Polyhedron 51 (2013) 46-53

Contents lists available at SciVerse ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Activation of ortho C–H bond by nickel(II) acetate or sodium tetrachloropalladate(II) in naphthyl imino derivatives of azobenzene

Debprasad Patra^{a,b}, Poulami Pattanayak^a, Jahar Lal Pratihar^{a,c}, Surajit Chattopadhyay^{a,*}

^a Department of Chemistry, University of Kalyani, Kalyani 741235, India

^b Department of Chemistry, East Calcutta Girls' College, Kolkata 700089, India

^c Department of Chemistry, Kandi Raj College, Murshidabad 742137, India

ARTICLE INFO

Article history: Received 5 November 2012 Accepted 15 December 2012 Available online 23 December 2012

Keywords: 1-{[2-(Arylazo)phenyl]iminomethyl}-2naphthol Orthometallation O-insertion Luminescent property

ABSTRACT

The reactions of 1-{[2-(arylazo)phenyl]iminomethyl}-2-naphthol, H₂L_{nap} [where H represents the dissociable proton upon complexation and aryl groups of H₂L_{nap} are phenyl for H₂L¹_{nap}; *p*-methyl phenyl for H₂L³_{nap} and *p*-chloro phenyl for H₂L³_{nap}] with nickel acetate tetra hydrate or disodium tetrachloropalladate in methanol afforded M–C(aryl) bonded species of composition [M(L_{nap})] (M = Ni(II) and Pd (II)). The dinegative (L_{nap})^{2–} ligands bind the Ni(II) or Pd(II) in tetradentate (C, N, N, O) fashion in distorted square planar geometry. Ligands and complexes were characterized by spectroscopic methods. The X-ray structures of H₂L¹_{nap}, [Ni(L¹_{nap})] and [Pd(L¹_{nap})] were determined to authenticate the characterization. Reactions with metachloroperbenzoic acid (mCPBA), TBHP and hydrogen peroxide leading to oxygen insertion into the M-C bond have been examined. Luminescent properties of ligands and complexes have been reported.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Catalytic conversion of C-H bonds into C-C, C-N, C-O and Chalogen bonds by means of metal assisted C-H activation is one of the important areas in current chemical research to search for suitable catalyst [1,2]. Studies are ongoing to develop appropriate low cost alternative catalysts, with comparatively cheap and abundant metal ions, that are capable of C-H activation. Recently, first [Ni(COD)₂] catalyzed chemical transformation via activation of ortho C-H bond has been reported with a mention that there was no such example though chelation assisted orthonickelation of azobenzene was achieved by treating with [Ni(Cp)₂] quite a long ago [3]. Facile activation of ortho C-H bond and stoichiometric C-O bond formation under ordinary condition using the common reagent nickel acetate has been reported [4]. Although, the reaction was not catalytic but provided the clue toward use of commonly available nickel compound as catalyst for the transformations involving ortho C-H activation. Thus, having realized the importance, we were encouraged to study the hydroxylation of different organic substrates through chelation assisted activation of ortho C-H bond by nickel acetate. Comparison of the reactivity of M-C

bond between M = Ni(II) and M = Pd(II) is also relevant to realize the advantages.

This work stems from our interest on synthesis of metalloazosalophens **1** [4–6]. As reported earlier, synthesis of metalloazosalophens can be carried out in two ways – first, synthesis of M–C (aryl) bonded complex (ortho C–H cleavage) using nickel acetate

or sodium tetrachloropalladate followed by oxygen insertion into M–C bond i.e. C–O bond formation (Scheme 1). This procedure was shown to be applicable for the compound H_2L_{sal} , **2** [4,6]. Secondly, Synthesis of authentic azosalophen ligand, H_2OL_{sal} , **3**, via nickel assisted hydroxylation followed by complexation with appropriate transition metal substrates (Scheme 2) [4–8].

Synthesis of new analogs of H_2L_{sal} , **2** and its conversion to an analog of H_2OL_{sal} , **3**, using nickel acetate or sodium tetrachloropalladate were contemplated to illustrate that the C–H activation by nickel acetate or sodium tetrachloropalladate can also take place in the analogs of H_2L_{sal} . As a sequel, the new analog, containing naphthyl group, H_2L_{nap} , shown in **4**, have been used for the present purpose [9]. Incorporation of naphthyl group within the ligand

^{*} Corresponding author. Tel.: +91 33 25828750; fax: +91 33 25828282. *E-mail address:* scha8@rediffmail.com (S. Chattopadhyay).

^{0277-5387/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.poly.2012.12.011

Scheme 1.

backbone was conceived with the expectation that the complexes prepared with **4** might exhibit interesting absorption and/or emission properties due to the inherent luminescent property of naph-thyl group [9–19].

Herein we have described the orthometallation in H_2L_{nap} by

treating with Ni(CH₃COO)₂·4H₂O or Na₂PdCl₄. The products were

characterized by UV-Vis, IR and ¹H NMR spectroscopic data. The

have been reported. Emission properties of the ligands and corresponding complexes have been compared and delineated in this paper.

2. Results and discussion

2.1. Syntheses

Reaction of $1-\{[2-(arylazo)phenyl]iminomethyl\}-2-naphthol, H_2L_{nap}, with Ni(OAc)_2·4H_2O in refluxing methanol afforded green precipitate which upon purification by washing with methanol gave pure complexes of Ni(II) of composition [Ni(L¹_{nap})],$ **5**. Similarly the reaction of Na₂PdCl₄ with H₂L_{nap} in stirring methanol afforded brown complexes of Pd(II) of composition (L_{nap})Pd,**6**. The synthetic reactions are shown in Eq. (1) below:

X-ray structures of $H_2L^1_{nap}$ and newly synthesized Ni(II) and Pd(II) orthometallated complexes have been determined for unequivocal characterization. The reactions of new Ni–C and Pd–C bonded complexes with peroxo compounds, leading to C–O bond formation,

2.2. Reactions with oxidants

The newly synthesized orthometallated complexes $[Ni(L_{nap}^{1})]$, **5**, and $[Pd(L_{nap}^{1})]$, **6**, transformed into the oxygenated products

(1)

[Ni(OL¹_{nap})], **7**, and [Pd(OL¹_{nap})], **8**, respectively upon reaction with *meta* chloroperbenzoic acid (*m*CPBA) as given in Eqs. (2) and (3).

2.3. Preparation of authentic $H_2OL^1_{nap}$, **9**, and their complexes

Authentic $H_2OL_{nap}^1$ ligand was synthesized by the condensation of $HOL_{-}NH_2$ with 2-hydroxy-1-napthaldehyde as shown in Eq.

 $[Ni(L_{nap}^{1})], 5$

 $[Ni(OL_{nap}^1)], 7$

(i) m-CPBA, CH₂Cl₂; (ii) Aqueous H₂O₂, CH₂Cl₂; (iii) TBHP, CH₂Cl₂ or BuOH

(i) m-CPBA, CH₂Cl₂; (ii) TBHP, VO(acac)₂, CH₂Cl₂ or BuOH

Although the oxygen insertion was relatively slower for $[Pd(L_{nap}^1)]$ but it was very fast in the case of $[Ni(L_{nap}^1)]$. Gradual change in absorption spectrum with time could be measured spectrophotometrically for $[Pd(L_{nap}^1)]$ adding quantitative amount of *m*CPBA (Fig. 1) in dichloromethane solution.

Moreover, $[Ni(L_{nap}^1)]$ complex underwent oxygen insertion with TBHP in ^tBuOH solution (Eq. (2)) whereas $[Pd(L_{nap}^1)]$ required VO(acac)₂ along with TBHP for effective oxygen insertion (Eq. (3)). (4). HOL^1-NH_2 was prepared by the procedure described earlier [4,6]. Subsequently authentic $H_2OL_{nap}^1$ was utilized for the preparation of $[Ni(OL_{nap}^1)]$ and $[Pd(OL_{nap}^1)]$ complexes upon reaction with Ni(OAc)_2·4H_2O and Na_2PdCl_4 respectively in methanol. Characterization data, spectral features and other physical characteristics of these complexes were identical with the products obtained after oxidation of $[Ni(L_{nap}^1)]$ and $[Pd(L_{nap}^1)]$ with peroxo reagents (see above).

(4)

Milder and greener reagent containing Mixture of aqueous hydrogen peroxide and dichloromethane afforded oxygenated product only in the case of $[Ni(L_{nap}^{1})]$ at room temperature (Eq. (2)). Therefore, in general, C–O bond formation after ortho C–H bond activation is more facile for nickel acetate than the sodium tereachloro palladate. Isolation and unequivocal characterization of $[Ni(L_{nap}^{1})]$ than $[Pd(L_{nap}^{1})]$ complexes provided the necessary evidence in favor of ortho C–H cleavage prior to C–O bond formation to predict the plausible mechanism.

2.4. Characterization

All the H_2L_{nap} , **4**, ligands displayed characteristic UV–Vis spectra in dichloromethane solution with absorptions near 465 nm and near 315 nm [4–8]. In dichloromethane solution [Ni(L_{nap}^1)] complexes, **5**, exhibited low energy absorption near 620 nm and [Pd(L_{nap})] complexes, **6**, displayed characteristic UV–Vis spectra having several structured absorption bands within 250–450 nm. The orange solution of authentic $H_2OL_{nap}^1$ in dichloromethane displayed overlapped absorptions within 420–320 nm. Oxidised com-

(2)

(3)

Scheme 2.

Fig. 1. Graphical change in UV–Vis spectra during oxidation of $[Pd(L_{nap}^1)]$ to $[Pd(OL_{nap}^1)]$ by *m*CPBA. Concentration of complex was 2.63×10^{-5} (M) and of *m*CPBA was 4.6×10^{-4} (M).

Fig. 2. Emission spectra of $H_2L_{nap}^1$, $[Pd(L_{nap}^1)]$ and $[Ni(L_{nap}^1)]$.

plexes, $[Ni(OL_{nap}^{1})]$ exhibited low energy bands at 630 and 520 nm whereas $[Pd(OL_{nap}^{1})]$ showed one absorption with maxima at 530 nm. Relevant data are included in Section 4.

In the IR spectra, the $\nu_{N=N}$ band of H_2L_{nap} ligands (near 1482 cm⁻¹) shifted to lower frequency (1353–1361 cm⁻¹) after formation of [Ni(L_{nap})] and [Pd(L_{nap})] chelates, consistent with the coordination of the azo nitrogen [4–8,20]. The $\nu_{C=N}$ band within 1615–1624 cm⁻¹ of the H_2L_{nap} ligands moved to 1613–1616 cm⁻¹ region in [Ni(L_{nap})] and [Pd(L_{nap})] complexes. A broad signal near 3290 cm⁻¹ for ν_{OH} of H_2L_{nap} was absent in the spectra of the complexes signifying the dissociation of –OH proton and its coordination to the metal centre as O⁻ [4–8,20]. The $\nu_{N=N}$ (1473 cm⁻¹) of $H_2OL_{nap}^1$ shifted to lower frequency in [Ni (OL_{nap}^1)] and [Pd(OL_{nap}^1)] at 1372 and 1375 cm⁻¹, respectively. The $\nu_{C=N}$ bands of $H_2OL_{nap}^1$ (1628 cm⁻¹) appeared within 1603–1605 cm⁻¹ in complexes. Relevant data are collected in Section 4.

A repeat ¹H NMR experiments of the H₂L_{nap} ligands exhibited two doublets near δ 15.9 (for H₂L¹_{nap} and H₂L³_{nap}) and δ 9.16, whereas H₂L²_{nap} displayed a broad signal at δ 15.87 and a doublet at δ 9.16. Therefore a revisit to the ¹H NMR spectra of H₂L_{nap} became necessary [7]. Rationale of these resonances has been realized by considering the intramolecular hydrogen bonded structures shown in **I**. The doublet near δ 15.9 for H₂L¹_{nap} and H₂-L³_{nap} were assigned for hydrogen bonded –OH.

Doublet nature was attributed to coupling with aldimino –C–H proton through imino nitrogen as shown in **I**. On the other hand the aldimine –C–H proton appears near δ 9.20 as a doublet indicating significant coupling with the hydrogen bonded proton on N. This rationale can be supported by the fact that the doublet resonance for aldimino proton appeared as sharp singlet near δ 9.16 on D₂O shaking. Crystal structure of H₂L¹_{nap} indicated the intramolecular hydrogen bond in solid state also (see below).

The ¹H NMR spectra of $[Ni(L_{nap})]$ and $[Pd(L_{nap})]$ complexes did not display any –OH resonance near δ 15.9 signifying the dissociation of –OH proton and its coordination to the metal centre as phenoxide and the aldimino (–N=CH–) proton resonance appear as a sharp singlet near δ 9.40. The proton counts obtained from ¹H NMR spectra and the spectral patterns of the cyclometallated complexes are consistent with their formula and structures in

Fig. 3. Perspective view of $H_2L_{nap}^1$ with atom numbering scheme. Hydrogen atoms (except H3a and H13) are omitted for clarity.

Fig. 4. Perspective view of $[Ni(L_{nap}^1)]$ with atom numbering scheme. Hydrogen atoms are omitted for clarity.

Fig. 5. Perspective view of $[Pd(L_{nap}^1)]$ with atom numbering scheme. Hydrogen atoms are omitted for clarity.

Table 1

Selected bond distances (Å) and angles (°) for $H_2L_{nap}^1$, 4a.

Bond distances			
01-C15	1.2630(18)	C14-C15	1.4533(19)
N1-N2	1.2556(16)	C14-C19	1.4627(18)
N1-C1	1.4269(18)	N3-C13	1.3298(17)
N2-C7	1.4233(18)	N3-H3a	0.8595
N3-C12	1.4040(16)	C1-C2	1.3926(18)
Bond angles			
N2-N1-C1	114.64(11)	N3-C12-C7	118.04(12)
N1-N2-C7	113.66(11)	N3-C12-C11	122.57(12)
C12-N3-C13	126.25(12)	N3-C13-C14	124.10(13)
C13-N3-H3a	116.87	N2-C7-C12	115.40(11)
C12-N3-H3a	116.88	N2-C7-C8	124.77(12)
N1-C1-C6	125.20(12)	01-C15-C14	122.48(13)
C2-C1-C6	120.46(13)	C1-C2-C3	120.16(12)
N1-C1-C2	114.34(11)	01-C15-C16	120.08(13)

solution. The ¹H NMR data for all the ligands and complexes are given in Section 4.

The ¹H NMR results of authentic $H_2OL^{1}_{nap}$ ligand exhibited two singlets at δ 12.39, δ 10.76 for two phenolic protons and at δ 9.33 for one aldimino C–H proton. Resonances for other fourteen aromatic protons appeared within δ 7.0–8.1. Corresponding

Table 2			
Selected bond dist	ances (Å) and angles (°)	for [Ni(L ¹ nap)], 5a .	
Bond distances			
Ni-01	1.8204(17)	C11-C12	1.385(4)
Ni-N2	1.799(2)	C15-C16	1.426(4)
Ni-N3	1.884(2)	N1-N2	1.284(3)
Ni-C2	1.880(2)	N1-C1	1.404(3)
01-C15	1.303(3)	N3-C13	1.300(3)
N2-C7	1.419(3)	N3-C12	1.422(3)

	. ,		• • •
Bond angles			
01-Ni-N2	177.98(10)	Ni-N2-N1	123.91(17)
01-Ni-N3	96.05(8)	Ni-N2-C7	116.21(17)
01-Ni-C2	96.18(10)	N1-N2-C7	119.9(2)
N2-Ni-N3	85.58(9)	Ni-N3-C12	112.24(15)
N2-Ni-C2	82.16(11)	Ni-N3-C13	125.85(17)
N3-Ni-C2	167.69(10)	N1-C1-C6	120.3(2)
Ni-01-C15	126.07(16)	Ni-C2-C1	110.07(18)
N2-N1-C1	107.5(2)	N1-C1-C2	116.4(2)
01-C15-C16	115.8(2)	Ni-C2-C3	133.4(2)

Table 3	
Selected bond distances (Å) and angles (°) for $[Pd(L_{nap}^1)]$, 6a .	

Bond distances			
Pd-01	1.9939(15)	C7-C12	1.422(3)
Pd–N2	1.9172(17)	C8-C9	1.383(3)
Pd–N3	2.0131(15)	C9-C10	1.390(3)
Pd-C2	1.992(2)	C10-C11	1.376(3)
01-C15	1.312(3)	C11-C12	1.399(3)
N1-N2	1.278(2)	C13-C14	1.421(3)
N1-C1	1.408(3)	N3-C12	1.420(3)
N2-C7	1.420(3)	N3-C13	1.314(2)
Bond angles			
O1-Pd-N2	176.56(7)	Pd-C2-C1	109.25(15)
01-Pd-N3	93.76(6)	Pd-C2-C3	134.33(16)
O1-Pd-C2	102.73(7)	N1-N2-C7	121.45(17)
N2-Pd-N3	83.71(6)	Pd-N3-C12	111.05(11)
N2-Pd-C2	79.71(8)	Pd-N3-C13	125.18(14)
N3-Pd-C2	163.31(7)	N2-C7-C8	124.19(19)
Pd-01-C15	123.23(13)	Pd-N2-N1	123.40(13)
N2-N1-C1	108.89(16)	Pd-N2-C7	115.14(12)

 $[Pd(OL_{nap})]$ and $[Ni(OL_{nap})]$ complexes, prepared by reacting $H_2OL_{nap}^1$ with Na_2PdCl_4 and $Ni(OAc)_2$ respectively, did not display the resonances for two phenolic protons consistent with phenolato binding. The aldimino C–H appeared as singlets at δ 9.60 for $[Pd(OL_{nap})]$ and at δ 9.29 for $[Ni(OL_{nap})]$. All other resonances for aromatic protons appeared as overlapped signals within δ 6.8–8.4. The ¹H NMR of oxidized products of $[Ni(L_{nap}^1)]$ and $[Pd(L_{nap}^1)]$ matched well with the authentic complexes.

2.5. Emission spectra

The π -conjugated chromophore containing ligand, $H_2L^{1}_{nap}$, **4a**, exhibited emission maxima at 380 nm in dilute dichloromethane solution (10^{-5} M) when excited at 320 nm. In dichloromethane solution (10^{-5} M) , The Ni(II) complex, $[(L^{1}_{nap})\text{Ni}]$, exhibited quenched emission at 390 nm but the emission intensity of Pd(II) complex, $[Pd(L^{1}_{nap})]$, was larger than the corresponding ligand at 405 nm. The emission spectra of $H_2L^{1}_{nap}$, $[Ni(L^{1}_{nap})]$ and $[Pd(L^{1}_{nap})]$ are shown in Fig. 2. The augmented emission intensity of Pd(II) complex can be attributed to chelation-enhanced fluorescence (CHEF) [10,11]. Whereas decrease in emission intensity for Ni(II) complex can be ascribed as "heavy atom effect" [9,21]. It was mentioned elsewhere that the "heavy atom effect" does not induce CHEF and causes the quenching through two well defined mechanism – either naphthyl \rightarrow metal energy transfer (ET) or metal \rightarrow naphthyl electron transfer (et) [10,11].

2.6. X-ray structures

Unequivocal characterizations of the ligands, H₂L_{nap}, and corresponding metal complexes, $(L_{nap})M$ (M = Ni, Pd), were performed by X-ray structure analysis of $H_2L_{nap}^1$, $[Ni(L_{nap}^1)]$ and $[Pd(L_{nap}^1)]$ respectively. Figs. 3-5 show perspective views of their molecular structures. Tables 1-3 respectively contain the selected bond distances and angles. The X-ray structure of H₂L¹_{nap} reveals the planar geometry of the ligand. All the non hydrogen atoms of $H_2L_{nap}^1$ make a good plane (mean deviation 0.251 Å). The N(1)–C(1), (1.4266(18) Å); N(2)–C(7), (1.4237(18) Å) and N(3)–C(12), (1.4039(17) Å) lengths of the free ligand are close to C–N single bond length. The N(3)–C(13) length (1.3309(17) Å) is similar to the imine (C=N) distance [4-8,22-25]. The N(1)-N(2) length (1.2556(16)Å) is very similar to azo (-N=N-) bond length [4-8.22–25]. The distance (2.577 Å) between arvl O(1) and aldimine N(3) signify the intramolecular H-bond [19–26]. H(3a) was located by Fourier mapping indicating significant interaction with imine nitrogen giving rise to considerable coupling with aldimine (-N=CH-) proton as observed in ¹H NMR spectra of the ligands (vide supra). In the X-ray structures of metal complexes the dinegative anion of ligands, $(L_{nap})^{2-}$ bind Ni(II) and Pd(II) in distorted square planer geometry. The [Ni(L¹_{nap})]molecule has a planar structure with a maximum deviation of 0.131 Å from the least square plane. The planar molecules $[Ni(L_{nap}^{1})]$ in the asymmetric units are held as weak staggered unsupported dimers where Ni-Ni distances are 3.410 Å. The dimers are arranged in a stair-like manner where the inter dimer Ni-Ni distance is 6.837 Å. The Ni-N(azo) [Ni-N2; 1.799(2) Å] and Ni-N(imine) [Ni–N3; 1.884(2)Å] distances are different due to stronger trans influence of aryl carbon than the phenolic oxygen [4]. The Ni-C2 distance (1.880(2)Å) is comparable with Ni-C distance of orthometallated Ni(II) complex of azobenzene [17]. Ni-O1 distance (1.8204(17) Å) is within the normal range of Ni-O distances (1.83(1)Å) in salen complexes [27,28]. The X-ray structure of palladium complex, $[Pd(L_{nap}^1)]$, was similar to $[Ni(L_{nap}^1)]$. Pd-C (1.993(2) Å) and Pd-O (1.9949(15) Å) distances are within the normal range [6,29,30]. Between the Pd-N(azo) (1.9175(17) Å) and Pd-N(im) (2.0156(16) Å) distances, the former is shorter due to either stronger π -backbonding or stronger trans influence of carbon than the phenoxide oxygen [6]. In general, all the metal-ligand bond distances of $[Pd(L_{nap}^1)]$ are larger than those in $[Ni(L_{nap}^1)]$ complex due to larger size of Pd(II) than Ni(II).

3. Conclusion

Orthometallated complexes, of Ni(II) and Pd(II) have been prepared with a naphthyl moiety within the ligand framework. All the orthometallated complexes underwent oxygen insertion upon rection with peroxy acids to form the complexes incorporating azo ligands having *salen* like coordination sites –(O, N, N, O). Luminescence properties of the complexes and ligands are discussed considering heavy atom effect and "chelation enhanced fluoroscence (CHEF)". The oxygenated products display very weak emission.

4. Experimental

4.1. Materials

The solvents used in the reactions were of reagent grade obtained from Merck, Kolkata, India and purified and dried by reported procedures [31]. 2-(Arylazo)anilines and 1-{[2-(ary-lazo)phenyl]iminomethyl}-2-naphthol were prepared according to reported procedure [7,22,31]. Palladium chloride, nickel acetate tetra hydrate were purchased from Merck, Kolkata, India.

Sodiumtetrachloropalladate (II) was prepared by reported procedure [22].

4.2. Physical measurements

Microanalyses (C, H, N, O/S) were performed using a Perkin-Elmer 2400 elemental analyzer. Infrared spectra were recorded on a Perkin-Elmer L120-00A FT-IR spectrometer with the samples prepared as KBr pellets. Electronic spectra were recorded on a Shimadzu UV-1800 & UV-2401PC spectrophotometer. ¹H NMR spectra were obtained on Bruker RPX 500 NMR & Bruker DPX 400 spectrometers in CDCl₃.

4.3. Syntheses of compounds

4.3.1. Synthesis of $[Ni(L_{nap})]$ complex (**5a**)

A solution of $H_2L_{nap}^1$ (0.2 g, 0.57 mmol) in 10 cm³ methanol was added to a 5 cm³ methanolic solution of Ni(OAc)₂·4H₂O (0.142 g, 0.57 mmol). The mixture was then heated to reflux for 12 h to obtain green precipitate of [Ni(L_{nap}^1)]complex. The solid product was then filtered and washed with methanol. The volume of the filtrate was reduced to ~10 cm³ and kept in a beaker covering with a glass. It was kept for few days. A little more crop of product was collected.

5a: Yield: 0.258 g (65%). *Anal.* Calc. for C₂₃H₁₅N₃NiO (408.07): C, 67.6; H, 3.7; N, 10.2. Found: C, 67.7; H, 3.6; N, 10.3%. UV–Vis (CH₂Cl₂): [λ_{max} , nm (ε , M⁻¹ cm⁻¹)]: 622 (434), 478 (4644), 356 (5945). IR (KBr): 1374 (N=N); 1605 (C=N). ¹H NMR (CDCl₃): δ = 9.49 (s, 1H; N=CH), 8.02 (d, 1H; Ar), 7.66–7.62 (m, 5H; Ar), 7.48 (t, 1H; Ar), 7.43–7.27 (m, 4H; Ar), 7.12–7.08 (m, 3H; Ar) ppm.

4.3.2. Synthesis of $[Ni(L^{2}_{nap})]$ (**5b**) and $[Ni(L^{3}_{nap})]$ (**5c**)

Complexes $[Ni(L_{nap}^2)]$ and $[Ni(L_{nap}^3)]$ were prepared using the ligand $H_2L_{nap}^2$ and $H_2L_{nap}^3$ in place of $H_2L_{nap}^1$, respectively.

5b: Yield: 0.276 g (70%). *Anal.* Calc. for C₂₄H₁₇N₃NiO (422.07): C, 68.2; H, 4.0; N, 9.9. Found: C, 68.3; H, 4.0; N, 9.9%. UV–Vis (CH₂Cl₂): [λ_{max} , nm (ε, M⁻¹ cm⁻¹)]: 623 (1207), 480 (12691), 380 (15012). IR (KBr): 1378 (N=N), 1603 (C=N). ¹H NMR (CDCl₃): δ = 9.44 (s, 1H; N=CH), 7.98 (d, 1H; Ar), 7.63–7.47 (m, 6H; Ar), 7.36 (t, 1H; Ar), 7.14–7.06 (m, 4H; Ar), 6.87 (d, 1H; Ar), 2.43 (s, 3H; Me) ppm.

5c: Yield: 0.255 g (60%). *Anal.* Calc. for C₂₃H₁₄N₃NiOCl (443.57): C, 62.4; H, 3.1; N, 9.4. Found: C, 62.4; H, 3.2; N, 9.4%. UV–Vis (CH₂Cl₂): [λ_{max} , nm (ε , M⁻¹ cm⁻¹)]: 622 (729), 475 (7851), 384 (10212). IR (KBr pellets, cm⁻¹): 1375 (N=N), 1602 (C=N). ¹H NMR (CDCl₃): δ = 9.40 (s, 1H; N=CH), 7.96 (d, 1H; Ar), 7.63 (d, 2H; Ar), 7.57 (t, 2H; Ar), 7.50–7.46 (m, 3H; Ar), 7.41 (t, 1H; Ar), 7.09 (t, 2H; Ar), 7.05 (d, 1H; Ar) ppm.

4.3.3. Synthesis of $[Pd(L_{nap}^1)]$ complex (**6a**)

A solution of $H_2L_{nap}^1$ (0.2 g, 0.57 mmol) in 10 cm³ methanol was added to a 5 cm³ methanolic solution of Na_2PdCl_4 (0.168 g, 0.57 mmol). The mixture was then stirred for 20 h to obtain brown precipitate of $[Pd(L_{nap}^1)]$ complex. The solid product was then filtered and washed with methanol. The product was then purified by preparative TLC using benzene–acetonitrile (19:1) mixed solvent. Upon evaporation of solvent, the pure desired brown complex $[Pd(L_{nap}^1)]$ was isolated.

6a: Yield: 0.310 g (65%). *Anal.* Calc. for C₂₃H₁₅N₃PdO (455.80): C, 60.6; H, 3.3; N, 9.2. Found: C, 60.5; H, 3.3; N, 9.2%. UV–Vis (CH₂Cl₂): $[\lambda_{max}, nm (ε, M^{-1} cm^{-1})]$: 450 (5068), 374 (5908), 274 (9835), 245 (11611). IR (KBr pellets, cm⁻¹): 1357 (N=N), 1603 (C=N). ¹H NMR (CDCl₃): δ = 9.54(s, 1H; N=CH), 8.03 (d, 1H; Ar), 7.79 (d, 1H; Ar), 7.75 (d, 2H; Ar), 7.68 (d, 1H; Ar) 7.64 (d, 1H; Ar), 7.54–7.41 (m, 4H; Ar), 7.35 (d, 2H; Ar), 7.26–7.13 (m, 2H; Ar) ppm.

4.3.4. Synthesis of $[Pd(L^{2}_{nap})]$ (**6b**) and $[Pd(L^{3}_{nap})]$ (**6c**)

Complexes $[Pd(L^2_{nap})]$ and $[Pd(L^3_{nap})]$ were prepared using the ligands $H_2L^2_{nap}$ and $H_2L^3_{nap}$ in place of $H_2L^1_{nap}$, respectively.

6b: Yield: 0.260 g (55%). *Anal.* Calc. for $C_{24}H_{17}N_3PdO$ (469.80): C, 61.3; H, 3.6; N, 8.9. Found: C, 61.3; H, 3.6; N, 8.9%. UV–Vis (CH₂Cl₂): [λ_{max} , nm (ε , M⁻¹ cm⁻¹)]: 450 (4788), 374 (5321), 274 (8376), 245 (9819). IR (KBr pellets, cm⁻¹): 1353 (N=N); 1602 (C=N). ¹H NMR (CDCl₃): δ = 9.40 (s, 1H; N=CH), 8.19 (d, 1H; Ar), 8.08–8.04 (m, 1H; Ar), 7.92 (d, 1H; Ar) 7.67–7.56 (m, 3H; Ar), 7.40–7.26 (m, 2H; Ar), 7.22–7.12 (m, 2H; Ar), 7.05 (t, 2H; Ar), 6.84 (d, 1H; Ar), 2.28(s, 3H; Me) ppm.

6c: Yield: 0.234 g (50%). *Anal.* Calc. for C₂₃H₁₄N₃PdOCl (491.30): C, 56.3; H, 2.8; N, 8.5. Found: C, 56.3; H, 2.8; N, 8.6%. UV–Vis (CH₂Cl₂): [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 450 (5044), 374 (5960), 274 (8940), 245 (10440). IR (KBr): 1353 (N=N), 1602 (C=N). ¹H NMR (CDCl₃): δ = 9.38(s, 1H; N=CH), 7.94 (d, 1H; Ar), 7.68 (d, 1H; Ar), 7.62 (d, 2H; Ar), 7.58 (d, 1H; Ar), 7.54 (d, 2H; Ar), 7.47–7.40 (m, 3H; Ar), 7.13 (t, 1H; Ar), 7.06–7.03 (m, 2H; Ar) ppm.

4.4. Synthesis of complex, $(OL_{nap}^1)Ni(7)$

The details for the preparation of $(OL_{nap}^1)Ni$ are given.

4.4.1. Reaction of $[Ni(L_{nap}^{1})]$ with mCPBA

A solution of *m*CPBA (0.143 g, 0.824 mmol) in dichloromethane (5 mL) was added drop wise to a stirred solution of $[Ni(L_{nap}^1)]$ (0.100 g, 0.245 mmol) in dichloromethane (25 mL). Immediately the color of the solution began to change from deep green to brown. The stirring was continued for 10 min. Evaporation of the solvent in vacuo afforded a brown solid mass. The solid mass was washed with diethyl ether (3‴5 mL). The product was then purified by preparative TLC using a benzene/acetonitrile (19:1) mixture as eluent. Upon evaporation of the solvent, the pure target complex [Ni(OL_{nap})] was obtained.

4.4.2. Reaction of $(L^{1}_{nap})Ni$ with TBHP

To a stirred solution of $[Ni(L_{nap}^1)]$ (0.571 g, 0.140 mmol) in 25 cm³ dichloromethane or *tert*-butanol, TBHP (0.30 mL, 2.76 mmol) was added dropwise. Immediately the color of the solution began to turn from deep green to brown. The stirring was continued for 30 min. Evaporation of the solvent under vaccuo afforded a brown solid mass. The solid mass, thus obtained, was washed with water and diethyl ether. The product was then purified by preparative TLC using benzene–acetonitrile (19:1) mixed solvent. Upon evaporation of solvent the pure desired complex $[Ni(OL_{nap})]$ was obtained.

4.4.3. Reaction of $[Ni(L_{nap}^1)]$ with H_2O_2

To a stirred solution of $[Ni(L_{nap}^1)]$ (0.34 g, 0.083 mmol) in 15 cm³ dichloromethane, 10 cm³ of 6% H₂O₂ was added drop wise. The color of the organic layer began to turn from deep green to brown after 15 min. The stirring was continued for 45 min. Evaporation of the organic solvent, after separation from the aqueous layer, under vaccuo afforded a dark solid mass. The solid mass, thus obtained, was washed with water. The product was then purified by preparative TLC using benzene–acetonitrile (19:1) mixed solvent. Upon evaporation of solvent the pure desired complex $[Ni(OL_{nap}^1)]$ was obtained.

Yield: 0.205 g (70%). *Anal.* Calc. for $C_{23}H_{15}N_3NiO_2$ (424.07): C, 65.1; H, 3.5; N, 9.9. Found: C, 65.1; H, 4.0; N, 9.9%. UV–Vis (CH₂Cl₂): [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 646 (8935), 531 (2207), 478 (4516), 353 (6014), 256 (11523). IR (KBr): 1371 (N=N); 1603 (C=N). ¹H NMR (CDCl₃): δ = 9.29 (s, 1H; N=CH), 8.22 (d, 1H; Ar), 8.08 (d, 1H; Ar), 7.84 (d, 1H; Ar), 7.78 (d, 1H; Ar), 7.70 (t, 2H; Ar), 7.30–7.22 (m, 1H; Ar), 6.89 (t, 1H; Ar) ppm.

Table 4

Crystallographic data for $H_2L_{nap}^1$, **4a**, $[Ni(L_{nap}^1)]$, **5a** and $[Pd(L_{nap}^1)]$, **6a**.

Chemical formula	$C_{23}H_{17}N_3O$	$C_{23}H_{15}N_3NiO$	$C_{23}H_{15}N_3PdO$
Formula weight Space group	351.40 <i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	408.07 P21/n (No. 14)	455.80 P21/n (No. 14)
Crystal system a (Å)	orthorhombic 5.5597(2)	monoclinic 12.4865(2)	monoclinic 12.5071(7)
b (Å)	11.3742(5)	8.6827(2)	8.5743(5)
c (Å)	27.1976(13)	17.2322(3)	17.4363(10)
$\begin{array}{c} \alpha \left(\circ \right) \\ \beta \left(\circ \right) \\ \gamma \left(\circ \right) \\ \lambda \left(\dot{\mathbf{A}} \right) \end{array}$	90 90 90 0.71073	90 109.8440(10) 90 0.71073	90 109.8980(10) 90 0.71073
$V(\dot{A}^3)$	1719.90(13)	1757.32(6)	1758.23(17)
Z T (K) $D_{calc} (Mg/m^3)$ $\mu (mm^{-1})$ F(000) R[all data] $wR_2[I > 2\sigma(I)]$ Goodness-of-fit GOF on F^2	4 293 1.357 0.085 736 0.0354 0.0973 1.08	4 293 1.542 1.123 840 0.0302 0.0712 1.03	4 293 1.722 1.075 912 0.0240 0.0615 1.05

4.5. Syntheses of complex, $[Pd(OL_{nap}^1)]$ (8)

The details for the preparation of $[Pd(OL_{nap}^{1})]$ are given.

4.5.1. Reaction of [Pd (L^{1}_{nap})] with mCPBA

A solution of (0.144 g, 0.824 mmol) mCPBA was added dropwise to a stirred solution of $[Pd(L_{nap}^1)]$ (0.100 g, 0.219 mmol) in 25 mL dichloromethane. Immediately, the color of the solution began to change from brown to pink. The stirring was continued for 30 min. Evaporation of the solvent under vaccuo afforded a pink solid mass. The solid mass thus obtained was washed thrice with diethyl ether, taking 5 mL for each wash. The product was then purified by preparative TLC using benzene as the eluent. The pink band was collected.

4.5.2. Reaction of [Pd (L^{1}_{nap})] with TBHP

To a stirred solution of $[Pd(L_{nap}^1)]$ (0.100 g, 0.219 mmol) in 25 cm³ dichloromethane or *tert*-butanol, TBHP (0.40 mL, 3.68 mmol) was added drop wise in presence of catalytic amount VO(acac)₂. Immediately the color of the solution began to turn from brown to pink. The stirring was continued for 1 h. Evaporation of the solvent under vaccuo afforded a pink solid mass. The solid mass, thus obtained, was washed with water and diethyl ether. The product was then purified by preparative TLC using benzene–acetonitrile (19:1) mixed solvent. Upon evaporation of solvent the pure desired complex [Pd (OL¹_{nap})] was obtained.

Yield: 0.138 g (50%). *Anal.* Calc. for C₂₃H₁₅N₃PdO₂ (471.80): C, 58.5; H, 3.2; N, 8.9. Found: C, 58.5; H, 3.2; N, 8.8%. UV–Vis (CH₂Cl₂): $[\lambda_{max}, nm (ε, M^{-1} cm^{-1})]$: 538 (3779), 420 (3400), 379 (6100), 244 (12100). IR (KBr): 1384 (N=N), 1605 (C=N). ¹H NMR (CDCl₃): δ = 9.58 (s, 1H; N=CH), 8.36 (d, 1H; Ar), 8.11 (d, 1H; Ar), 7.98 (d, 1H; Ar), 7.90 (d, 1H; Ar) 7.76 (d, 1H; Ar), 7.56–7.50 (m, 1H; Ar), 7.48–7.39 (m, 2H; Ar), 7.36–7.734 (m, 2H; Ar), 7.33–7.30 (m, 2H; Ar), 6.87 (m, 1H; Ar).

4.6. Syntheses of authentic $H_2OL_{nap}^1$, **9**

To a solution of $(0.100 \text{ g}, 0.469 \text{ mmol}) \text{ HOL}^1-\text{NH}_2$ in 50 cm^3 diethyl ether 2-hydroxy 1-napthaldehyde (0.0573 g, 0.333 mmol) was added. The mixture of solution was heated to reflux for 12 h.

The solvent was evaporated in vaccuo. The solid product was kept in a vacuum desiccator for 24 h before use and characterization.

Yield: 0.155 g (90%). *Anal.* Calc. for C₂₃H₁₇N₃O₂ (367): C, 75.2; H, 4.6; N, 11.4. Found: C, 75.1; H, 4.6; N, 11.5%. UV–Vis (CH₂Cl₂): [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 320 (30000), 232 (53000). IR (KBr): 1473 (N=N), 1628 (C=N). ¹H NMR (CDCl₃): δ = 12.39 (s, OH), 10.76 (s, OH), 9.33 (s, 1H; N=CH), 8.046 (d, 1H; Ar), 7.97 (d, 1H; Ar), 7.90 (d, 1H; Ar), 7.76 (d, 1H; Ar) 7.65 (d, 1H; Ar), 7.49 (t, 2H; Ar), 7.44 (t, 1H; Ar), 7.34 (d, 2H; Ar), 7.28–7.22 (m, 3H; Ar), 7.10 (d, 1H; Ar), 7.02–6.98 (m, 2H; Ar).

4.7. Syntheses of authentic [Ni(OL¹_{nap})], **7**

A stirred solution of Ni(OAc)₂·4H₂O (0.067 g, 0.272 mmol) in methanol (5 mL), solution of $H_2OL_{nap}^1$ (0.100 g, 0.272 mmol) in methanol (10 mL). The color of the solution changes from deep green to brown. The stirring was continued for 10 min. Evaporation of the solvent in vacuo afforded a brown solid mass. The product was then purified by preparative TLC using a benzene/acetonitrile (19:1) mixture as eluent. Upon evaporation of the solvent, the pure target complex [Ni(OL¹_{nap})] was obtained.

4.8. Syntheses of authentic $[Pd(OL_{nap}^{1})]$, 8

(0.100 g, 0.272 mmol) solution of $\text{H}_2\text{OL}_{nap}^1$ in methanol (10 mL) added dropwise to a stirred solution of (0.100 g, 0.219 mmol) N_2PdCl_4 in 5 mL methanol. The color of the solution began to change from brown to pink. The stirring was continued for 30 min. Evaporation of the solvent under vaccuo afforded a pink solid mass. The product was then purified by preparative TLC using benzene as the eluent. The pink band was collected. Upon evaporation of the solvent, the pure target complex $[\text{Pd}(\text{OL}_{nap}^1)]$ was obtained.

5. Crystallography

Data for the crystals $H_2L_{nap}^1$, **4a**, $[Ni(L_{nap})]$, **5a** and $[Pd(L_{nap})]$, **6a** were collected by the ω -scan technique on a Brucker smart CCD diffractometer with Mo K α radiation monochromated by a graphite crystal. The structure was solved by direct method with SHELXS-97 program. Full matrix least square refinements were performed using the SHELX-97 program (PC version) [32,33]. All nonhydrogen atoms were refined anisotropically using reflections $I > 2\sigma(I)$. Hydrogen atoms were included at the calculated positions. The crystal data and data collection parameters for $H_2L_{nap}^1$, $[Ni(L_{nap}^1)]$ and $[Pd(L_{nap}^1)]$ are listed in Table 4.

Acknowledgments

We are thankful to the DST (New Delhi) for funding and fellowship to PP under DST-WOS-A project (No. SR/WOS-A/CS-140/ 2011). The necessary laboratory and infrastructural facility are provided by the Dept. of Chemistry, University of Kalyani. The support of DST under FIST program to the Department of Chemistry, and PURSE to the University of Kalyani is acknowledged.

Appendix A. Supplementary material

CCDC 889016, 889017 and 889018 contain the supplementary crystallographic data for $H_2L^1_{nap}$, $[Ni(L^1_{nap})]$ and $[Pd(L^1_{nap})]$, respectively. These data can be obtained free of charge via http:// www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; or e-mail: deposit@ccdc.cam.ac.uk. Figs. S1–S18 show the UV–Vis and IR spectra Figs. S19–S31 show ¹H NMR spectra of all the ligands and complexes. Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.poly.2012.12.011.

References

- [1] (a) T.W. Lyons, M.S. Sanford, Chem. Rev. 110 (2010) 1147;
- (b) D.A. Colby, R.G. Bergman, J.A. Ellman, Chem. Rev. 110 (2010) 624; (c) P. Sehnal, R.J.K. Taylor, I.J.S. Fairlamb, Chem. Rev. 110 (2010) 824.
- [2] (a) F. Kakiuchi, T. Kochi, Synthesis (2008) 3013;
- (b) L.-M. Xu, B.-J. Li, Z. Yang, Z.-J. Shi, Chem. Soc. Rev. 39 (2010) 712; (c) L. Ackermann, Chem. Commun. 46 (2010) 4866.
- [3] (a) H. Shiota, Y. Ano, Y. Aihara, Y. Fukumoto, N. Chatani, J. Am. Chem. Soc. 133 (2011) 14952;
- (b) I. Omae, Chem. Rev. 79 (1979) 287;
- (c) A. Nishimura, M.Ohashi, S. Ogoshi, J. Am. Chem. Soc. 134 (2012) 15692.
- [4] P. Pattanayak, J.L. Pratihar, D. Patra, A. Burrows, M. Mohan, S. Chattopadhyay, Eur. J. Inorg. Chem. (2007) 4263.
- [5] P. Pattanayak, J.L. Pratihar, D. Patra, S. Mitra, A. Bhattacharyya, H.M. Lee, S. Chattopadhyay, Dalton Trans. (2009) 6220.
- [6] P. Pattanayak, J.L. Pratihar, D. Patra, V.G. Puranik, S. Chattopadhyay, Polyhedron 27 (2008) 2209.
- [7] P. Pattanayak, J.L. Pratihar, D. Patra, A. Burrows, M. Mohan, S. Chattopadhyay, Inorg. Chim. Acta 363 (2010) 2865.
- [8] A. Basoglu, S. Parlayan, M. Ocak, H. Alp, H. Kantekin, M. Özdemir, Polyhedron 28 (2009) 1115.
- [9] C.A. Langhoff, G.W. Robinson, Chem. Phys. 6 (1974) 34.
- [10] J.S. Kim, D.T. Quang, Chem. Rev. 107 (2007) 3780.
- [11] M. Calinescu, D. Manea, G. Pavelescu, Rev. Roum. Chim. 56 (2011) 231.
- [12] C. Saudan, V. Balzani, P. Ceroni, M. Gorka, M. Maestri, V. Vicinelli, F. Vogtle, Tetrahedron 59 (2003) 3845.
- [13] V. Pawlowski, H. Kunkely, A. Vogler, J. Photochem. Photobiol., A 161 (2004) 95.
- [14] M. Osawa, M. Hoshino, D. Hashizume, Dalton Trans. (2008) 2248.
- [15] R. Hou, T.-H. Huang, X.-J. Wang, X.-F. Jiang, Q.-L. Ni, L.-C. Gui, Y.-J. Fan, Y.L. Tan, Dalton Trans. 407 (2011) 551.
- [16] A.I. Privalova, Ju.P. Morozova, E.R. Kashapova, V. Ja, J. Appl. Spectrosc. 78 (2011) 309.
- [17] T.C. Chien, L.G. Dias, G.M. Arantes, L.G.C. Santos, E.R. Triboni, E.L. Bastos, M.J. Politi, J. Photochem. Photobiol., A 194 (2008) 37.
- [18] L.M. Tolbert, S.M. Nesselroth, J. Phys. Chem. 25 (1991) 10331.
- [19] A. McCarthy, A.A. Ruth, Phys. Chem. Chem. Phys. 13 (2011) 18661.
- [20] P. Pattanayak, J.L. Pratihar, D. Patra, A. Burrows, M. Mohan, S. Chattopadhyay, J. Chem. Sci., in press.
- [21] H. Warmke, W. Wiczk, T. Ossowski, Talanta 52 (2000) 449.
- [22] N. Maiti, S. Pal, S. Chattopadhyay, Inorg. Chem. 40 (2001) 2204.
- [23] D. Patra, J.L. Pratihar, B. Shee, P. Pattanayak, S. Chattopadhyay, Polyhedron 25 (2006) 2637.
- [24] J.L. Pratihar, B. Shee, P. Pattanayak, D. Patra, A. Bhattacharyya, V.G. Puranik, C.H. Hung, S. Chattopadhyay, Eur. J. Inorg. Chem. (2007) 4272.
- [25] J.L. Pratihar, N. Maiti, P. Pattanayak, S. Chattopadhyay, Polyhedron 24 (2005) 1953.
- [26] T.B. Karpishin, T.D.P. Stack, K.N. Raymond, J. Am. Chem. Soc. 115 (1993) 182.
- [27] T. Kawamoto, Y. Kushi, Bull. Chem. Soc. Jpn. 77 (2004) 289.
- [28] T. Giaser, M. Heidemeier, T. Lügger, Dalton Trans. (2003) 2381.
- [29] D.N. Neogi, A.N. Biswas, P. Das, R. Bhawmick, P. Bandyopadhyay, Inorg. Chim.
- Acta 360 (2007) 2181. [30] S. Chattopadhyay, C. Sinha, P. Basu, A. Chakravorty, Organometallics 10 (1991)
- 1135. [31] N. Maiti, B.K. Dirghangi, S. Chattopadhyay, Polyhedron 22 (2003) 109.
- [32] G.M. Sheldrick, SHELXS-97, University of Göttingen, Göttingen, Germany, 1990.
- [32] G.M. Sheldrick, Shelxi-97, Program for the Refinement of Crystals Structures
- from Diffraction Data, University of Göttingen, Göttingen, Germany, 1997.