauerstoffatom O(5) zu [P₂O₇]⁴⁻-Einheiten (Abb. 2a) verknüpft, welche über zwei Sauerstoffatome als zweizähnige Liganden an ein In³⁺-Ion koordinieren. Alle Abstände d(P-O) (1,49–1,62 Å) und Winkel \angle (O,P,O) in In₂P₂O₇ liegen im typischen Bereich für Diphosphate. Die [PO₄]-Tetraeder stehen, bedingt durch die chelatartige Koordination des Diphosphatanions an ein In³⁺-Ion, nahezu verdeckt. Der Brückenwinkel \angle (P,O,P) beträgt 126,6°.

Die Baugruppen $[In(P_2O_7]^-$ bilden über Eckenverknüpfung ein dreidimensionales Netzwerk (Abb. 3). Jeder Oktaeder ist mit fünf P₂O₇-Einheiten verbunden und jede Diphosphatgruppe teilt ihre terminalen Sauerstoffatome O_t mit fünf verschienenen InO₆-Polyedern. Kanäle entlang [0 0 1] enthalten die In⁺-Ionen. Innerhalb des anionischen Netzwerks [In(P₂O₇]⁻ ergibt sich für die Sauerstoffatome die Koordinationszahl 2 (In^{III} + P^V oder 2 x P^V). Zusätzliche (schwache) Wechselwirkungen zwischen Sauerstoff [O(2), O(3), O(4)] und den In⁺-Ionen wirken sich in einer merklichen Verlängerung (ca. 0,03 Å) des entsprechenden P-O Abstandes aus.

In₄(P₂O₇)₃ Die Elementarzelle enthält vier Formeleinheiten mit vier kristallographisch unabhängigen Lagen für Indium(III). Die Metallionen sind verzerrt-oktaedrisch von sechs Sauerstoffatomen koordiniert, wobei die Abstände d(In^{III}-O) zwischen 2,023(2) Å und 2,263(2) Å liegen (vgl. Tabelle 5). Die starke radiale und angulare Verzerrung der [InO₆]-Oktaeder kommt durch eine paarweise Flächenverknüpfung zu [In₂O₉]-Einheiten zustande (Abb. 1c u. 1d). Die elektrostatische Abstossung zwischen den In³⁺-Ionen innerhalb der Dimere [In₂O₉] zeigt sich im großen Indium-Indium-Abstand (In(1)-In(2) 3,2537(3) Å, In(3)-In(4) 3,2085(3) Å) und in den deutlich längeren Abständen d(In-O) zu den verbrückenden Sauerstoffatomen.

Abb. 2 ORTEP-Darstellung (ATOMS V. 5.1 [59]) der Diphosphatgruppen in $In_2P_2O_7$ (a) und $In_2(P_2O_7)_3$ (b)-(d). Ellipsoide mit 97% Wahrscheinlichkeit, gleiche Skalierung aller Polyeder.

Abb. 1 ORTEP-Darstellung (ATOMS V. 5.1 [59]) der Koordinationspolyeder $[InO_x]$ in $In_2P_2O_7$ $[In(1)O_6$ (a), $In(2)O_{10}$ (b)], und in $In_4(P_2O_7)_3$ ($[In(1)In(2)O_9]$ (c), $[In(3)In(4)O_9$ (d)). Ellipsoide mit 97% Wahrscheinlichkeit, gleiche Skalierung aller Polyeder.

Die $[PO_4]$ -Tetraeder in $In_4(P_2O_7)_3$ sind über die Sauerstoffatome O(18), O(19) bzw. O(20) zu drei symmetrieunabhängigen Diphosphatgruppen verknüpft (Abb. 2b–2d). Die Abstände d(P-O) und Winkel \angle (O,P,O) in In₄(P₂O₇)₃ liegen im typischen Bereich für Diphosphatgruppen. Das heißt, der Abstand d(P-O_b) zu den verbrückenden Sauerstoffatomen ist deutlich länger, als zu terminalen Sauerstoffatomen O_t der Diphosphateinheiten. Diese haben nahezu gestaffelte Konformation. Die Brückenwinkel betragen \angle [P(1),O(18),P(2)] = 161,8(2)°, \angle [P(3),(19),P(5)] = 143,5(2)° und \angle [P(4),O(20),P(6)] = 145,2(2)°. Sie sind somit wesent-

Abb. 3 $In_2P_2O_7$. Projektionen der Kristallstruktur auf die bc-Ebene (a) und entlang der c-Achse (b). [InO₆] dunkelgrau, [PO₄] hellgrau (Zeichnung: ATOMS V. 5.1 [59]).

lich größer als in $In_2P_2O_7$, worin sich das unterschiedliche Koordinationsverhalten der Diphosphatgruppen (einzähnig, zweizähnig) wiederspiegelt.

Die $[In_2O_9]$ -Doppeloktaeder sind in der Kristallstruktur zu Säulen entlang [101] gestapelt, wobei die Dimere durch unbesetzte Oktaederlücken getrennt sind. Die Säulen werden durch Diphosphatgruppen vernetzt. Für die $[P_2O_7]$ -Einheiten werden zwei unterschiedliche Orientierungen, mit dem P-P-Vektor entlang [010], bzw. [101] beobachtet. Durch die alternierende Orientierung entstehen in der Projektion der Kristallstruktur windmühlenartige Kreuze (Abb. 4). Die Verknüpfung der verschiedenen Koordinationspolyeder in $In_4(P_2O_7)_3$ führt für die Sauerstoffatome zu K.Z. $(O^{2-}) = 2 (In + P bzw. 2 x P) bzw. K.Z. <math>(O^{2-}) =$ 3 (2 x In + P).

Diskussion

Die Verbindung $In_2P_2O_7$ stellt das erste Beispiel dar für isolierte In^+ -Ionen in reiner Sauerstoffkoordination. Bemerkenswert sind die ungewöhnlich langen Abstände d(In^I-O) (vgl. Tab. 3), welche sogar noch etwas länger sind als die d(TI-O) im isotypen Diphosphat TlCrP₂O₇ [46]. Die Koordination der In⁺-Ionen deutet zunächst auf stereochemische Aktivität (signifikanten p-Charakter) des einsamen Elektronenpaars hin. Dessen mögliche Orientierung (in Abb. 1b als Vektor dargestellt) wurde entsprechend einem Konzept von Liebau [49] aus den proportional zu d(In^I-O)⁻⁵ gewichteten Abstandsvektoren In^I-O ermittelt. Vergleicht man jedoch entsprechend berechnete Vektoren für

Abb. 4 $In_4(P_2O_7)_3$. Projektionen eines Ausschnitts der Kristallstruktur entlang der [1 0 1]-Richtung (a) und entlang der b-Achse (b). [In(1)In(2)O₉] dunkelgrau, [In(3)In(4)O₉] mittelgrau [PO₄] hellgrau (Zeichnung: ATOMS V. 5.1 [59]).

Thallium(I) und Cäsium(I) in den zu In₂P₂O₇ isotypen Strukturen TlCrP₂O₇ [46] und CsCrP₂O₇ [42], so findet man für Tl^I und das elektronisch isotrope Cs⁺-Ion ebenfalls eine vergleichbare, stark unsymmetrische Verteilung der Sauerstoffliganden. Dieser Befund spricht eher für eine, durch das Gitter bestimmte Verzerrung des Koordinationspolyeders um die einwertigen Kationen. Die Festlegung des Koordinationspolyeders um In^I ist erwartungsgemäß problematisch. Die naive Abzählung aller In-O Wechselwirkungen innerhalb eines Radius, der durch den kürzesten Indium(I)-Kation-Abstand (d(In^I-P^V) = 3,56 Å) gegeben wird, führt zu K.Z. $(In^{I}) = 10$. Anwendung der Konzepte von Hoppe zur Berechnung effektiver Koordinationszahlen ECoN [50] und mittlerer effektiver Ionenradien MEFIR [50] liefert hingegen $ECoN(In^{I}) = 8,0$. Dieser Wert berücksichtigt elf Sauerstoffatome ($d_{max}(In^{I}-O) = 3,70$ Å) mit Beiträgen zur Koordination des einwertigen Indiums. Aus den Rechnungen folgt weiterhin MEFIR $(In^{I}) = 1,50$ A. Die Werte für MEFIR und ECoN der weiteren Ionen in In₂P₂O₇ entsprechen den Erwartungen. Der abgeleitete Ionenradius für In^I in Sauerstoffumgebung liegt im Bereich der Werte, die auch für Rb+- und Tl+-Ionen angegeben werden [51]. Für letztere werden in Tl₂O [52], Tl₄O₃ [53] und Tl₃PO₄ [54] bei K.Z. (Tl^I) = 3 (trigonal-pyramidale Koordination; ψ -tetraedrisch) Abstände d(Tl^I-O) $\approx 2,55$ Å gefunden. Eine mit Thallium(I) besetzte Lage in Tl₄O₃ und insbesondere die beiden Tl^I-Lagen in Tl₄P₄O₁₂ [55] zeigen

jedoch, ähnlich wie In^I in In₂P₂O₇, offenere Koordinationspolyeder mit höheren Koordinationszahlen für die Tl⁺-Ionen und längeren Abständen 2,7 \leq d(Tl^I-O) \leq 3,7 Å. Offenbar besitzt das freie Elektronenpaar am In⁺-Ion in In₂P₂O₇ nur vergleichsweise geringen p-Charakter, wodurch die hohe Koordinationszahl mit langen Abständen In-O resultiert.

Die etwas höheren Auslenkungsparameter für In^I im Vergleich zu In^{III} in In₂P₂O₇ sind Folge der sehr viel größeren Abstände zu den umgebenden Anionen und des offeneren Koordinationspolyeders. MEFIR(In^{III}) in In₂P₂O₇ und $In_4(P_2O_7)_3$ beträgt 0,68 Å und ist damit etwas größer als $MEFIR(Cr^{III}) = 0.56 \text{ Å}$ in vielen Phosphaten [56]. Trotz des Unterschieds wird jedoch häufig Isotypie entsprechender Verbindungen beobachtet [57]. Es wird interessant sein, zu klären, wie weit eine gegenseitige Substitution In³⁺/Cr³⁺ in den Phosphaten möglich ist. In diesem Zusammenhang stellt sich dann auch die Frage nach der korrekten kristallographischen Beschreibung der zu In₄(P₂O₇)₃ isostrukturellen Diphosphate $M_4(P_2O_7)_3$ (M = V [9], Cr [10], Fe [11]). Es existiert ein metrischer Zusammenhang zwischen der monoklinen Elementarzelle von $In_4(P_2O_7)_3$ und den orthorhombischen Zellen der weiteren Vertreter dieses Strukturtyps (vgl. Abschn. Experimentelles - Einkristallstrukturanalysen). Ganz offensichtlich lassen sich die entsprechenden (reziproken) Gitter aber nur zur Hälfte zur Deckung bringen. Es handelt sich also um grundsätzlich unterschiedliche Strukturmodelle, wobei das hier beschriebene Modell für In₄(P₂O₇)₃ die tatsächliche Struktur erheblich besser beschreibt. Ein ähnlicher Zusammenhang wurde von Bärnighausen und Ruck für verschiedene Formen von In5Br7 ausführlich diskutiert [20].

Wir danken Herrn *Stefan Schlüter* (Uni Bonn) für die Aufnahme des Ramanspektrums und Herrn *Dr. Wilfried Hoffbauer* für die ³¹P-MAS-NMR Messung. *Dr. Felix Reinauer* und Herr *Dirk Worch* waren bei der Sammlung der Einkristalldaten behilflich. Diese Arbeit wurde durch den Fonds der chemischen Industrie gefördert.

Literatur

- Beitrag XXXII dieser Reihe: K. Maaß, R. Glaum, R. Gruehn, Z. Anorg. Allg. Chem. 2002, 628, 1663.
- [2] H. Thauern, Teil der geplanten Dissertation, Universität Bonn.
- [3] R. C. L. Mooney, Acta Crystallogr. 1956, 9, 113.
- [4] V. Peltier, P. Deniard, R. Marchand, C. R. Acad. Sci. Paris 1998, 1, 57.
- [5] K. K. Palkina, I. S. Maksimova, M. T. Chibiskova, N. N. Chudinova, *Neorg. Khim.* **1994**, *38*, 1270.
- [6] J. Bentama, J. Durand, L. Cot., Z. Anorg. Allg. Chem. 1988, 556, 226.
- [7] V. Peltier, P. L'Haridon, R. Marchand, Y. Laurent, Acta Crystallogr. 1996, B52, 905.
- [8] Deichman, Inorg. Mater. 1970, 6, 1449.
- [9] K. K. Palkina, I. S. Maksimova, N. T. Chibiskova, K. Schlesinger, G. Ladwig, Z. Anorg. Allg. Chem. 1985, 529, 89.
- [10] K. Watanabe, Bull. Chem. Soc. Jpn. 1976, 9, 3265.
- [11] F. d'Yvoire, Bull. Soc. Chim. Fr. 1962, 1862, 1224.
- [12] N. W. Alcock, H. D. B. Jenkins, J. Chem. Soc., Dalton Trans. 1974, 1907.

- [13] C. P. J. M. van der Vorst, G. C. Verschoor, W. J. A. Maaskant, Acta Crystallogr. 1978, B34, 3333.
- [14] C. P. J. M. van der Vorst, W. J. A. Maaskant, J. Solid State Chem. 1980, 34, 301.
- [15] T. Staffel, G. Meyer, Z. Anorg. Allg. Chem. 1987, 552, 113.
- [16] T. Staffel, G. Meyer, Z. Anorg. Allg. Chem. 1989, 574, 114.
- [17] G. Meyer, Z. Anorg. Allg. Chem. 1981, 478, 39.
- [18] H. P. Beck, Angew. Chem. 1991, 103, 897; Angew. Chem. Int. Ed. Engl. 1991, 30, 824.
- [19] H. Bärnighausen, Z. Kristallogr. 1989, 186, 16.
- [20] M. Ruck, H, Bärnighausen, Z. Anorg. Allg. Chem. 1999, 625, 577.
- [21] H. P. Beck, Z. Naturforsch. 1984, 39b, 310.
- [22] A. Zalkin, D. H. Tempelton, D. Eimerl, S. P. Velsko, Acta Crystallogr. 1986, C42, 1686.
- [23] J. K. Fawcett, V. Kocman, S. C. Nyburg, Acta Crystallogr. 1974, B30, 1979.
- [24] J. Werner, G. Behr, W. Bieger, G. Krabbes, J. Cryst. Growth 1996, 165, 258.
- [25] X. J. Tang, A. Lachgar, Inorg. Chem. 1998, 37, 6181.
- [26] A. X. Iandelli, Gaz. Chim. Ital. 1940, 70, 58.
- [27] H. Thauern, R. Glaum, Z. Anorg. Allg. Chem. in Vorbereitung.
- [28] G. M. Sheldrick, Acta. Crystallogr. 1990, A46, 746.
- [29] L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.
- [30] G. M. Sheldrick, SHELX97 (einschlieβlich SHELXS97, SHELXL97, CIFTAB und SHELXA) – Programs for Crystal Structure Analysis (Release 97-2). Institut für Anorganische Chemie der Universität, Göttingen, Germany, 1998.
- [31] M. Ijjaali, *Dissertation*, Universite Sidi Mohamed Ben Abdallah, Fes, Marokko 1997.
- [32] C. Calvo, H. N. Ng, Canad. J. Chem. 1973, 51, 2613.
- [33] D. Riou, Ph. Labbe, M. Goreaud, Eur. J. Solid State Inorg. Chem. 1988, 25, 215.
- [34] J. J. Chen, Y. P. Wang, K. H. Lii, Acta Crystallogr. 1989, C45, 673.
- [35] L. Benhamada, A. Grandin, M. M. Borel, A. Leclaire, B. Raveau, Acta Crystallogr. 1991, C47, 424.
- [36] A. Hamady, M. Zid Faouzi, T. Jouini, Solid State Chem. 1994, 113, 120.
- [37] S. Gentil, D. Andreica, M. Lujan, P.-J. Rivera, F. Kubel, H. Schmid, *Ferroelectrics* 1997, 204, 35.
- [38] E. A. Genkin, V. Timofeeva, Zh. Strukt. Khim. 1989, 30, 173.
- [39] K. H. Lii, R. C. Haushalter, Acta Crystallogr. 1987, C43, 2036.
- [40] Y. P. Wang, K. H. Lii, Acta Crystallogr. 1989, C45, 1210.
- [41] M. Jansen, G. Q. Wu, K. Koenigstein, Z. Kristallogr. 1991, 197, 245.
- [42] S. A. Linde, Y. E. Gorbunova, Neorg. Mater. 1982, 18, 464.
- [43] E. Dvoncova, K. H. Lii, J. Solid State Chem. 1993, 105, 279.
- [44] U. Flörke, Z. Kristallogr. 1990, 191, 137.
- [45] S. M. Wang, S.-J. Hwu, J. Solid State Chem. 1991, 92, 219.
- [46] W. Bensch, J. Koy, Z. Kristallogr. 1995, 210, 445.
- [47] M. Weil, R. Glaum, Acta Crystallogr. 1997, C53, 1000.
- [48] R. Glaum, Habilitationsschrift, JLU Gießen 1999.
- [49] X. Wang, F. Liebau, Z. Kristallogr. 1996, 211, 437.
- [50] R. Hoppe, Z. Kristallogr. 1979, 150, 23.
- [51] R. D. Shannon, C. T. Prewitt, Acta Crystallogr. 1969, B25, 925.
- [52] H. Sabrowsky, Z. Anorg. Allg. Chem. 1971, 38, 266.
- [53] R. Marchand, M. Tournoux, C. R. Acad. Sci., Sci. Chim. 1973, C277, 863.
- [54] A. Zalkin, D. H. Templeton, D. Eimerl, S. P. Velsko, Acta Crystallogr. 1986, C42, 1686.

- [55] J. K. Fawcett, V. Kocman, S. C. Nyburg, Acta Crystallogr. 1974, B30, 1979.
- [56] R. Glaum, unveröffentlichte Ergebnisse.
- [57] M. Gruß, Dissertation, JLU Gießen 1998.
- [58] North, A. C. T.; Phillips, D. C.; Mathews, F. S. Acta Crystallogr. 1968, A24, 351.
- [59] E. Dowty, ATOMS for Windows. Version 5.1, 1999. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.