

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 125 (2004) 989-996

www.elsevier.com/locate/fluor

Phenyliodine(V) fluorides

Sevim Hoyer, Konrad Seppelt*

Institut für Chemie der Freien Universität, Fabeckstraße 34-36, D-14195 Berlin, Germany

Received 18 November 2003; received in revised form 18 November 2003; accepted 3 December 2003

Available online 28 January 2004

Abstract

The known compound phenyltetrafluoroiodine(V) is shown by X-ray diffraction to have a tetragonal pyramidal structure with an apical phenyl group. This structure is compared to that of IF(OTeF₅)₄, where the apical position is occupied by the fluorine atom. $C_6H_5IF_4$ adds F⁻, forming $C_6H_5IF_5^-$, which has a pentagonal pyramidal structure with an apical phenyl group. Fluoride abstraction from $C_6H_5IF_4$ by SbF₅ results in the formation of the cation $C_6H_5IF_3^+$, which has a pseudotrigonal bipyramidal structure with the phenyl group occupying an equatorial position. Isoelectronic $C_6H_5IOF_2$ has a similar structure, with the phenyl group and oxygen atom both occupying equatorial positions. © 2003 Elsevier B.V. All rights reserved.

Keywords: Phenyliodine tetrafluoride; Phenyltetrafluoroiodine(V); Phenylpentafluoroiodate(1–); Phenyltrifluoroiodonium cation; Phenyldifluorooxoiodine(V); Iodine fluoride; Fluoro(fluorotetrakis(pentafluorotellurato)iodine(V); Structure determination

1. Introduction

The compound $C_6H_5IF_4$ has been known since 1968 [1]. Aryl iodine tetrafluorides can be prepared by three different methods: (1) fluorination of ArI [2]; (2) arylation of IF₅ [3]; and (3) conversion of ArIO₂ into ArIF₄ with SF₄ [1]. It has always been assumed that the aryl group in these compounds is positioned at the apex of a tetragonal pyramid, with the four fluorine atom occupying basal positions. The key evidence for this particular geometric isomer comes from ¹⁹F NMR spectra, which in all cases and under all conditions shows only a single line, and by analogy with the known structures of $C_6F_5IF_4$ and CF_3IF_4 [4,5]. This structure is predicted by a simple bonding model: the longer 3-center-4electron basal bonds in a square pyramid can better accommodate the more electronegative fluorine atoms relative to the shorter apical 2-center-2-electron apical bond.

A precise structure of the parent compound $C_6H_5IF_4$ is presented in this paper. Little is known about the chemical reactions of these compounds, so we have also studied two of their simplest possible reactions, the addition and loss of a fluoride ion. The formation of both IF_6^- and IF_4^+ from IF_5 is known since long [6–9]. The question was whether $C_6H_5IF_4$ can also act as fluoride ion acceptor and/or donor, and what the resulting structures would be. Finally, $C_6H_5IOF_2$, known

0022-1139/\$ – see front matter O 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2003.12.004

since 1901 [10], can be considered as the first hydrolysis product of $C_6H_5IF_4$, (although it is more conveniently prepared from $C_6H_5IO_2$). Its precise structure had not been determined, so it is also reported in this paper.

2. Results and discussions

2.1. $C_6H_5IF_4$

The reaction of C₆H₅IO₂ with SF₄ is the method of choice for the preparation of $C_6H_5IF_4$ [1]. The reaction is nearly quantitative, and the gaseous byproducts can be removed easily. $C_6H_5IF_4$ is a crystalline material with surprising thermal stability to about 300 °C. However, it hydrolyses quickly. The ¹⁹F NMR spectrum shows the same single line regardless of the method of preparation, so there is no indication of geometric isomerism. The chemical shift is somewhat solvent dependent, indicating varying strengths of interaction with various solvents. Crystal structure determinations of iodine(V)fluorides are rare, although the squarepyramidal structure of IF5, with a very complex set of intermolecular interactions, has long been known [11]. More recently, the crystal structures of C₆F₅IF₄ and CF₃IF₄ have appeared [4,5]. In these two molecular structures the expected square pyramidal geometry with the organic substituent in the apical position was confirmed.

Single crystals of $C_6H_5IF_4$ were readily obtained from a diethylether solution at -50 °C. The resulting crystal

^{*}Corresponding author. Fax: +49-30-8385-3310.

E-mail address: seppelt@chemie.fu-berlin.de (K. Seppelt).

Fig. 1. Structure of $C_6H_5IF_4$ in the crystal, ortep representation, 50% probability ellipsoids.

structure is shown in Fig. 1, and interatomic distances and angles are listed in Table 1. While the same basic structure of CF₃IF₄ and C₆H₅IF₄ is clearly evident, the intermolecular interactions are noteworthy. Basal fluorine atoms make contacts to neighboring iodine atoms, resulting in a zigzag chain. The I–F bond lengths (average 194 pm) are longer than in IF₅ (average 187 pm), CF₃IF₄ (average 192 pm), or C₆F₅IF₄ (average 191 pm). This is certainly a consequence of the weaker electron withdrawing power of a C₆H₅ group compared to F, CF₃, or C₆F₅ substituents. The I–C bond length of 207.7 pm is nearly the same as in C₆F₅IF₄ (208 pm) and much shorter than in CF₃IF₄ (222 pm). The average C–I–F angle of 85.35° is slightly larger than the average C–I–F angles in other iodine(V) compounds such as IF₅ (81.9°), CF₃IF₄ (82.1°), and C₆F₅IF₄ (84.3°).

2.2. $IF(OTeF_5)_4$

Although belonging to a different class of compounds, we wanted to compare the molecular structure of $C_6H_5IF_4$ with $IF(OTeF_5)_4$. This compound was first described as the final

Table 1 Important bond distances (pm) and angles (°) of $C_6H_5IF_4$

I–F1	195.7 (3)	F1-I-C1	84.2 (2)
I–F2	194.8 (3)	F2-I-C1	85.7 (1)
I–F3	192.1 (3)	F3-I-C1	85.5 (1)
I–F4	193.6 (3)	F4-I-C1	86.0 (2)
I–C1	207.7 (4)		
C–C	137.7 (4)-140.0 (4)		
C–H	87 (3)-96 (4)		
I· · ·F1	307.4 (3)	C1– I ··· $F1$	146.5 (2)
$I{\cdot}{\cdot}{\cdot}F2$	323.4 (3)	$C1I\text{-}\cdot\text{+}F2$	142.2 (2)
-			

reaction product of IF₅ and B(OTeF₅)₃, and this is still the method of choice for its preparation [12,13]. Note that the fifth fluorine atom is not substituted in this reaction. But the compound I(OTeF₅)₅ can be made by the reaction of I(OTeF₅)₃ with Xe(OTeF₅)₂ [12,13].

Analysis of the ¹⁹F NMR spectrum of $IF(OTeF_5)_4$ led to the conclusion that the fluorine atom occupies the axial position and the four OTeF₅ groups occupy the four equivalent basal positions of a square pyramid. This assignment is confirmed by the single crystal X-ray structure determination. Interatomic distances and angles are listed in Table 2. The structure, shown in Fig. 2, consists of square pyramidal IF(OTeF₅)₄ molecules with only weak intermolecular interactions (similar to the weak interactions typically observed in most OTeF₅ compounds). There is the same umbrella-type structure observed for $C_6H_5IF_4$. The F–I–O angles are 85.50 and 80.23°. The noteworthy difference is the apical fluorine atom. This finding once has led to the unlikely conclusion that the OTeF₅ group may be more electronegative than fluorine [12,13]. However, the preference of substituents for apical versus basal positions seems to be governed by other,

Table 2			
Important bond	distances (pm)	and angles	(°) of FI(OTeF ₅) ₄

I–F1	182.7(4)	F1-I-O1	85.5 (1)
I01	193.9(3)	F1-I-O2	80.2 (1)
I02	200.6(3)	O1–I–O1′	171.0 (2)
Te1-O1	188.3(3)	O2–I–O2′	160.5 (2)
Te2-O2	186.0(3)	O1–I–O2	87.7 (7)
Te-F	181.5(3)-184.0(3)	F-Te-F	87.0 (1)-91.3 (2),
			176.1 (1)-178.5 (1)
		F-Te-O	88.4 (1)-92.8 (2),
			177.5 (1), 178.4 (1)

Fig. 2. Structure of $FI(OTeF_5)_4$ in the crystal, ortep representation, 50% probability ellipsoids.

more subtle effects than in addition to substituent electronegativity. Nevertheless, it should be kept in mind that $OTeF_5$ containing compounds are often quite similar to the corresponding fluorides.

2.3. $C_6H_5IF_5^-$

The intermolecular I···F contacts in $C_6H_5IF_4$ indicate that the iodine atom might act as a fluoride ion acceptor and the fluorine atoms as donor ligands. The chemical realization in the first case would be the reaction of $C_6H_5IF_4$ with F⁻. We have chosen 1,1,3,3,5,5-hexamethylpiperidinium fluoride (pip⁺F⁻) as a source of F⁻ [14]. This salt contains a large quaternary ammonium cation and can thus be considered a source of nearly "naked" fluoride ions. Its F⁻ donor ability is better than those of the more commonly used reagents CsF and (CH₃)₄N⁺F⁻ [15]. Furthermore, the irregular shape of the cation does not promote crystallographic disorder as does the symmetric geometry of the (CH₃)₄N⁺ cation. The multistep preparation of pip⁺F⁻ is the price one must pay to accrue these advantages [14].

The compound $C_6H_5IF_4$ reacted with pip⁺F⁻ in acetonitrile at -30 °C, forming colorless, hydrolytically sensitive pip⁺C₆H₅IF₅⁻. The compound was characterized by Raman and NMR spectroscopy and by its single crystal structure determination. The ¹⁹F NMR spectrum shows only one line, indicating either static or dynamic equivalence of all five fluorine atoms. The crystal structure, shown in Fig. 3, revealed the composition pip⁺ C₆H₅IF₅⁻·CH₃CN. Interatomic distances and angles are listed in Table 3. The acetonitrile molecules act as spacers between the cation/

Fig. 3. Structure of $C_6H_5IF_5^-$ in pip⁺ $C_6H_5IF_5^-$ CH₃CN. Shown is the weakly associated dimeric anion. For an overview of the entire structure see deposited data.

anion layers and do not seem to have much influence on the coordination geometry of the iodine atom.

There are weak interactions between the fluorine atoms and the methyl protons of the pip⁺ cation. Interestingly, the anions come in pairs due to four weak I···F interactions of 324.5(1) and 339.2(1) pm length. Each $C_6H_5IF_5^-$ anion has the shape of a regular pentagonal IF₅ unit with an apical phenyl group. Compared with $C_6H_5IF_4$, the I–F bonds are elongated to 202 pm (average) and the I–C bond is elongated to 209.4(1) pm. The C–I–F angles are below 90° (84.76(5)– 88.73(5)°). Such pentagonal molecular geometries are rare, but not without precedent. Two relevant example are XeF₅⁻ [16] and IF₅²⁻ [17]. Even more relevant are the chemically similar anions XeOF₅⁻ [18,19] and IOF₅²⁻ [20] that have the same pentagonal-pyramidal structure. The first examples of pentagonal-pyramidal coordination was observed in isoelectronic Te(IV) dithiocarbamates [21].

It would have been difficult to predict the correct structure for $C_6H_5IF_5^-$. Although the aforementioned anions all contain the pentagonal AF₅ unit, the related species IF₆⁻

Table 3 Important bond distances (pm) and angles (°) of $C_6H_5IF_5^-$ in $pip^+C_6H_5IF_5^-$ ·CH₃CN

11 0 5 5 5	
I–F1	203.4 (1)
I–F2	202.1 (1)
I–F3	201.2 (1)
I–F4	200.6 (1)
I–F5	202.7 (1)
I-C1	209.4 (2)
C–C	138.4 (2)–139.1 (2)
C-H	92 (2)-96 (2)
$I \cdot \cdot \cdot F2$	339.2 (1)
$I \cdot \cdot \cdot F3$	324.9 (1)
F–I–F	71.21 (4)-72.57 (4)
	142.34 (4)–144.33 (4)
F1-I-C1	88.64 (5)
F2-I-C1	84.76 (5)
F3-I-C1	88.34 (5)
F4-I-C1	85.73 (5)
F5-I-C1	85.97 (5)

and XeF₆ are best described as C_{3v} -monocapped ψ -octahedra (for a short review on the structure of XeF₆ in the gaseous state [9,22,23]). The reason for this structural ambiguity is clearly the number of seven electron pairs at iodine. It is well known that the three possible geometries for an AF₇ species (pentagonal bipyramid and C_{3v}- and C_{2v}-monocapped octahedra) are very close in energy. To complicate matters further, some AB₆E species (E: nonbonding electron pair), such as BrF₆⁻ and ClF₆⁻, have regular octahedral geometries [14,24–27]. Octahedral symmetry seems to prevail when the central atom is small or the ligand atoms are large (TeI₆²⁻) [28]. The strong band at 503 cm⁻¹ in the Raman spectrum of $pip^+C_6H_5IF_5^-$ has been tentatively assigned to $v_s(IF_5)$ (assuming local C_{5v} symmetry) by analogy with the assignments for XeOF₅⁻ and IOF₅²⁻, where the corresponding bands are found at 451 and 485 cm⁻¹.

2.4. $C_6H_5IF_3^+ SbF_6^-$

The reaction of C₆H₅IF₄ with SbF₅ in anhydrous HF afforded $C_6H_5IF_3^+SbF_6^-$ as colorless platelets. The compound is stable only below -20 °C. The crystal structure, shown in Fig. 4, revealed that the cation and anion are interconnected by Sb-F···I bridges, resulting in a chainlike arrangement. Interatomic distances and angles are listed in Table 4. The angles within the SbF_6^- anions are close to 90 and 180°. The Sb-F distances involving the bridging F atoms are only slightly elongated. If the cations are viewed as isolated species, they exhibit the expected SF₄-type structure, with a relatively linear F–I–F fragment $(163.0(2)^{\circ})$ with I–F bond length of 189.4(3) and 189.9(3) pm. The third fluorine atom (I-F = 182.1(3) pm)and the ipso carbon atom (I-C = 208.4(5) pm) occupy equatorial positions in the pseudo-trigonal-bipyramidal structure. The cations ClF_4^+ , BrF_4^+ , and IF_4^+ all have similar structures [29]. The two Sb-F...I contacts to neighbouring SbF_6^- units in $C_6H_5IF_3^+SbF_6^-$ complete the pseudo-pentagonal-bipyramidal structure with two axial fluorine atoms. The chain-like arrangement of cations and anions is very similar to the crystal structures of ClF₄⁺SbF₆⁻ and BrF₄⁺SbF₆⁻. In IF₄⁺SbF₆⁻, however, the cation-anion interactions result in a nine-coordinate environment around the iodine atom. In summary, the five equatorial positions in $C_6H_5IF_3^+SbF_6^-$ are occupied by the

Fig. 4. Structure of $C_6H_5IF_3^+SbF_6^-$, ortep representation, 50% probability ellipsoids. Shown is the bridged cation-anion chain.

Fig. 5. Structure of $C_6H_5IOF_2$ the four crystallographic different molecules, ortep representation, 50% probability ellipsoids.

phenyl-group carbon atom, one strongly bonded fluorine atom, two bridging fluorine atoms from SbF_6^- anions, and the non-bonding electron pair. A similar pentagonal environment but with three strongly bonded fluorine atoms in a T shape and two longer contacts to fluorine atoms from neighboring molecules was found in crystalline IF₃ [30].

Table 4 Important bond distances (pm) and angles (°) of C₆H₅IF₃⁺SbF₆⁻

inces (pin) and angles () of e6115113 5516
182.7 (3)
189.9 (3)
189.4 (3)
208.4 (5)
136.8 (9)-139.6 (10)
85 (5)-95 (6)
187.9 (3)
186.6 (3)
191.5 (3)
186.3 (3)
187.7 (3)
186.2 (3)
255.9 (3)
279.9 (3)
82.0 (2)
81.8 (2)
163.0 (2)
96.5 (2)
87.4 (2)
89.2 (2)
117.2 (2)
88.4 (2)–91.6 (2), 176.9 (2)–179.6 (2)

2.5. $C_6H_5IOF_2$

The original preparation of $C_6H_5IOF_2$ is easily reproduced [10]. It is a colorless crystalline solid that is stable up to 216°, at which temperature it decomposes with a mild explosion. The two fluorine atoms are equivalent by ¹⁹F NMR spectroscopy. In the Raman spectrum the I=O and IF stretching frequencies can be assigned. A pseudo trigonal bipyramidale structure is established by a single crystal structure determination. There are four crystallographically distinct molecules in the asymmetric unit as shown in Fig. 5 and Table 5. The average I–F bond distance of 195.5(3) is only a little longer

Table 5

Important bond distances (pm) and angles (°) of $C_6H_5IOF_2$, four crystallographic different molecules in the unit, n = 1-4

I(n) = O(n)	179.0(A) 178.1(A) 177.9(A) 178.6(A)
I(n) = O(n) I(n) = F(n1)	1010(4), 1701(4), 177.5(4), 1700(4) 1010(3), 1062(3), 1053(3), 1030(3)
I(n) = I(n1) I(n) = F(n2)	104.9(3), 196.2(3), 195.3(3), 195.9(3)
I(n) - F(n2)	190.9 (3), 195.0 (3), 190.3 (3), 190.8 (3)
I(n)-C(n1)	210.1 (6), 210.7 (5), 209.7 (5), 209.1 (5)
C–C	135.3 (9)-139.7 (8)
C–H	78 (5)-101 (5)
I···O	266.9 (4), 271.1 (4), 272.6 (4), 288.5 (4),
	290.2 (4), 291.2 (4)
I···F	303.8 (3), 329.2 (3)
O(n)-I(n)-F(n1)	90.9 (2), 90.1 (2), 91.6 (2), 90.0 (2)
O(n)-I(n)-F(n2)	91.6 (2), 91.1 (2), 92.0 (2), 93.2 (2)
O(n)-I(n)-C(n1)	99.4 (2), 101.2 (2), 100.0 (2), 98.7 (2)
F(n1)-I(n)-F(n2)	171.3 (1), 174.0 (2), 173.2 (2), 170.7 (3)
F(n1)-I(n)-C(n1)	85.8 (2), 86.4 (2), 86.5 (2), 87.4 (2)
F(n2)-I(n)-C(n1)	85.6 (2), 87.6 (2), 87.2 (2), 83.5 (2)

than in the isoelectronic species $C_6H_5IF_3^+$. The average I–O bond length of 178.4(4) pm is typical for an I=O double bond. The solid-state packing is dominated by I=O···I bridges of 266.9(4), 271.1(4), and 272.6(4) pm, resulting in infinite molecular chains. The chains are interconnected by longer I=O···I contacts (288.2(4), 290.2(4), and 291.2(4) pm) and I–F···I contacts (>300 pm), resulting in the formation of infinite double chains.

3. Experimental details

3.1. General techniques

All reactions were performed in dried glass or PFA (Polyperfluoroethene perfluorovinylether) tubes under an argon atmosphere or under vacuum. Solvents were dried using conventional procedures. Water- and oxygen-sensitive compounds were handled in an argon-filled dry box (UB 150 B/G) with residual H_2O/O_2 contents of less than 1 ppm.

NMR spectra were recorded on a 400 MHz multinuclear JEOL Lambda 400 spectrometer. Chemical shifts are relative to tetramethylsilane (¹H, ¹³C) or CFCl₃ (¹⁹F). Raman spectra were recorded in glass or PFA capillaries with a Bruker model RFS 100 FT-Raman spectrometer using 1064 nm Nd-YAG laser excitation and an energy of 5–550 mW.

Single crystal structures were determined using an Enraf-Nonius CAD 4 four circle diffractometer or on a Bruker Smart-CCD-1000 M diffractometer. Both instruments are equipped with a Mo K α , ($\lambda = 0.71073$ pm) X-ray source and a graphite monochromator. Crystals were cut, when necessary, and mounted under cooled nitrogen using a special device of local design [31]. Absorption correction: CAD4: ψ scan method, CCD: equilibration of symmetry related reflections (SADABS procedure). Solution and

 Table 6

 Experimental detail for the crystal structure determinations

refinement of the structures were done using the SHELXL programs version 1993 and 1997 [32]. All atoms except hydrogen are refined anisotropically. Hydrogen atoms are refined with one (isotropic) displacement factor for all hydrogen atoms.

3.2. Starting materials

 $C_6H_5IO_2$ [33], B(OTeF₅)₃ [34], 1,1,3,3,5,5 hexamethylpiperidiumfluoride [14] are prepared following literature procedures. SF₄, IF₅, and SbF₅ are available from laboratory stock and are vacuum distilled prior to use. IF₅ is treated with a small pressure of elemental fluorine prior to the distillation to remove traces of elemental iodine. Anhydrous HF is obtained by several distillations in metal vacuum lines from commercial HF (~99%).

3.3. Synthesis of C_6H_5 -IF₄

A 50 ml stainless steel autoclave is filled with 4.72 (20 mmol) C₆H₅IO₂, and 13 ml CHCl₃ is added [1]. At $-196 \,^{\circ}$ C 6.5 g (60 mmol) SF₄ is condensed in. The autoclave is heated 2 h at 70, 100, and 130°, and finally 3 h at 150 $\,^{\circ}$ C. At room temperature all volatile material is pumped into a -196° cold trap and disregarded. C₆H₅IF₄ is obtained essentially quantitative as a slightly yellow, hydrolytically sensitive crystalline solid. ¹⁹F(Et₂O) $\delta = -25.63$ ppm. Suitable crystals are obtained from a Et₂O solution that is cooled slowly to $-50 \,^{\circ}$ C. Experimental details of the crystal structures and results are laid down in Tables 1 and 6.

3.4. Synthesis of 1,1,3,3,5,5 hexamethyl piperidinium phenyl pentafluoro iodate pip⁺ $C_6H_5IF_5^-$

In the drybox 140 mg (0.5 mmol) $C_6H_5IF_4$ and 150 mg (0.8 mol) pip⁺F⁻ are weighed into a 12 mm inner diameter

-					
Compound	$C_6H_5IF_4$	FI(OTeF ₅) ₄	pip ⁺ C ₆ H ₅ IF ₅ ⁻ CH ₃ CN	$C_6H_5IF_3^- \ SbF_6^-$	C ₆ H ₅ IOF ₂
Formula	C ₆ H ₅ F ₄ I	F ₂₁ IO ₄ Te ₄	C ₁₈ H ₃ F ₅ IN ₂	C ₆ H ₅ F ₉ ISb	C ₆ H ₅ F ₂ IO
a (pm)	597.8 (1)	1912.5 (3)	1173.0 (2)	556.4 (1)	833.37 (2)
b (pm)	1058.5 (1)	992.5 (1)	1756.5 (2)	2401.7 (6)	1201.49 (4)
<i>c</i> (pm)	1181.8 (1)	985.6 (1)	1059.7 (2)	867.3 (2)	1603.48 (5)
α (pm)	90.0	90.0	90.0	90.0	69.183 (2)
β (pm)	90.0	96.39 (1)	92.65 (1)	105.90 (1)	81.145 (2)
γ (pm)	90.0	90.0	90.0	90.0	70.602 (2)
$V (10^{6} \text{pm}^{3})$	748	1859 (4)	2181 (5)	1114.6 (4)	1141.4 (1)
I (°C)	-128	-100	-120	-80	-80
Space group	$P2_1cn(No33)$	C2/c	$P2_1/c$	$P2_1/c$	$P\overline{1}$
Z reflections	4	4	4	4	8
Measured	2954	8822	27349	13260	11731
Independent	2758	2342	6656	3320	8372
Parameters	121	133	342	171	422
Instrument	CAD4	CCD	CCD	CCD	CCD
R_1	0.019	0.026	0.031	0.035	0.031
wR_2	0.048	0.061	0.054	0.058	0.059

PFA reaction vessel. With help of a glass vacuum line 5 ml acetonitril are condensed in at -196 °C. The mixture is warmed under stirring to -30 °C, and both solids dissolve. After a short period a colorless precipitation occurs. Further stirring for 1 h at -30 °C completes the reaction. The supernatant solvent is removed, the crystalline solid is washed with little CH₃CN at -30 °C, followed by drying in high vacuum at -30 °C. The colorless product is very sensitive against moisture, and stays undecomposed at room temperature only for minutes, due to loss of acetonitril from the lattice.

¹⁹F NMR (CD₃CN, -25 °C). $\delta = 10$ ppm, broad. Raman spectrum (crystalline -40 °C, cm⁻¹): 3091 (vw), 3074 (vw), 3039 (vw), 2960 (w), 2931 (w), 2910 (vw), 2873 (vw), 2254 (w), 2110 (w), 1582 (vw), 1567 (vw), 1470 (w), 1427 (vw), 1370 (vw), 1263 (w), 1176 (vw), 1135 (w), 1096 (vw), 1045 (w), 1033 (vw), 1016 (w), 1004 (vw), 995 (w), 970 (w), 941 (w), 916 (vw), 904 (w), 830 (w), 818 (w), 784 (w), 660 (w), 609 (w), 570 (w), 552 (w), 503 (v_sIF₅) (s), 474 (w), 425 (w), 372 (m), 351 (w), 340 (w), 317 (w), 298 (w), 270 (w), 251 (m), 226 (w), 174 (w), 155 (w), 106 (vs).

Single crystals are obtained from a CH_3CN solution by slow cooling from 10 to -35 °C. Results see Tables 3 and 6.

3.5. Synthesis of $C_6H_5IF_3^+SbF_6^-$

In the dry box 140 mg (0.5 mol) $C_6H_5IF_4$ are weighed into a PFA reaction vessel of 6.5 mm inner diameter. 3 ml anhydrous HF and 200 mg (0.9 mmol) SbF₅ are condensed into the vessel with help of a metal vacuum line at -196 °C. The vessel is sealed and warmed to -30 °C under shaking. Slow cooling to -80 °C affords colorless platelets of $C_6H_5IF_3^+SbF_6^-$. Experimental details and results of the single crystal structure determination are laid down in Tables 4 and 6. Above -20 °C the compound turns blue, finally black under decomposition.

¹⁹F NMR (SO₂, -60 °C): δ = -39.9 (I–F), -111.4 (SbF, broad). ¹H NMR (SO₂, -60 °C): δ = 7.116.83 ppm. Raman (crystalline -100 °C cm⁻¹): 2973 (w), 2927 (w), 2877 (w), 1454 (w), 1095 (w), 1052 (w), 882 (m), 807 (w), 732 (s), 577 (s), 203 (w).

3.6. Synthesis of $C_6H_5IOF_2$

3.5 mg (14.8 mol) $C_6H_5IO_2$ are weighted into a 200 ml PFA vessel [10]. 40% HF in H₂O is added until the $C_6H_5IO_2$ is completely dissolved at room temperature. The solution is heated for 30 min to 60 °C, then cooled to room temperature, then to 0 °C. Colorless needles are crystallizing out. The supernatant solution is decanted, and the product is dried in vacuum at 25 °C. The yield is essentially quantitative. $C_6H_5IOF_2$ is moisture sensitive, and decomposes at 224 °C under mild explosion. It is little (CH₃CN) or not soluble in organic solvents such as CH₂Cl₂, CFCl₃.

¹⁹F NMR (CD₃CN): $\delta = -29.7$ ppm. Raman (crystalline 25 °C, cm⁻¹): 3070 (w), 1581 (vw), 1564 (vw), 1185 (vw), 1167 (vw), 1013 (m) (vIO), 992 (w), 821 (w), 787 (v_sIF) (s),

730 (w), 657 (w), 653 (w), 605 (vw), 527 (w), 509 (w), 384 (vw), 330 (w), 319 (w), 299 (w), 264 (m), 254 (m), 216 (w), 140 (m).

Experimental details and results of the single crystal structure determination see Tables 5 and 6.

3.7. Synthesis of FI(OTeF₅)₄

In the dry box 2 g (2.7 mmol) B(OTeF₅)₃ are weighed in a PFA reaction vessel of 12 mm inner diameter, equipped with a magnetic stirring bar. At the metal vacuum line 5 ml CFCl₃ and 0.44 g (2 mmol) IF₅ are condensed into the vessel at -196 °C. The mixture is warmed under stirring to -20 °C, gas evolution (BF₃) sets in. The gas is occasionally pumped off. After termination of the gassing all volatile materials are pumped away between -40 and -20 °C. The colorless product is crystallized from $n-C_4F_9-SO_2F$. FTe(OTeF₅)₄ is moisture sensitive and decomposes slowly at room temperature.

¹⁹F NMR (SO₂ClF, -20 °C): ab₄x spectrum, $\delta_a = -46.5$, $\delta_b = -35.5$, $\delta_x = 99.5$ ppm, $J_{ab} = 180$ Hz, J^{125} Te- $F_b = 3696$ Hz. Raman spectrum (crystalline -50 °C, cm⁻¹): 1439 (w), 1218 (m), 1209 (w), 952 (w), 923 (w), 824 (w), 709 (s), 672 (vs), 663 (s), 627 (m), 502 (m), 477 (m), 428 (vs), 323 (m), 307 (m), 261 (m), 251 (m), 235 (m), 202 (w), 164 (m), 129 (vs), 107 (m).

Suitable single crystals for the crystal structure determination are obtained from a solution in SO₂ClF by cooling from -20 to -78 °C. Experimental details and results of the crystal structure determination see Tables 2 and 6.

Crystallographic data (excluding structure factors) for the structures of the phenyliodine compounds have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 216480 ($C_6H_5IF_4$), CCDC 214290 ($pip^+C_6H_5IF_5^-$), CCDC 214289 ($C_6H_5^-IF_3^+SbF_6^-$), and CCDC 214291 ($C_6H_5IOF_2$). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (Fax: (+44)1223-336033 or E-mail: deposit@ccdc.com.ac.uk.)) The crystallographic data of FI(OTeF_5)_4 can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen (Fax: (+49)7247-808-666; E-mail: crysdata@fiz-karlsruhe.de), by quoting the depository number CSD 413244.

Acknowledgements

This work has been supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

 L.M. Yagupol'skii, V.V. Lyalin, L.A. Alekseyeva, Zh. Obshch. Khim. 38 (1968) 2813.

- [2] I.I. Maletina, V.V. Orda, N.N. Aleinikov, B.L. Korsunskii, L.M. Yagupol'skii, Zh. Org. Khim. 12 (1976) 1371.
- [3] H.J. Frohn, Chem. Ztg. 108 (1984) 146.
- [4] R. Minkwitz, R. Bröchler, H. Preut, Z. Anorg. Allg. Chem. 621 (1995) 1247.
- [5] H.J. Frohn, S. Görg, G. Henkel, M. Lage, Z. Anorg. Allg. Chem. 621 (1995) 1251.
- [6] K.O. Christe, J.P. Guertin, W. Sawodny, Inorg. Chem. 7 (1968) 626.
- [7] H. Klamm, H. Meinert, P. Reich, K. Wittke, Z. Chem. 393 (8) (1968) 469.
- [8] K.O. Christe, Inorg. Chem. 11 (1972) 1215.
- [9] K. Seppelt, Angew. Chem. 103 (1991) 309; Angew. Chem. Int. Ed. Engl. 30 (1991) 323.
- [10] R.F. Weinland, W. Stille, Chem. Ber. (1901) 2631.
- [11] R.D. Burbank, G.R. Jones, Inorg. Chem. 13 (1974) 1071.
- [12] D. Lentz, K. Seppelt, Angew. Chem. 90 (1978) 390.
- [13] D. Lentz, K. Seppelt, Z. Anorg. All. Chem. 460 (1980) 5.
- [14] A.R. Mahjoub, X. Zhang, K. Seppelt, Chem. Europ. J. 1 (1995) 261.
 [15] K.O. Christe, W.W. Wilson, R. Bau, J. Feng, in: K.O. Christe, H.D.B. Jenkins (Eds.), J. Am. Chem. Soc. 112 (1990) 7619. For a quantita-
- tive determination of the "Nakedness" of fluoride ion sources 125(2003)9457.
- [16] K.O. Christe, E.C. Curtis, D.A. Dixon, H.P. Mercier, J.C.P. Sanders, G.J. Schrobilgen, J. Am. Chem. Soc. 112 (1991) 3351.
- [17] K.O. Christe, W.W. Wilson, G.W. Drake, D.A. Dixon, J.A. Boatz, R.Z. Gnann, J. Am. Chem. Soc. 120 (1998) 4711.
- [18] A. Ellern, K. Seppelt, Angew. Chem. 107 (1995) 1772;
 Angew. Chem. Int. Ed. Engl. 34 (1995) 1586.
- [19] K.O. Christe, D.A. Dixon, J.C.P. Sanders, G.J. Schrobilgen, S.S. Tsai, W.W. Wilson, Inorg. Chem. 34 (1995) 1868.

- [20] K.O. Christe, W.W. Wilson, D.A. Dixon, J.A. Boatz, J. Am. Chem. Soc. 121 (1999) 3382.
- [21] D. Dakternieks, R. DiGiacomo, R.W. Gable, B.F. Hoskins, J. Am. Chem. Soc. 110 (1988) 6762.
- [22] K. Seppelt, D. Lentz, Progr. Inorg. Chem. 29 (1982) 167.
- [23] A. Ellern, A.R. Mahjoub, K. Seppelt, Angew. Chem. 108 (1996) 1198;
 - Angew. Chem. Int. Ed. Engl. 35 (1996) 1123
- [24] A.R. Mahjoub, A. Hoser, J. Fuchs, K. Seppelt, Angew. Chem. 102 (1989) 1528;
- Angew. Chem. Int. Ed. Engl. 28 (1989) 1526.
- [25] K.O. Christe, W.W. Wilson, Inorg. Chem. 28 (1989) 3275.[26] W.W. Wilson, K.O. Christe, Inorg. Chem. 28 (1989) 4172.
- [27] K.O. Christe, R.V. Chirakal, J.C.P. Sanders, G.J. Schrobilgen, W.W. Wilson, Inorg. Chem. 29 (1990) 3506.
- [28] K. Seppelt, Acc. Chem. Res. 36 (2003) 147.
- [29] K.O. Christe, X. Zhang, J.A. Sheehy, R. Bau, J. Am. Chem. Soc. 123 (2001) 6338;
 A. Vij, F.S. Tham, V. Vij, W.W. Wilson, K.O. Christe, Inorg. Chem.
 - 41 (2002) 6397.
- [30] S. Hoyer, K. Seppelt, Angew. Chem. 112 (2000) 1512; Angew. Chem. Int. Ed. Engl. 39 (2000) 1448
- [31] T. Kottge, D. Stahlke, J. Appl. Crystallogr. 26 (1993) 615.
- [32] (a) G.M. Sheldrick, Program for Crystal Structure Solution, Universität Göttingen, Germany, 1993; (b) G. M. Sheldrick, Program for Crystal Structure Refinement, Universität Göttingen, Germany, 1998.
- [33] M.W. Formo, J.R. Johnson, Org. Synth. 22 (1942) 73.
- [34] F. Sladky, H. Kropshofer, O. Leitzke, J. Chem. Soc. Chem. Commun. (1973) 134.