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Iodine is shown to be an efficient catalyst for a one-step, three-component aza-Friedel–Crafts reaction of
activated arenes or heteroarenes with benzyl or tert-butyl carbamates in combination with a wide variety
of aldehydes in toluene under ‘open-flask’ and mild conditions. In the presence of 5 mol % of iodine in tol-
uene at room temperature, the reaction gives the corresponding N-CBz or N-Boc protected a-branched
amines, selectively, in good to excellent yields.

� 2012 Published by Elsevier Ltd.
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An important structural motif, which is found in various natural
products and drugs with well recognized pharmacological proper-
ties, is the a-branched amine skeleton.1 A frequently used method
for the synthesis of functionalized a-branched amine derivatives is
the aza-Friedel–Crafts reaction (AFCR) between electron-rich aro-
matic/heteroaromatic compounds and imine derivatives.2,3 How-
ever, most of the reported methods are multi-step processes and
require highly electrophilic imine acceptors such as those derived
from glyoxalates,4 and trifluoroacetaldehyde.5 In contrast, less acti-
vated imine substrates, such as the imines of aromatic aldehydes,
generally evolve according to a double Friedel–Crafts process to
afford symmetrical triarylmethanes due to the intrinsic instability
of the intermediate benzylamine under the acidic reaction
conditions.6

Three-component AFCRs have become an efficient and powerful
tool for the construction of the corresponding a-branched amines,
diarylmethylamines, because of the fact that the desired products
are formed in a one-pot reaction without isolation of the interme-
diates under standard reaction conditions.6b,7,8 However, most of
the examples reported to date are limited to the reactions of in-
doles or 2-naphthols, amides or urea, and non-enolizable, most
notably, aryl aldehydes.8–10 Furthermore, some of the reported
methods suffer from disadvantages such as the use of expensive
and corrosive reagents, high catalyst loading, long reaction times,
strongly acidic conditions, low yields of products, and the use of
microwave or ultrasonic irradiation.9 Therefore, to avoid these lim-
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itations, the development of methods utilizing aromatic and het-
eroaromatic systems, amine sources, aldehydes, easily available
catalysts with high catalytic activity, and short reaction times for
the preparation of diarylmethylamine derivatives is still desirable.

Molecular iodine has been used as an efficient catalyst for sev-
eral chemical transformations.11 As part of our interest in the
employment of molecular iodine as an alternative, simple, inex-
pensive, and less toxic reagent,12 herein we report a highly efficient
one-pot, three-component aza-Friedel–Crafts reaction of electron-
rich arenes or heteroarenes, aldehydes, and benzyl or tert-butyl
carbamates under mild conditions (Scheme 1).

For initial optimization of the reaction conditions, 1,3,5-trime-
thoxybenzene (1a), benzaldehyde (2a), and benzyl carbamate
(3a) were chosen as model substrates, using 10 mol % of I2 as the
catalyst. The solvent effect was also examined. The results are
listed in Table 1. It was observed that when non-polar and weakly
polar solvents such as toluene, CH2Cl2, or THF were used, the reac-
tion gave 4a as the major product (80–81%) and only a trace
amount of double-addition product 5a (entries 1–3). The use of
polar aprotic and polar protic solvents such as CH3CN and
CH3OH, respectively, was less effective and lower product yields
of 48–71% were obtained (entries 4, 5). It should be noted that
RH toluene, rt Ar R

R = benzyl, tert-butyl

Scheme 1. I2-catalyzed three-component aza-Friedel–Crafts reaction.
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Table 1
Model and optimization studiesa

I2, solvent
air, rt
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1a 2a

MeO

CHO Ph

5a

MeO

MeO

OMe

OMe
MeO OMe
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Entry Catalyst (mol %) Solvent Time (h) Products yieldb (%)

4a 5a

1 10 Toluene 2 81 Trace
2 10 CH2Cl2 2 80 3
3 10 THF 2 81 3
4 10 CH3CN 2 71 Trace
5 10 CH3OH 5 48 25
6 10 — 12 51 Trace
7 20 Toluene 2 73 Trace
8 5 Toluene 2 87 Trace
9 0 Toluene 24 —c —c

a Reaction conditions: 1a (1 mmol), 2a (1.1 mmol), 3a (1 mmol), I2, solvent (1 mL), room temperature.
b Isolated yield.
c No reaction based on TLC analysis.

Table 2
I2-catalyzed reaction of arene 1a, benzyl or tert-butyl carbamates, and various
aldehydesa
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MeO

MeO
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MeO OMe
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H2NCO2R2 3

I2 (5 mol%)
toluene, rt

MeO
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OMe

R1CHO

+1a 2
4

3a: R2 = Bn
3b: R2 = t-Bu

Entry R1 R2 Products yieldb (%)

1 C6H5 Bn 4a (87) 5a (trace)
2 4-FC6H4 Bn 4b (97) 5b (3)
3 4-ClC6H4 Bn 4c (82) 5c (4)
4 4-BrC6H4 Bn 4d (86) 5d (3)
5 4-O2NC6H4 Bn 4e (50) 5e (28)
6 4-O2NC6H4 Bn 4e (72)c 5e (6)c

7 4-MeOC6H4 Bn 4f (77) 5f (5)
8 Cyclopentyl Bn 4g (63) 5g (—)
9 C6H5 t-Bu 4h (97) 5a (—)

10 4-FC6H4 t-Bu 4i (92) 5b (—)
11 4-ClC6H4 t-Bu 4j (68) 5c (—)
12 4-O2NC6H4 t-Bu 4l (37) 5e (16)
13 4-O2NC6H4 t-Bu 4l (56)d 5e (10)d

14 4-MeOC6H4 t-Bu 4m (80) 5f (—)
15 Cyclopentyl t-Bu 4n (63) 5g (—)

a Reaction conditions: 1 (1 mmol), 2 (1.1 mmol), 3 (1 mmol), I2 (5 mol %), toluene
(1 mL), room temperature.

b Isolated yield.
c The reaction was carried out using I2 (10 mol %) in toluene.
d The reaction was carried out using I2 (10 mol %) in THF.
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symmetrical triarylmethane 5a was obtained in 25% yield when
the reaction was carried out in CH3OH. This indicates accelerated
ionization of the benzyl carbamate group by the polar protic sol-
vent, resulting in the double-addition product. The reaction under
neat conditions and stirring for 12 h (entry 6) gave the desired
product 4a in moderate yield (51%). From the solvent effect study,
it was determined that toluene was the solvent of choice. We also
investigated the influence of catalyst loading on the model reaction
in toluene (entries 7–9). The results showed that the yield of the
desired product 4a increased slightly on lowering the catalyst load-
ing to 5 mol % and the reaction was generally complete within 2 h
at room temperature (entry 8).9 No side product was observed. A
control reaction in the absence of iodine gave no products and
the starting materials were recovered (entry 9).

The scope of the reaction under the optimized conditions was
investigated by varying the aldehyde and carbamate components
and results are summarized in Table 2.13 In the presence of
5 mol % of I2, 1,3,5-trimethoxybenzene and benzyl or tert-butyl
carbamate reacted with a number of aromatic aldehydes possess-
ing either electron-withdrawing (F, Cl, Br, and NO2) or electron-
donating (OMe) substituents to give the corresponding N-pro-
tected diarylmethylamines 4a–f and 4h–m, selectively, in good
to excellent yields (entries 1–7 and 9–14). Due to the low reactivity
of 4-nitrobenzaldehyde, increasing the catalyst loading to 10 mol %
led to a significant increase in the yield of 4e as well as 4l together
with the formation of symmetric triarylmethane 5e (entries 6 and
13). Furthermore, the corresponding a-branched amines 4g and 4n
were obtained smoothly in good yields when 1,3,5-trimethoxyben-
zene and benzyl or tert-butyl carbamate were treated with cyclop-
entanecarbaldehyde (entries 8 and 15). From the results in Table 2,
it should be noted that both benzyl and tert-butyl carbamates
afforded good to excellent yields of the desired products 4a–n,
however from the tert-butyl carbamates, there was a decrease in
the formation of the double-addition adducts 5a–g.

Encouraged by these results, we next investigated the three-
component AFCR with an array of arenes as well as heteroarenes,
aldehydes, and benzyl or tert-butyl carbamates. The results pre-
sented in Table 3 show that the reactions led to selective formation
of a-branched amines 4o–u in moderate to high yields. The reac-
tion of 1,2,4-trimethoxybenzene with benzaldehyde and tert-butyl
carbamate gave the corresponding diarylmethylamine 4o and
symmetrical triarylmethane 5h in 57% and 15% yields, respectively
(entry 1). Furthermore, 2-naphthol (1c) reacted efficiently with 4-
chlorobenzaldehyde and benzyl/tert-butyl carbamates to produce
1-carbamato-alkyl-2-naphthol derivatives 4p,q in good yields
(entries 2 and 3). It is noteworthy that compounds 4p,q can be con-
verted into important biologically active 1-aminomethyl-2-naph-
thol derivatives by carbamate hydrolysis.10 The three-component
AFCR was also successfully applied to heteroaromatic compounds



Table 3
I2-catalyzed reaction of various arenes with aliphatic and aromatic aldehydes and benzyl or tert-butyl carbamatea
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a Reaction conditions: 1 (1 mmol), 2 (1.1 mmol), 3 (1 mmol), I2 (5 mol %), toluene (1 mL), room temperature.
b Isolated yield.
c The reaction was carried out at using I2 (10 mol %) in CH3CN at 60 �C.
d The reaction was carried out using I2 (10 mol %) in THF (1 mL) at room temperature.
e The reaction was carried out using I2 (5 mol %) in THF (1 mL) at room temperature.
f The reaction was carried out using I2 (20 mol %) in toluene (1 mL) at room temperature.
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such as 2-methylfuran (1d), 2-ethylfuran (1e), and 2-methylthi-
ophene (1f) with benzaldehyde and tert-butyl carbamate to afford
the functionalized a-branched amines 4r–t in moderate to high
yields (entries 4–9). Finally, we tested the efficiency of this reac-
tion with the aliphatic aldehyde, isobutyraldehyde (entry 10): with
2-methylthiophene and tert-butyl carbamate, the substrates were
converted smoothly into the desired product.

In summary, we have demonstrated an efficient iodine-cata-
lyzed, one-pot, three-component AFCR of arenes/heteroarenes,
benzyl/tert-butyl carbamate and a wide variety of aldehydes in tol-
uene under ‘open-flask’ and mild conditions. Typically, the corre-
sponding N-Cbz or N-Boc protected a-branched amines were
obtained, selectively, in good to excellent yields. The use of mild
reaction conditions, low catalytic loading, and easy removal of
the N-protective group14, and one-step synthesis are advantages
of the present procedure. Further investigations on the scope and
limitations of this reaction are in progress.
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