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Abstract This study is based on the synthesis of a series

of combretastatin analogs with different substitutions on

one aryl moiety and a carboxylic group in connecting

chain. Cis-configuration with respect to aryl groups was

established by X-ray crystal analysis. All the synthesized

compounds were evaluated for anticancer activity against

a panel of cell lines. Six compounds 1a, 1b, 1c, 1k, 1n,

and 1p showed marked anticancer activity against human

colon (colo-205), lung (A549), ovary (IGROV-1), pros-

trate (PC-3), CNS (SF-295), leukemia (THP-1), and breast

(MCF-7) cell lines. Out of these, 1b showed remarkable

inhibitory activity comparable to paclitaxel against lung

cancer cell line with IC50 3.9 lM. Importance of car-

boxylic group in the synthesized compounds was studied

by flexible docking study of 1b which showed the

importance of carboxylic group interactions with colchi-

cine-binding site of ab-tubulin.
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Introduction

Cancer is one of the major causes of death throughout the

world. In the U.S., the number of deaths caused by cancer is

second highest and next to that from the cardiovascular

diseases (Shewach and Kuchta, 2009). Tubulin, a validated

target in cancer chemotherapy plays an important role in the

formation of the mitotic spindle, which provides the struc-

tural framework for the physical segregation of the chro-

mosomes during the mitosis (Hadfield et al., 2003).

Combretastatin, binds to b-tubulin and strongly inhibit

tubulin polymerization by binding to the colchicine site

(Ouyang et al., 2006; Tron et al., 2006; Woods et al., 1995)

and disrupts the normal mitotic spindle function (McGown

and Fox, 1989), and its action may be through endothelial-

cadherin signaling pathway (Vincent et al., 2005). Com-

bretastatin was first isolated from the bark of African willow

tree Combretum caffrum (Pettit et al., 1987). Two synthetic

combretastatin analogs viz., D-24851 and ABT-75 are in

advanced phased clinical trials (Ouyang et al., 2006;

Stokvis et al., 2004). Plenty of combretastatin analogs

(Fig. 1) have been synthesized (Liou et al., 2004, 2008) till

date with different substituents on aryl rings. The structure–

activity relationship of these analogs reveals that methoxy

substituents in ring B are required for biological activity.

Furthermore, free hydroxyl group or other equivalent

hydrogen bonding donors at ring B are also essential for

activity (Furst et al., 2009). Combretastatin has low aqueous

solubility and Z-configured C–C double bond prone to

isomerization to E-form during storage and administration,

which results in dramatic reduction of activity (Bellina

et al., 2006). To overcome this isomerization problem

when heterocyclic rings viz., isoxazole, imidazole, triazole,

azetidinones, etc. were introduced in place of the ethene

bridge, however this also reduces activity because molecule
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becomes planar, as molecular modeling study confirms that

combretastatin with ethene bridge has twisted geometries

preferred for binding to the colchicines binding site (Lee

et al., 2008; Kaffy et al., 2006). The structure-based mod-

eling studies have been reported to address important

structure–activity relationship for the combretastatins

(Brown et al., 1995; Nandy et al., 1991; Kong et al., 2005).

Recently, Ducki et al. (2009) described a docking model

for tubulin–combretastatin interactions and compared with

colchicine. These studies suggested that the combretastatins

show similar binding mode as colchicine and fit well at the

colchicine-binding site of tubulin and interaction energies

of the compounds with colchicine-binding sites were also

calculated (Bellina et al., 2006). The structure-based mod-

eling studies have been reported to address important

structure–activity relationship for the combretastatins

(Brown et al., 1995; Nandy et al., 1991; Kong et al., 2005).

A key structural feature is the presence of double bond

forcing the two aromatic rings to stay within an appropriate

distance is therefore responsible for tubulin affinity (Kaffy

et al., 2006).

With this background, we herein wish to report the

synthesis and anticancer activity of combretastatin analogs

of the following general structure:

Results and discussion

Chemistry

Sixteen combretastatin analogs (1a–1p) were synthesized

by condensation of phenyl acetic acid (1) with different

substituted aldehydes (2) using triethyl amine and acetic

anhydride as reported previously (Cushman et al., 1995)

(Scheme 1). The products showed that the two phenyl rings

are cis to each other which is in tune with the classical

Pschorr reaction (The Merck Index, 2006) and it was fur-

ther confirmed by X-ray crystal analysis (Fig. 2). The

reaction was monitored by TLC. The compounds were

purified (yield 46–63%) by column chromatography using

silica gel #60–120 and characterized by spectral data (IR,

NMR, and MS). All compounds showed IR absorption

bands at around 3300–3400 for C–H str. 1680–1700 for

carbonyl, 1600 for C=C (phenyl) and about 1200 cm-1 for

C–O stretching. In 1H NMR proton at C-3 as a singlet is
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highly deshielded because of being b to carbonyl with

d-value 7.8–8.2. Phenyl protons show signal around

7.2–7.7. 13C NMR carbonyl shows signal at around

165–170. Phenyl carbons show signals at around 115–132.

13C assignments have been corroborated by DEPT studies.

Biological (anticancer) activity

All compounds were evaluated for their anticancer activity

(Table 1) against human colon (colo-205), lung (A549),

ovary (IGROV-1), prostrate (PC-3), CNS (SF-295), leu-

kemia (THP-1), and breast (MCF-7) cell lines. Out of these

1a, 1b, 1c, 1k, 1n, and 1p showed anticancer activity

against colo-205 (colon), A-549 (lung), and MCF-7

(breast) cell lines. Compounds 1b and 1n showed marked

activity comparable to paclitaxel against lung cancer

cell line. A comparison of the cytotoxicity (IC50) of

compounds 1a–1p with their corresponding calculated

LogP (ClogP) values (Table 1) found no correlation,

indicating that the activity observed is not based on the

lipophilicity alone.

Molecular docking

To get better interpretation of the observed activity of the

synthesized combretastatin analogs, a flexible docking

study of most potent compound 1b was performed on

colchicine-binding site of tubulin (PDB entry: 1SA0)

(Ravelli et al., 2004). All docking runs were performed

using GOLD software. To validate that the selected

docking procedure for the prediction of the correct binding

mode of ligands binding to the colchicine-binding site,

colchicine was extracted from the original X-ray structure

(1SA0) and re-docked using GOLD software (Gold et al.,

2009). The highest scoring conformation was selected and

compared with crystal structure with most stable confor-

mation. The docked conformation of colchicine using

GOLD was found to be similar to that found in the original

X-ray structure (RMSD = 0.72 Å between the best scored

conformers from docking and X-ray structure).

The GOLD scores and visual inspection allowed us to

select the most probable binding conformation of 1b

(Fig. 3). The docking study showed that 1b fits well at the

colchicine-binding site. The dimethoxy phenyl ring (ring

B) gets positioned in a hydrophobic cavity created by

Leu248b, Leu255b, and Val318b. Ring B of inhibitor

adopts similar orientation as the trimethoxy ring of col-

chicine in close proximity to Cys241b. The two methoxy

groups at C2 and C3 are 5.2 and 3.8 Å away from the

Cys241b, respectively. The three methoxy groups of col-

chicine also interact with the same residue. The methoxy

function at C-2 is involved in a hydrophobic interaction

with side chain of Ala250b (Fig. 3). The ring A gets

positioned in a hydrophobic cleft formed by Ala180a and

Val181a and oriented almost similar as ring C of colchi-

cine. The carbonyl function of carboxylic group of 1b is

involved in hydrogen bond interaction with free –NH2 of

Asn258b. The amino acid residue is seen in interaction

with OH of tropolone ring of colchicines and the

involvement of residue in hydrophobic cleft as well as in

hydrophilic region with involvement of H-bond are

important indication for the involvement of colchicines

binding site for this type of compounds.

Conclusion

A series of combretastatin analogs have been synthesized

by condensation of phenyl acetic acid and different

substituted aldehydes. Structures were assigned with the

help of elemental analysis and spectral techniques like IR,

CHO

COOHCOOH

+
(A), (B)

reflux
R

R

 2 31

A, acetic anhydride; B, triethyl amine

   R= different substitution/s 

Scheme 1 Synthesis of combretastatin analogs

Fig. 2 ORTEP derived from a single crystal X-ray analysis of 1m
(non-hydrogen atoms have been labeled using a crystallographic

numbering scheme)
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MS, NMR (1H & 13C). All the synthesized compounds

were evaluated for anticancer activity against various cell

lines and some of them were found to be active. The

favorable binding conformation of 1b suggests its pre-

vailing role as microtubule polymerization inhibitors and

anticancer agents.

Experimental

The reagents were purchased from Sigma-Aldrich, Loba

and CDH, India and used without further purification. All

yields refer to isolated products after purification. Products

were characterized by comparison with authentic samples

Table 1 Anticancer activity data of compounds 1a–1p

Compound code Conc. (mol) % Growth inhibition CLogPa

PC-3 IGR-OV-1 SF-295 A-549 MCF-7 COLO-205 THP-1

Prostrate Ovary CNS Lung Breast Colon Leukemia

1a 5 9 10-5 0 0 14 52 29 – – 3.59

1 9 10-4 4 0 25 54 41 – –

1b 5 9 10-5 2 6 8 60 25 – – 3.25

1 9 10-4 4 11 24 89 52 – –

1c 5 9 10-5 10 0 13 21 54 – – 2.89

1 9 10-4 22 1 25 65 63 – –

1d 5 9 10-5 11 0 15 0 32 – – 3.55

1 9 10-4 39 32 38 45 39 – –

1e 5 9 10-5 12 8 0 0 14 – – 2.77

1 9 10-4 23 17 12 20 24 – –

1f 5 9 10-5 4 – – 0 – 5 0 3.24

1 9 10-4 28 – – 20 – 16 21

1g 5 9 10-5 10 – – 15 – 32 0 3.33

1 9 10-4 22 – – 25 – 60 0

1h 5 9 10-5 0 – – 10 – 15 8 4.04

1 9 10-4 9 – – 43 – 44 35

1i 5 9 10-5 0 – – 0 – 0 0 3.60

1 9 10-4 0 – – 10 – 0 4

1j 5 9 10-5 0 – – 0 – 0 0 2.89

1 9 10-4 7 – – 0 – 0 0

1k 5 9 10-5 26 – – 0 – 51 0 4.76

1 9 10-4 35 – – 0 – 70 22

1l 5 9 10-5 36 32 – 12 5 – – 4.30

1 9 10-4 52 42 – 14 10 – –

1m 5 9 10-5 30 0 – 32 0 – – 4.30

1 9 10-4 68 38 – 40 0 – –

1n 5 9 10-5 14 0 – 61 10 – – 4.30

1 9 10-4 42 0 – 74 22 – –

1o 5 9 10-5 53 6 – 10 6 – – 2.92

1 9 10-4 60 18 – 20 20 – –

1p 5 9 10-5 31 15 – 52 14 – – 2.32

1 9 10-4 74 31 – 82 26 – –

Adriamycin 1 9 10-6 – – 87 – 77 – –

Mitomycin 1 9 10-5 58 – – – 65 – –

Paclitaxel 1 9 10-5 – 66 – 67 – – –

5-Fluorouracil 2 9 10-5 – – – – – 74 69

IC50 of only active compounds 1a, 1b, 1c, 1k, 1n, and 1p were calculated on the basis of 5 different concentrations viz., 1 9 10-5, 3 9 10-5,

5 9 10-5, 7 9 10-5, and 1 9 10-4 mol, found to be 85.4, 3.9, 88.0, [100, 34.0, and 96.5 lM, respectively
a ClogP values were calculated using ChemDraw Ultra V.8.0 (Cambridge Soft Corporation)

Med Chem Res (2012) 21:3720–3729 3723

123



and by spectroscopic data (IR, 1H NMR, and 13C NMR

spectra). The spectra were measured in CDCl3 relative to

TMS (0.00 ppm). IR (KBr pallets) spectra were recorded

on a Fourier transform infrared (FT-IR) Thermo spectro-

photometer. Melting points were determined in open cap-

illaries and were found to be uncorrected.

General procedure for synthesis of compounds (1a–1p)

(Table 2)

A mixture of phenyl acetic acid (7.36 mmol), different

substituted benzaldehydes (7.36 mmol) and triethylamine

(2 ml) in Ac2O (4 ml) was refluxed for 4–9 h. After com-

pletion of reaction (monitored by TLC), the reaction mixture

was cooled and acidified with 35% aqueous HCl (6 ml) and

kept at room temperature overnight. The precipitate was

collected by filtration and purified by column chromatogra-

phy using silica gel 60–120 and 30% ethyl acetate in hexane

as mobile phase to afford the pure product.

Spectral analyses

COOH
1

2 3
1'

2'
3'

4'
5'

6'
1"

2"
3"

4"
5"

6" R

(Z)-2,3-Diphenyl-prop-2-enoic acid (1a)

M.p. 145–147�C; IR mmax cm-1 (KBr): 3450, 1674, 1615,

1269; 1HNMR (CDCl3) d; 7.3–7.0 (10H, m, 5xAr–H,

5xAr0–H), 7.95 (1H, s, H-3); 13C NMR (CDCl3):

116–128.7, 132.0, 143.7, 166.5; MS (ESI) m/z = 246.8

(M?Na)?; Anal. (C15H12O2) C, H.

(Z)-3-(2,3-Dimethoxyphenyl)-2-phenyl-prop-2-enoic acid

(1b)

M.p. 147–149; IR mmax cm-1 (KBr): 3418, 1672, 1638, 1260;

1HNMR (CDCl3) d: 3.8 (3H, s, H-200-OCH3), 3.9 (3H, s,

H-300-OCH3), 6.1 (1H, d, j = 7.7 Hz, Ar–H), 7.3–7.2 (5H, m,

5xAr–H), 8.2 (1H, s, H-3); 13C NMR (CDCl3): 52.6 (C-200-
OCH3), 53.8 (C-300-OCH3), 119.0, 121.0, 123.0, 128.4, 129.6,

130.0, 132.0, 133.9, 136.2, 138.0, 139.7, 140.0, 141.1, 146.1,

166.8; MS (ESI) m/z = 307 (M?Na)?; Anal. (C17H16O4) C, H.

(Z)-3-(3,4,5-Trimethoxyphenyl)-2-pheny-prop-2-enoic acid

(1c)

M.p. 182–184; IR mmax cm-1 (KBr): 3411, 1670, 1617,

1579, 1506, 1421; 1HNMR (CDCl3) d: 3.5 (6H, s, 2xAr-

OCH3), 3.8 (3H, s, Ar-OCH3), 6.3 (2H, s, Ar–H), 7.4–7.2

(5H, m, 5xAr0-H), 7.8 (1H, s, H-3); 13C NMR (CDCl3):

52.3, 53.0, 55.6, 121.1, 126.6, 128.0, 128.2, 128.9, 129.8,

142.2, 151.7, 152.6, 156.9, 159.7, 164.5, 174.8; MS (ESI)

m/z = 337 (M?Na)?; Anal. (C18H18O5) C, H.

(Z)-3-(3,4-Methylenedioxyphenyl)-2-phenyl-prop-2-enoic

acid (1d)

M.p. 188–189; IR mmax cm-1 (KBr): 3417, 1667, 1485,

1423, 1184, 1004; 1HNMR (CDCl3) d: 5.9 (2H, s,

-OCH2O–), 6.6 (3H, m, Ar00–H), 7.4–7.2 (5H, m, 5xAr0-
H), 7.8 (1H, s, H-3); 13C NMR (CDCl3): 101.6, 114.0,

119.0, 122.0, 132.4, 136.0, 166.6; MS (ESI) m/z = 291

(M?Na)?; Anal. (C16H12O4) C, H.

(Z)-3-(3-Hydroxy-4-methoxypheny)-2-phenyl-prop-2-enoic

acid (1e)

M.p. 202–202; IR mmax cm-1 (KBr): 3511, 1670, 1607,

1459, 1267, 1135, 1005, 802, 709; 1HNMR (CDCl3)

Fig. 3 a Overlay of colchicine (blue/dark) and 1b at the colchicine-binding site. b Docking conformation of 1b (Color figure online)
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Table 2 Reaction time, yield, and elemental analysis data of the synthetics

Ar

HOOC

S. No. Compound

code

Ar Reaction

time (h)

% Yield Elemental analysis (cal./found)

C H N

1 1a 5 58 80.34/80.24 5.39/5.26 –

2 1b OCH3H3CO 7 60 71.82/71.79 5.62/5.42 –

3 1c H3CO

H3CO

H3CO

6 55 68.78/68.56 5.77/5.67 –

4 1d

O

O 6 55 71.82/71.62 4.51/4.35 –

5 1e HO

H3CO

5 63 71.10/71.16 5.22/5.56 –

5 1f

H3CO

OCH3

H3CO

6 49 68.78/68.56 5.77/5.82 –

7 1g NO2 4 58 66.91/66.64 4.12/4.05 5.20/5.24

8 1h 8 54 81.58/81.45 5.64/5.45 –
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d: 3.0 (Ar-OH), 3.7 (3H, s, Ar-OCH3), 6.5 (1H, s, Ar–H),

6.6 (1H, s, Ar0–H), 7.3–7.1 (6H, m, 1xAr00-H, 5xAr0-H),

7.7 (1H, s, H-3); 13C NMR (CDCl3): 43.7, 56.2,

113.2, 115.6, 120.0, 126.4, 128.0, 128.7, 132.6, 132.4,

166.5; MS (ESI) m/z = 315 (M?Na)?; Anal. (C16H14O4)

C, H.

Table 2 continued

S. No. Compound

code

Ar Reaction

time (h)

% Yield Elemental analysis (cal./found)

C H N

9 1i OCH3

H3CO

6 59 71.82/71.79 5.62/5.22 –

10 1j OCH3H3CO

H3CO

7 58 68.78/68.56 5.77/5.67 –

11 1k 9 53 83.19/83.34 5.14/5.11 –

12 1l Cl 5 56 69.64/69.61 4.29/4.46 –

13 1m Cl 6 54 69.64/69.51 4.29/4.42 –

14 1n
Cl

7 60 69.64/69.51 4.29/4.42 –

15 1o OH 6 48 72.33/72.23 5.0/5.12 –

16 1p OHHO 6 46 70.31/70.34 4.72/4.75 –
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(Z)-3-(2,4,5-Trimethoxyphenyl)-2-phenyl-prop-2-enoic

acid (1f)

M.p. 182–184; IR mmax cm-1 (KBr): 3477, 1668, 1603, 1506,

1264; 1HNMR (CDCl3) d: 3.18 (3H, s, Ar-OCH3), 3.87 (6H,

s, Ar-OCH3), 6.26 (H, s, Ar00–H), 6.43 (H, s, Ar00–H) 7.3–7.4

(5H, m, 5xAr0-H), 8.3 (1H, s, H-3); 13C NMR (CDCl3): 52.3,

53.0, 55.6, 121.1, 126.6, 128.0, 128.2, 128.9, 129.8, 142.2,

151.7, 152.6, 156.9, 159.7, 164.5, 174.8; MS (ESI)

m/z = 337 (M?Na)?; Anal. (C18H18O5) C, H.

(Z)-3-(2-Nitrophenyl)-2-phenyl-prop-2-enoic acid (1g)

M.p. 182–184; IR mmax cm-1 (KBr): 3411, 1670, 1617,

1579, 1506, 1421; 1HNMR (CDCl3) d: 6.3–6.9 (4H, m,

Ar00–H), 7.6–7.2 (5H, m, 5xAr0-H), 8.16 (1H, s, H-3); 13C

NMR (CDCl3): 123.3, 124.8, 126.6, 128.0, 128.3, 128.8,

129.1, 130.2, 130.5, 133.5, 140.4, 167.9; MS (ESI)

m/z = 292 (M?Na)?; Anal. (C15H11NO4) C, H, N.

(2Z,4E)-2,5-Diphenylpenta-2,4-dienoic acid (1h)

M.p. 182–184; IR mmax cm-1 (KBr): 3446, 1678, 1621, 1579,

1346; 1HNMR (CDCl3) d: 5.59 (1H, d, j = 15.2, = CH2),

5.96 (1H, dd, j = 15.2 & j = 14.8, = CH2), 6.8 (1H, d,

j = 15.2, = CH2), 7.4–7.2 (5H, m, 5xAr0-H), 7.7–7.5 (5H,

m, 5xAr0-H) 7.8 (1H, s, H-3); 13C NMR (CDCl3): 120.2,

122.1, 122.8, 123.0, 123.3, 124.2, 126.6, 128.0, 128.2, 128.9,

129.8, 135.5, 135.9, 144.2, 164.5; MS (ESI) m/z = 273

(M?Na)?; Anal. (C17H14O2) C, H.

(Z)-3-(2,5-Dimethoxyphenyl)-2-phenyl-prop-2-enoic acid

(1i)

M.p. 147–149; IR mmax cm-1 (KBr): 3437, 1666, 1580,

1260; 1HNMR (CDCl3) d: 3.2 (3H, s, OCH3), 3.9 (3H, s,

–OCH3), 6.2 (1H, d, j = 7.9 Hz, Ar–H), 6.75 (1H, d,

j = 7.9 Hz, Ar–H) 7.3–7.2 (5H, m, Ar0–H), 8.3 (1H, s,

H-3); 13C NMR (CDCl3): 50.6, 54.3, 119.0, 121.0, 125.0,

127.5, 129.6, 130.0, 132.0, 133.8, 135.2, 138, 139.7, 139.0,

145.1, 146.7, 167.6; MS (ESI) m/z = 307 (M?Na)?; Anal.

(C17H16O4) C, H.

(Z)-3-(2,3,4-Trimethoxyphenyl)-2-pheny-prop-2enoic acid

(1j)

M.p. 182–184; IR mmax cm-1 (KBr): 3411, 1667, 1491,

1258; 1HNMR (CDCl3) d: 3.7 (3H, s, Ar-OCH3), 3.8 (3H,

s, Ar-OCH3), 3.9 (3H, s, Ar-OCH3), 6.3 (1H, d, j = 8.8,

Ar00–H), 6.4 (1H, d, j = 8.8, Ar00–H), 7.4–7.2 (5H, m,

Ar0–H), 8.2 (1H, s, H-3); 13C NMR (CDCl3): 52.9, 53.8,

55.6, 121.1, 126.6, 128.0, 128.2, 128.9, 129.8, 140.2,

151.7, 152.6, 156.9, 159.7, 164.5, 174.5; MS (ESI)

m/z = 337 (M?Na)?; Anal. (C18H18O5) C, H.

(Z)-3-(Naphthalene-5yl)-2-phenyl-prop-2-enoic acid (1k)

M.p. 182–184; IR mmax cm-1 (KBr): 1677, 1614, 1579, 1506,

1260; 1HNMR (CDCl3) d: 7.4–7.2 (5H, m, Ar–H), 8.4–8.1

(7H, m, 5xAr0-H), 8.5 (1H, s, = CH); 13C NMR (CDCl3):

120, 123, 124.9, 125.3, 127.3, 127.9, 128.6, 129.3, 130,

130.4, 131.2, 131.5, 131.8, 133.5, 142.2, 146.3, 169.1; MS

(ESI) m/z = 297 (M?Na)?; Anal. (C19H14O2) C, H.

(Z)-3-(2-Chlorophenyl)-2-phenyl acrylic acid (1l)

M.p. 148–151; IR mmax cm-1 (KBr): 3421, 1663, 1619,

1589, 1516, 1411; 1HNMR (CDCl3) d: 7.0–6.8 (4H, m,

Ar00–H), 7.6–7.1 (5H, m, 5xAr0-H), 8.2 (1H, s, H-3); 13C

NMR (CDCl3): 120.3, 129.8, 126.6, 128.0, 128.3, 128.8,

129.1, 130.2, 130.5, 133.5, 140.4, 167.9; MS (ESI)

m/z = 281 (M?Na)?; Anal. (C15H11ClO2) C, H.

(Z)-3-(3-Chlorophenyl)-2-phenyl-prop-2enoic acid (1m)

M.p. 131–133; IR mmax cm-1 (KBr): 3421, 1663, 1619,

1589, 1516, 1411; 1HNMR (CDCl3) d: 7.0–6.8 (4H, m,

Ar00–H), 7.6–7.1 (5H, m, 5xAr0-H), 8.2 (1H, s, H-3); 13C

NMR (CDCl3): 120.3, 129.8, 126.6, 128.0, 128.3, 128.8,

129.1, 130.2, 130.5, 133.5, 140.4, 167.9; MS (ESI)

m/z = 281 (M?Na)?; Anal. (C15H11ClO2) C, H.

(Z)-3-(4-Chlorophenyl)-2-phenyl-prop-2enoic acid (1n)

M.p. 121–123; IR mmax cm-1 (KBr): 3451, 1643, 1624, 1585,

1516, 1421; 1HNMR (CDCl3) d: 6.4 (2H, d, J = 8.4, H-300&
500)6.9 (2H, d, J = 8.4, H-200& 600), 7.75–7.32 (5H, m, 5xAr0-
H), 7.89 (1H, s, H-3); 13C NMR (CDCl3): 119, 129.8, 126.6,

128.0, 128.3, 129.8, 126.6, 130.8, 130.5, 133.5, 145.4, 168.5;

MS (ESI) m/z = 281 (M?Na)?; Anal. (C15H11ClO2) C, H.

(Z)-3-(2-Acetoxyphenyl)-2-phenyl-prop-2enoic acid (1o)

M.p. 178–180; IR mmax cm-1 (KBr): 3396, 1643, 1589,

1411; 1HNMR (CDCl3) d: 3.47 (3H, S, OCOCH3) 7.8–7.6

(4H, m, Ar00–H), 7.5–7.3 (5H, m, 5xAr0-H), 8.26 (1H, s,

H-3); 13C NMR (CDCl3): 123.3, 129.8, 126.6, 128.0,

128.3, 124.8, 129.1, 130.2, 132.5, 133.5, 140, 167.1; MS

(ESI) m/z = 305 (M?Na)?; Anal. (C17H14O4) C, H.

(Z)-3-(2,3-Dihydroxyphenyl)-2-phenyl-prop-2enoic acid

(1p)

M.p. 191–192; IR mmax cm-1 (KBr): 3475, 3354, 1633,

1589, 1411; 1HNMR (CDCl3) d: 3.77 (2H, S, OH, D2O
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exchangeable) 7.2–7.0 (3H, m, Ar00–H), 7.5–7.3 (5H,

m, 5xAr0-H), 8.21 (1H, s, H-3); 13C NMR (CDCl3):

123.3, 126.6, 128.0, 128.8, 124.8, 129.1, 130.2, 132.5,

133.5, 136.0, 166.0; MS (ESI) m/z = 266 (M?Na)?; Anal.

(C17H14O4) C, H.

Materials and methods of docking study

The coordinates of colchicine were obtained from protein

data bank (PDB entry: 1sa0) (Ravelli et al., 2004). The

structure of 1b was drawn in ChemDraw and subjected to

energy minimization in the MOPAC module, using the AM1

procedure for closed shell systems, implemented in the CS

Chem3D Ultra (ChemDraw Ultra 6.0, 2000). The ligands

were docked at the colchicine-binding site of tubulin using

the GOLD 4.0.1 (Gold et al., 2009). Gold performs genetic

algorithm based ligand docking to optimize the conforma-

tion of ligand at the receptor binding site. It utilizes Gold

Score fitness function to evaluate the various conformations

of ligand at the binding site and comprises of four compo-

nents: protein–ligand hydrogen bond energy, protein–ligand

van der Waals (vdw) energy, ligand internal vdw energy, and

ligand torsional strain energy.

Anticancer activity protocol

In vitro cytotoxicity against seven human cancer cell lines

was determined using 96-well tissue culture plate (Monks

et al., 1991). The cells were allowed to grow in carbon

dioxide incubator (37�C) for 24 h. Test materials in com-

plete growth medium (100 ll) were added after 24 h of

incubation to the wells containing cell suspension. The

plates were further incubated for 48 h in a carbon dioxide

incubator. The cell growth was stopped by gently layering

trichloroacetic acid (50%, 50 ll) on top of the medium in

all the wells. The plates were incubated at 4�C for 1 h to fix

the cells attached to the bottom of the wells. The liquid of

all the wells was gently pipetted out and discarded. The

plates were washed five times with distilled water to

remove trichloroacetic acid, growth medium low molecular

weight metabolites, serum proteins, etc. and air-dried. The

plates were stained with sulforhodamine B dye (0.4% in

1% acetic acid, 100 ll) for 30 min. The plates were

washed five times with 1% acetic acid and then air-dried

(Skehan et al., 1990). The adsorbed dye was dissolved in

Tris–HCl Buffer (100 ll, 0.01 M, pH 10.4) and plates were

gently stirred for 10 min on a mechanical stirrer. The

optical density (OD) was recorded on ELISA reader at

540 nm. The cell growth was determined by subtracting

mean OD value of respective blank from the mean OD

value of experimental set. Percent growth in the presence

of test material was calculated considering the growth in

the absence of any test material as 100% and in turn

percent growth inhibition in the presence of test material

was calculated. IC50 of only active compounds were

calculated on the basis of 5 different concentrations

viz., 1 9 10-5, 3 9 10-5, 5 9 10-5, 7 9 10-5, and 1 9

10-4 mol.
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