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A B S T R A C T   

Four triphenylamine or carbazole-based highly emissive solid fluorophores (The maximum quantum yield of 
42.43%) of dibenzothiophene sulfones have been successfully prepared and characterized. The solid-state 
emission behaviors and mechanical stimulus-responsive luminescence characteristics of all these donor- 
acceptor-donor (D-A-D) type or donor-π-acceptor-π-donor (D-π-A-π-D) type compounds 1–4 were investigated. 
Interestingly, these fluorophores 1–4 exhibited various solid-state fluorescent colors involving blue (CIE color 
coordinates of (0.15, 0.09)), blue-green (CIE color coordinates of (0.17, 0.43)), yellow (CIE color coordinates of 
(0.41, 0.56)) and brown-yellow (CIE color coordinates of (0.50, 0.50)). Furthermore, these dyes 1–4 also 
exhibited different mechanofluorochromic behaviors. More specifically, luminogens 1–3 showed bathochromic 
mechanofluorochromic phenomena. However, luminogen 4 showed distinct-different hypsochromic mechano-
fluorochromic phenomenon. All these observed mechanochromic emission conversions could be repeated for 
many cycles. Single-crystal X-ray diffraction and powder X-ray diffraction experiments demonstrated that the 
mechanofluorochromic behaviors of 1–4 were related to the morphology transformation from crystalline state to 
amorphous state.   

1. Introduction 

Mechanofluorochromism is an interesting phenomenon of fluores-
cent color change resulted from mechanical stimulus of a solid sample 
[1–6]. For more than a decade, mechanofluorochromic fluorophores 
have received much attention on account of their potential applications 
in the fabrication of optical-data storage devices and fluorescent sensors 
[7–15]. Meanwhile, the development of highly solid-state emissive 
organic dyes is also a topic of current interest owing to their possible 
applications in organic light-emitting diodes (OLED) and luminescent 
displays [16–28]. Furthermore, bright solid-state emission is a rather 
important factor for the preparation of high-contrast mechanochromic 
fluorescence materials [29–41]. However, numerous fluorescent com-
pounds show faint fluorescence or non-fluorescence in the solid state 
because of the thorny aggregation-caused quenching (ACQ) phenome-
non [42]. Indeed, it is well-known that the excited states of compounds 

possessing ACQ effect often decay via non-radiative pathways upon 
aggregation. Fortunately, an important aggregation-induced emission 
(AIE) effect, which is precisely the inverse of ACQ, was firstly reported 
by Tang’s group [43]. Admittedly, the discovery of AIE phenomenon 
provides an important step forward to expand the number of highly 
solid-state emissive mechanofluorochromic materials [44–46]. In gen-
eral, bright solid-state fluorescence of AIE-active compounds is usually 
caused by the restriction of their intramolecular rotations [47]. There-
fore, the twisted molecular conformation of triphenylamine or carbazole 
fluorogen is conducive to the construction of highly efficient emission 
materials [48–55]. On the other hand, π-conjugated fluorescent mole-
cules with donor and acceptor moieties are promising candidates for 
functional luminescent materials, and the emission properties of many 
solid materials with donor-acceptor (D-A) groups are sensitive to 
external stimuli. In fact, during the last decade, a lot of D-A type organic 
fluorophores with stimuli-responsive properties have been reported 
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[56–58]. Luminescent properties of solid organic dyes are closely asso-
ciated with their molecular packing modes, and a variety of compounds 
with different light-emitting wavelengths can be obtained conveniently 
via rational molecular design. However, it is still a great challenge to 
realize nearly full-color emission based on the same donor and acceptor 
units. Incorporation of two electron-donating moieties containing 
rotatable aromatic rings into the strongly electron-withdrawing frame-
work may be a rational design strategy. More importantly, by simply 
changing the electron-donating units and modulating the length of 
π-conjugated skeletons, the related solid-state emission colors can be 
effectively regulated, and external mechanical stimulation can further 
tune the solid-state fluorescence (see Scheme 1). 

To date, numerous organic and organometallic compounds exhibit-
ing mechanochromic luminescence behavior have been discovered, and 
the majority of these reported mechanochromic luminogens show 
bathochromic emission spectral changes after grinding. In contrast, 
luminophors with hypsochromic mechanochromic behavior are still 
extremely rare. Furthermore, it is very difficult to obtain a series of 
similarly structural compounds with hypso- and bathochromic mecha-
nofluorochromic phenomena simultaneously basing on the same core 
units. In this study, we attempted to introduce two electron-donating 
triphenylamine or carbazole fluorogens into one electron-withdrawing 
dibenzothiophene sulfone moiety. Consequently, four D-A-D type or 
D-π-A-π-D type compounds 1–4 were successfully obtained. Interest-
ingly, luminogens 1–4 showed high-intensity solid-state fluorescence 
with various colors containing blue, blue-green, yellow and brown- 
yellow. More excitingly, 1–4 also showed reversible and hypso- or 
bathochromic mechanofluorochromic characteristics. 

2. Materials and methods 

2.1. Experimental 

General: The starting materials 3,7-dibromodibenzo [b,d]thiophene 
5,5-dioxide, 4-(diphenylamino)phenylboronic acid and 4-(9H-carbazol- 
9-yl) phenylboronic acid purchased from J&K Chemical were used as 

received. All other starting materials and all reagents were obtained via 
commercial suppliers and then applied without further purification. All 
experimental manipulations were carried out under an argon atmo-
sphere by using standard Schlenk techniques. 1H NMR (400 MHz) and 
13C NMR (100.6 MHz) spectra were collected on American Varian 
Mercury Plus 400 spectrometer (400 MHz). 1H NMR spectra are re-
ported as followed: chemical shift in ppm (δ) relative to the chemical 
shift of TMS at 0.00 ppm, integration, multiplicities (s = singlet, d =
doublet, t = triplet and m = multiplet), and coupling constant (Hz). 13C 
NMR chemical shifts reported in ppm (δ) relative to the central line of 
triplet for CDCl3 at 77 ppm. Mass spectral data were recorded on a 
Bruker UltrafleXtreme MALDI-TOF-TOF mass spectrometer. Elemental 
analyses (C, H, N) were carried out with a PE CHN 2400 analyzer. 
Fluorescence spectra were recorded by fluorescence spectrometer 
(FLS980, Edinburgh Instruments). The absolute fluorescence quantum 
yields were measured by HAMAMATSU ABSOLUTE PL QUANTUM 
YIELD SPECTROMETER C11347. The fluorescence lifetimes were 
measured by FLS980. XRD studies of compounds 1–4 were recorded on a 
Shimadzu XRD-6000 diffractometer (Japan) (Cu Kα, 40 kV and 30 mA). 
X-ray crystal structures of compounds 1 and 2 were obtained on a Bruker 
APEX DUO CCD system (Germany), and their structures were fully 
analyzed by a combination of direct methods (SHELXS-97) and fourier 
difference techniques and refined by full-matrix least-squares (SHELXL- 
97), and their crystallographic data of compounds 1 and 2 were 
deposited in the Cambridge Crystallographic Data Centre as supple-
mental publication CCDC 2002533 (compound 1) and CCDC 2002534 
(compound 2). Column chromatographic separations of the target 
compounds 1–4 were carried out on silica gel (200–300 mesh). 

2.2. Synthesis 

2.2.1. General procedure for the synthesis of compound 1 
A mixture of 3,7-dibromodibenzo [b,d]thiophene 5,5-dioxide (1.12 

g, 3.01 mmol), (4-(diphenylamino)phenyl)boronic acid (1.88 g, 6.50 
mmol), K2CO3 (2 mol/L, 5 ml, aqueous solution), TBAB (0.71 g, 2.21 
mmol), Pd(PPh3)4 (0.35 g, 0.30 mmol) were stirred in toluene (60 ml) 

Scheme 1. Synthesis of the compounds 1, 2, 3 and 4.  
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for 24 h under an argon atmosphere at 80 ◦C, after completion of present 
reaction, the mixture was extracted with dichloromethane (3 × 70 mL), 
the combined organic layers were washed with brine, dried (MgSO4), 
and concentrated in vacuo. The residues were purified by column 
chromatography, affording the yellow solid product in a yield of 73.2%. 
1: 1H NMR (400 MHz, CDCl3): δ (ppm) = 7.93 (s, 2H), 7.73 (s, 4H), 7.42 
(d, J = 8 Hz, 4H), 7.24–7.18 (m, 8H), 7.08 (d, J = 8 Hz, 12H), 7.01 (t, J 
= 6 Hz, 4H). 13C NMR (100.6 MHz, CDCl3): δ (ppm) = 148.47, 147.33, 
143.00, 138.74, 132.00, 131.71, 129.61, 129.42, 127.64, 124.93, 
123.53, 123.16, 121.77, 119.91. ESI-MS: m/z = 703.2 [M]+. Anal. 
Calcd. for C48H34N2O2S: C, 82.02; H, 4.88; N, 3.99. Found: C, 82.11; H, 
4.96; N, 3.93. 

2.2.2. General procedure for the synthesis of compound 2 
A mixture of 3,7-dibromodibenzo [b,d]thiophene 5,5-dioxide (1.12 

g, 3.01 mmol), (4-(9H-carbazol-9-yl)phenyl)boronic acid (1.88 g, 6.55 
mmol), K2CO3 (2 mol/L, 5 ml, aqueous solution), TBAB (0.71 g, 2.21 
mmol), Pd(PPh3)4 (0.35 g, 0.30 mmol) were stirred in toluene (60 ml) 
for 24 h under an argon atmosphere at 80 ◦C, after completion of present 
reaction, the mixture was extracted with dichloromethane (3 × 70 mL), 
the combined organic layers were washed with brine, dried (MgSO4), 
and concentrated in vacuo. The residues were purified by column 
chromatography, affording the white solid product in a yield of 71.8%. 
2: 1H NMR (400 MHz, CDCl3): δ (ppm) = 8.11 (d, J = 4 Hz, 6H), 
7.94–7.89 (m, 4H), 7.82 (d, J = 8 Hz, 4H), 7.66 (d, J = 8 Hz, 4H), 
7.44–7.37 (m, 8H), 7.28 (s, 1H), 7.24 (s, 1H), 7.19 (s, 2H). 13C NMR 
(100.6 MHz, CDCl3): δ (ppm) = 142.89, 140.70, 139.09, 138.32, 137.69, 
132.57, 130.41, 128.51, 127.65, 126.11, 123.64, 122.21, 120.78, 
120.42, 120.27, 109.76. ESI-MS: m/z = 699.2 [M]+. Anal. Calcd. for 
C48H30N2O2S: C, 82.50; H, 4.33; N, 4.01. Found: C, 82.55; H, 4.39; N, 
3.94. 

2.2.3. General procedure for the synthesis of compound 3 
A mixture of 3,7-dibromodibenzo [b,d]thiophene 5,5-dioxide (1.12 

g, 3.01 mmol), N,N-diphenyl-4-vinylaniline (4.08 g, 15.05 mmol), Pd 
(OAc)2 (26.87 mg, 0.12 mmol), K2CO3 (1.08 g, 7.83 mmol), and TBAB 
(2.03 g, 6.32 mmol) in anhydrous DMF (60 ml) was reacted under argon 
atmosphere at 110 ◦C for 24 h, after completion of present reaction, the 
mixture was extracted with dichloromethane (3 × 70 mL), the combined 
organic layers were washed with brine, dried (MgSO4), and concen-
trated in vacuo. The residues were purified by column chromatography, 
affording the orange solid product in a yield of 61.2%. 3: 1H NMR (400 
MHz, CDCl3): 7.84 (s, 2H), 7.58–7.52 (m, 4H), 7.30 (d, J = 8 Hz, 4H), 
7.20 (t, J = 8 Hz, 8H), 7.08–6.96 (m, 18H), 6.88 (d, J = 16 Hz, 2H). 13C 
NMR (100.6 MHz, CDCl3): δ (ppm) = 148.25, 147.34, 140.16, 138.60, 

131.69, 131.08, 130.14, 129.79, 129.37, 127.80, 124.86, 124.35, 
123.43, 122.95, 121.60, 118.99. ESI-MS: m/z = 755.2 [M]+. Anal. 
Calcd. for C52H38N2O2S: C, 82.73; H, 5.07; N, 3.71. Found: C, 82.65; H, 
5.01; N, 3.80. 

2.2.4. General procedure for the synthesis of compound 4 
A mixture of 3,7-dibromodibenzo [b,d]thiophene 5,5-dioxide (1.12 

g, 3.01 mmol), 9-(4-vinylphenyl)-9H-carbazole (4.05 g, 15.05 mmol), 
Pd(OAc)2 (26.87 mg, 0.12 mmol), K2CO3 (1.08 g, 7.83 mmol), and TBAB 
(2.03 g, 6.32 mmol) in anhydrous DMF (60 ml) was reacted under argon 
atmosphere at 110 ◦C for 24 h, after completion of present reaction, the 
mixture was extracted with dichloromethane (3 × 70 mL), the combined 
organic layers were washed with brine, dried (MgSO4), and concen-
trated in vacuo. The residues were purified by column chromatography, 
affording the yellow solid product in a yield of 60.5%. 4: The NMR data 
of the compound were not obtained due to the poor solubility. ESI-MS: 
m/z = 751.2 [M]+. Anal. Calcd. for C52H34N2O2S: C, 83.17; H, 4.56; N, 
3.73. Found: C, 83.10; H, 4.61; N, 3.65. 

3. Results and discussion 

3.1. Design and synthesis of target molecules 1–4 

As a strong electron-withdrawing group, dibenzothiophene sulfone 
has been widely used to construct photoelectric functional materials 
[59,60]. Furthermore, the electron-donating triphenylamine or carba-
zole group has also been extensively applied in the field of fluorescent 
materials [61]. Therefore, in this work, we linked two triphenylamine or 
carbazole groups to one dibenzothiophene sulfone moiety via the typical 
Suzuki coupling reaction or Heck coupling reaction. As a result, four 
target compounds 1–4 were successfully synthesized. Compounds 1 and 
2 belong to D-A-D type fluorescent molecules, and compounds 3 and 4 
belong to D-π-A-π-D type fluorescent molecules. 

3.2. Solid-state emission and solvatochromic fluorescence behaviors of 
compounds 1–4 

To investigate the solid-state emission properties of D-A-D type 
compounds 1 and 2 or D-π-A-π-D type compounds 3 and 4 in detail, their 
corresponding solid-state photoluminescence (PL) spectra were ob-
tained, and the fluorescence properties of all the compounds in the solid 
state are shown in Fig. 1. Obviously, the solid-state fluorescent colors of 
1–4 presented a considerable change. The PL spectrum of 
triphenylamine-based D-A-D type fluorescent dye 1 exhibited one 
emission band with a λmax at 488 nm. Furthermore, the solid powder 1 

Fig. 1. (a) Solid-state emissive spectra of the compounds 1, 2, 3 and 4. The related solid-state fluorescence images under 365 nm UV light: (b): compound 1; (c): 
compound 2; (d): compound 3; (d): compound 4. 
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emitted strong blue-green fluorescence, and its fluorescence quantum 
yield was 12.35%. By changing the electron-donating aromatic group 
substituent, the emission wavelength of solid-state fluorescent dye 2 
presented a blue-shift from 488 to 447 nm, and the solid powder 2 
emitted strong blue fluorescence with the quantum yield of 10.05%. By 
extending the degree of π-conjugation, the solid-state fluorescence 
spectrum of D-π-A-π-D type fluorescent dye 3 exhibited one emission 
band with a λmax at 568 nm, and the fluorescent dye exhibited strong 
brown-yellow luminescence with the quantum yield of 10.96%. Simi-
larly, by changing the electron-donating aromatic group substituent, the 
emission wavelength of solid-state fluorescent dye 4 also presented a 
blue-shift from 568 to 550 nm, and the solid powder 4 also exhibited 
strong yellow fluorescence with high quantum yield of 42.43%. More-
over, solid-state compounds 1–4 showed good thermal stability with 
high onset degradation temperatures (Td) ranging from 350 to 430 ◦C 
(Supporting information: Fig. S1). In addition, compound 1, 2, 3 or 4 in 
pure toluene (1.0 × 10− 5 mol L− 1) exhibited one emission band with a 
λmax at 460 nm, 426 nm, 498 nm and 450 nm, respectively. Interestingly, 
the maximum emission wavelength of 1, 2, 3 or 4 in various solvents 
red-shifted gradually with increasing solvent polarity, and thus com-
pounds 1–4 showed outstanding solvatochromic fluorescence charac-
teristics (Supporting information: Fig. S2). Furthermore, the 
aggregation-induced fluorescence behaviors of compounds 1–4 were 

also studied, and the obvious aggregate fluorescence change phenomena 
of 1–4 are observed (Supporting information: Fig. S3). Clearly, com-
pounds 1–4 exhibited green fluorescence, cyan fluorescence, brown- 
yellow fluorescence and yellow fluorescence in DMF-water mixture 
(water fraction: 90%), respectively. These results were consistent with 
the different solid-state fluorescence properties of 1–4. 

3.3. The bathochromic mechanofluorochromic phenomena of D-A-D type 
compounds 1 and 2 

As mentioned above, the pristine solid sample of compound 1 
emitted blue-green fluorescence with the average lifetime of 1.75 ns 
(Fig. 3). As can be seen in Fig. 2, through grinding the solid sample with 
a pestle in a mortar, an emission band with a λmax at 523 nm appeared, 
and the ground powder emitted clear green fluorescence with the 
average lifetime of 3.21 ns (Fig. 3). Furthermore, when the ground 
powder was fumed with vapor of dichloromethane for 1 min, the fluo-
rescence color rapidly reverted to blue-green, and the average lifetime 
decreased to 1.66 ns (Fig. 3). Therefore, the mechanofluorochromic 
phenomenon of compound 1 was reversible. 

Subsequently, the powder X-ray diffraction (PXRD) patterns were 
investigated to determine the mechanofluorochromic mechanism of 1 
(Fig. 4), a number of sharp diffraction peaks of the pristine solid powder 
of 1 were seen in its XRD pattern, suggesting that the unground sample 1 

Fig. 2. (a) Solid-state emissive spectra of solid sample 1 at different conditions. Excitation wavelength: 365 nm. (b) Fluorescence image of the unground sample 1 
under 365 nm UV light. (c) Fluorescence image of the ground sample 1 under 365 nm UV light. (d) Fluorescence image of the ground sample 1 after treatment with 
dichloromethane under 365 nm UV light. 

Fig. 3. Fluorescence decay curves of unground solid sample 1 (488 nm), 
ground solid sample 1 (523 nm), ground solid sample 1 (490 nm) after treat-
ment with dichloromethane. 

Fig. 4. Powder XRD patterns of compound 1 in different solid states.  
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was crystalline in nature. After grinding, many diffraction peaks dis-
appeared and several diffraction peaks weakened. This XRD result 
revealed that the ground sample 1 was amorphous in nature. Moreover, 
the treated sample exhibited strong diffraction peaks again, which were 
almost the same as those for the unground sample, when the ground 
powder was exposed to dichloromethane vapor for 1 min. This phe-
nomenon indicated the recovery of the crystalline nature. Clearly, the 
reversible mechanofluorochromic process could be attributed to the 
reversible phase transition between the stable crystalline phase and the 
metastable amorphous phase. Similarly, compound 2 also exhibited 
reversible mechanochromic fluorescence phenomenon with the color 
transformation from blue to blue-green and vice versa (Fig. 5). When 
solid sample 2 was ground, it was possible that structural organization of 
2 became more planarity, and thus luminogen 2 showed mechano-
chromic phenomenon involving red-shifted fluorescent color trans-
formation. The patterns of powder XRD also confirmed that the 
transformation between crystalline and amorphous states was respon-
sible for the mechanofluorochromic mechanism of 2 (Supporting in-
formation: Fig. S5). Moreover, as shown in Fig. 6, the 
mechanofluorochromic behavior of D-A-D type dye 1 or 2 could be 
repeated four times without obvious changes. Therefore, the revers-
ibility of mechanofluorochromic phenomenon of fluorescent molecule 1 
or 2 is excellent. 

To get deep understanding of the mechanofluorochromic mechanism 
of compound 1 or 2, single crystals of 1 and 2 were obtained by tardily 
difussing n-hexane vapor into their dichloromethane solutions, and their 
single-crystal structures were also resolved. As can be seen in Fig. 7 and 
Fig. 8, in the crystals of 1 and 2, molecules 1 and 2 are packed through 

Fig. 5. (a) Solid-state emissive spectra of solid sample 2 at different conditions. Excitation wavelength: 365 nm. (b) Fluorescence image of the unground sample 2 
under 365 nm UV light. (c) Fluorescence image of the ground sample 2 under 365 nm UV light. (d) Fluorescence image of the ground sample 2 after treatment with 
dichloromethane under 365 nm UV light. 

Fig. 6. (a) Repetitive experiment of mechanofluorochromic effect for 1. (b) Repetitive experiment of mechanofluorochromic effect for 2.  

Fig. 7. (a) Crystal packing structure of compound 1. Showing C–H … π in-
teractions (2.651 Å and 2.649 Å). (b) Crystal packing structure of compound 1. 
Showing C–H⋯O interactions (2.672 Å and 2.518 Å). 
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weak C–H … π interactions (2.651 Å and 2.649 Å for 1, 1.165 Å and 
2.579 Å for 2) and C–H⋯O interactions (2.672 Å and 2.518 Å for 1). 
Furthermore, no intermolecular π … π interactions are observed in the 
crystals of 1 and 2, and the highly twisted molecular conformations of 1 
and 2 are beneficial to the realization of strong solid-state fluorescence. 
When the solid samples 1 and 2 were ground, their molecular packings 
were changed, which affected the intramolecular charge transfer char-
acters of molecules 1 and 2. As a consequence, their solid-state fluo-
rescence could be adjusted by mechanical force. 

3.4. The bathochromic and hypsochromic mechanofluorochromic 
phenomena of D-π-A-π-D type compounds 3 and 4 

As shown in Fig. 9, the as-prepared sample 3 exhibited a broad 
brown-yellow emission peak at 568 nm, and the average lifetime of the 
pristine solid possessing brown-yellow fluorescence was 2.05 ns 
(Fig. 10). It was notable that mechanical grinding caused a red-shift of 
the emission to 584 nm, and a powder with the average lifetime of 3.81 
ns (Fig. 10) that emitted orange fluorescence was obtained. Further-
more, the initial brown-yellow fluorescence could be recovered upon 
treatment of the ground sample 3 with fuming dichloromethane for 1 

Fig. 8. Crystal packing structure of compound 2. Showing C–H … π interactions (1.165 Å and 2.579 Å).  

Fig. 9. (a) Solid-state emissive spectra of solid sample 3 at different conditions. Excitation wavelength: 365 nm. (b) Fluorescence image of the unground sample 3 
under 365 nm UV light. (c) Fluorescence image of the ground sample 3 under 365 nm UV light. (d) Fluorescence image of the ground sample 3 after treatment with 
dichloromethane under 365 nm UV light. 

Fig. 10. Fluorescence decay curves of unground solid sample 3 (568 nm), 
ground solid sample 3 (584 nm), ground solid sample 3 (567 nm) after treat-
ment with dichloromethane. 

Fig. 11. Powder XRD patterns of compound 3 in different solid states.  
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min. Meanwhile, the corresponding average lifetime also decreased to 
1.99 ns (Fig. 10), which was close to that of the as-prepared solid 
sample. Therefore, D-π-A-π-D type dye 3 exhibited reversible bath-
ochromic mechanofluorochromism behavior. It is conjectured that the 
structural packing of compound 3 becomes more planarity upon 
grinding. 

Subsequently, the PXRD measurements were carried out to study the 
underlying origin of the mechanofluorochromic behavior of 3 (Fig. 11), 
and the PXRD patterns demonstrated that the as-synthesized samples 
and vapor-fumed samples had nearly identical strong diffraction peaks, 
indicating the crystalline feature of as-prepared solid powder 3 and 
sample 3 after dichloromethane treatment. Furthermore, the measure-
ment result also revealed that vapor treatment could induce the recovery 
of the initial crystalline state. However, the XRD pattern of the ground 
solids of 3 became broad and weak, and many sharp diffraction peaks 
disappeared, suggesting the amorphous nature of ground sample 3. As a 
result, the bathochromic emission was possibly related to the collapse of 
crystalline lattice of 3 during grinding. 

Interestingly, carbazole-based D-π-A-π-D type compound 4 exhibited 
hypsochromic mechanofluorochromic phenomenon involving color 
transformation from yellow to green (Fig. 12), and this fluorescent color 
change process was reversible upon treatment of the ground sample with 
fuming dichloromethane for 1 min. It is possible that the planarity of 
structural packing of compound 4 after grinding becomes worse. From 
the PXRD results (Supporting information: Fig. S7), the hypsochromic 
mechanochromic fluorescence phenomenon of 4 could also be attrib-
uted to the interconversion between crystalline and amorphous phases. 
In addition, the fluorescence-variation process of D-π-A-π-D type dye 3 

or 4 could be repeated many times (Fig. 13), indicating the superior 
reversibility. The maximum emission wavelengths of compounds 1–4 in 
different solid states were summarized in a table (Supporting informa-
tion: Fig. S8). 

4. Conclusions 

In conclusion, four dibenzothiophene sulfone-based solid fluo-
rophores have been designed and synthesized. Among them, compounds 
1 and 2 belong to D-A-D type structure, and compounds 3 and 4 belong 
to D-π-A-π-D type structure, in which the two triphenylamine or carba-
zole groups are electron donors and the dibenzothiophene sulfone acts 
as an electron-accepting unit. Interestingly, these luminogens show 
highly solid-state emissive behaviors with different fluorescent colors 
involving blue, blue-green, yellow and brown-yellow. Furthermore, 
these dyes 1–4 also show reversible and hypso- or bathochromic 
mechanofluorochromic phenomena. More specifically, 1–3 show bath-
ochromic mechanofluorochromic characteristics. However, luminogen 
4 shows distinct-different hypsochromic mechanofluorochromic 
behavior. This work will be valuable for designing excellent candidate 
mechanofluorochromic materials with full-color emission. 
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