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Abstract: A tunable rhodium-catalyzed intramolecular alkyne
insertion reaction proceeding through the C�C cleavage of
benzocyclobutenones is described. Selective formation of
either the direct or decarbonylative insertion product can be
controlled by using different catalytic systems. A variety of
fused b-naphthol and indene scaffolds were obtained in good
yields with high functional group tolerance. This work
illustrates a divergent approach to synthesize fused-ring
systems by C�C activation/functionalization.

Transition-metal-catalyzed C�C activation/functionalization
offers unique opportunities to develop novel transformations,
because it allows reorganization of bond connections leading
to novel molecular structures with high complexity.[1] Lately,
cleavage of a C�C bond followed by insertion of an
unsaturated unit serves as a rapid and atom-economical[2]

approach for constructing homologated or ring-expanded
products.[3, 1l] In particular, the synthesis of fused-ring systems
is benefited by this strategy. For instance, we recently
developed a rhodium-catalyzed intramolecular carboacyla-
tion of olefins with benzocyclobutenones to construct chiral
polyfused scaffolds.[4] Good yields and excellent regio- and
enantioselectivity were obtained with a broad range of
substrates. Such a “cut and sew” transformation[5] involves
oxidative addition of a metal into the a C�C bond of a cyclic
ketone to generate a key acylmetallacycle intermediate (B),
which, followed by an intramolecular migratory insertion and
reductive elimination, provides the fused-ring system C
(Scheme 1).

On the other hand, it is well established that the acylmetal
complexes (i.e. intermediate B) can also undergo reversible
CO de-insertion reactions.[6, 7] Thus, complementary to the
direct insertion reaction (regular “cut and sew”), the corre-
sponding decarbonylative “cut and sew” would provide an

[X + Y-1]-type coupling by extruding CO from the substrate
to give the fused ring D (Scheme 1), a process which remains
largely elusive.[8,9] Herein, we describe our efforts in devel-
oping a divergent approach to realize both regular and
decarbonylative “cut and sew” transformations through
rhodium-catalyzed intramolecular couplings between benzo-
cyclobutenones[10] and alkynes (Scheme 2B). The resulting b-
naphthol and indene fused-ring products provided by this
approach are useful synthetic building blocks,[11] and have also
been found in a number of biologically important molecules
(Figure 1).

Catalytic C�C s-bond cleavage followed by alkyne
insertion is of significant synthetic value particularly because
it can introduce an olefin moiety which permits further
functionalization of the substrate.[12] Alkyne insertion into the
saturated cyclobutanones, thus giving cyclohexones, was first
reported by Murakami et al. using a nickel catalyst, and a b-
carbon elimination mechanism is proposed for the C�C
activation step (Scheme 2A).[12e, 13] For the unsaturated cyclo-
butenones, given their unsymmetrical structures, a site-selec-
tivity issue arises concerning which C�C bond to cleave.[10]

The intermolecular alkyne insertion into cyclobutenones was
previously known to occur either by thermal heating[14] or
through catalysis using nickel[15] or rhodium.[16] In all these
cases, the C1�C4 bond is cleaved through a vinyl ketene
intermediate. For the intramolecular alkyne insertion, we
hypothesized that: 1) the alkyne group would serve as
a directing group and guide metals to cleave the C1�C2
bond of benzocyclobutenones (Scheme 2B),[4] which, in turn,
provides different site selectivity from that of the intermo-
lecular insertion; 2) the resulting “cut and sew” products,
conjugated enones, would undergo spontaneous tautomeriza-
tion to give b-naphthols as the ultimate products.

To test our hypothesis, we started with benzocyclobute-
none 1a as a model substrate (see Table S1 in the Supporting
Information; see Table 1 for structures). Wilkinson�s catalyst

Scheme 1. A divergent approach for fused-ring synthesis: Regular and
decarbonylative cyclization.
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[RhCl(PPh3)3] was initially investigated, and the desired b-
naphthol 2a was isolated, albeit in low yield. Given the
importance of bidentate ligands in the related olefin insertion
reaction,[4] a series of bidentate phosphine ligands were
examined. l,3-Bis(diphenylphosphanyl)propane (dppp) was
found to be most efficient, while the one-carbon unit longer
1,4-bis(diphenylphosphino)butane (dppb) or shorter 1,2-bis-
(diphenylphosphino)ethane (dppe) ligand was less effective.
A survey of different solvents revealed that 1,4-dioxane
provided the highest yield for this transformation, whereas
using other solvents resulted in different degrees of decom-
position of the starting material or product.

With the optimized reaction conditions in hand, the scope
of this reaction was examined (Table 1). Substrates containing
alkyl, aryl, or alkenyl alkynes were converted into the
corresponding b-naphthols in good to excellent yields.[17]

Both electron-donating and electron-withdrawing substitu-
ents on the benzocyclobutenone rings were well tolerated
(entries 8 and 9, Table 1). Moreover, a number of functional
groups were found to be compatible with this transformation,

including esters, ethers, trimethylsilyl, nitro groups, aryl
fluorides, and conjugated olefins (entries 3, 5–7, 9 and 11,
Table 1). Substitution at the C8-position of the benzocyclo-
butenone slowed the reaction, but the desired polysubstituted
naphthol 2j was nevertheless obtained (entry 10, Table 1).
The alkynes 1 l/1m are more challenging substrates because
the formation of six/seven-membered rings are kinetically less
favorable compared to forming five-membered rings [Eq. (1)
in Table 2]. Indeed, under the optimized reaction conditions,
low conversions were observed for these substrates. However,
we recently discovered that using a Lewis acid as a cocatalyst
can dramatically enhance the reaction rate of olefin carboa-
cylation, likely because of its coordination with the carbonyl
group promoting both oxidative addition and reductive
elimination.[4a, 18]

Thus, we hypothesized that the related alkyne insertion
would benefit from this Lewis-acid effect. To our delight,
when 1 equivalent of ZnCl2 was employed as an additive,

Scheme 2. C�C bond cleavage in cyclobutenones and cyclobutanones.

Figure 1. Representative examples of related bioactive molecules.

Table 1: Substrate scope for direct alkyne Insertion.[a]

Entry Substrate Product Yield
[%][b]

1 1a R1 = Et
R2 = H

2a R1 = Et
R2 = H

93

2 1b R1 = Ph
R2 = H

2b R1 = Ph
R2 = H

86

3 1c R1 = TMS
R2 = H

2c R1 = TMS
R2 = H

53

4 1d R1 = Me
R2 = H

2d R1 = Me
R2 = H

67

5 1e R1 = p-C6H4OMe
R2 = H

2e R1 = p-C6H4OMe
R2 = H

93

6 1 f R1 = p-C6H4NO2

R2 = H
2 f R1 = p-C6H4NO2

R2 = H
40

7 1g R1 = p-C6H4F
R2 = H

2g R1 = p-C6H4F
R2 = H

77

8 1h R1 = Et
R2 = Me

2h R1 = Et
R2 = Me

83

9 1 i R1 = Et
R2 = CO2Me

2 i R1 = Et
R2 = CO2Me

78

10 1 j 2 j 23[c]

11 1k 2k 56

[a] Reaction conditions: [{Rh(cod)Cl}2] (5 mol%), dppp (12 mol%), 1,4-
dioxane, 130 8C, 24 h, sealed vial. [b] Yields of isolated products. [c] 27%
of 1 j was recovered; with 0.1 equiv of ZnCl2 added, only 13% yield of 2 j
was isolated. cod = 1,5-cyclooctadiene, TMS= trimethylsilyl.
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good to excellent yields of the six- and seven-membered fused
rings were obtained [Eq. (1)]. A catalytic amount of ZnCl2

(10 mol %) was also found to be effective, albeit with a slightly
lower yield. We also found ZnCl2 itself did not catalyze the
reaction. The structure of 2 l was unambiguously character-
ized by X-ray crystallography (see the Supporting Informa-
tion).

Although the direct decarbonylation of cyclobutanones to
give cyclopropanes (ring contraction) has been known for
almost two decades since the seminal work by Murakami, Ito,
and co-workers,[19] C�C cleavage with subsequent decarbon-
ylation and insertion of an unsaturated moiety has been much
underdeveloped. The intermolecular decarbonylative cou-
plings of cyclobutenediones and cyclobutenones with norbor-
nene and ethylene were first reported by Kondo, Mitsudo, and
co-workers,[8] and the only example of an intramolecular
coupling of squaric acid derivatives and olefins was described
by Yamamoto et al.[9] However, to the best of our knowledge,
the decarbonylative coupling between any cyclic ketones and
alkynes was previously unknown.[20]

The proposed decarbonylative “cut and sew” transforma-
tion (Scheme 2B) was explored using 1 l as the model
substrate. Given the challenge of removing CO from the
metal center, an open system reflux under an argon atmos-
phere with high-boiling-point solvents was chosen to facilitate
CO extrusion from the reaction vessel (see Table S2).[21]

Although using PPh3 as the ligand provided a good con-
version, it suffered from poor selectivity of the decarbon-
ylative insertion versus the direct insertion. A number of
bidentate phosphine ligands were subsequently investigated.
Interestingly, the chiral DTBM-segphos provided the highest
conversion and yield for the desired indene product.
Although the exact reason why DTBM-segphos facilitates
the decarbonylation pathway is unclear, control experiments
indicated this four-carbon-linked bidentate ligand was much

less effective in promoting the direct alkyne insertion reaction
for substrate 1 l,[22] and likely to be a result of a less favorable
reductive elimination step from the seven-membered acyl-
metallacycle intermediate (Scheme 2 B). Having examined
a number of different solvents, mixed xylenes proved to be the
optimal solvent. Finally, with a slight increase of the catalyst
loading, the decarbonylative product, the fused-indene 3 l (see
Table 3), was isolated in 64% yield.

The substrate scope for the decarbonylative alkyne
insertion was then examined (Table 3).[23] In general,
a range of indene-based fused rings were obtained in decent
yields. Compared to the ethyl-substituted alkynes, when the
aryl-substituted alkynes were employed as the coupling
partner, the yields for the decarbonylative insertion were
significantly increased (entries 2–7, and 11, Table 3), and is
consistent with our earlier observation of the low cyclization
rate of phenyl-substituted substrates (e.g. 1m) in the absence
of ZnCl2 [Eq. (1)]. The ortho-methyl-substituted phenyl
substrate 1t gave lower yield, and is likely a result of

Table 2: ZnCl2 as an additive in the formation of six- and seven-
membered rings.

1 l n = 1, R = Et

without ZnCl2 70%, 48h
with 10 mol% ZnCl2 81%, 24h
with 1 equiv ZnCl2 91%, 24h
with 1 equiv ZnCl2, but no [{Rh(cod)Cl}2]/dppp 0%, 24 h

1m n = 1, R = Ph

without ZnCl2 4%, 24h
with 10 mol% ZnCl2 89 %, 24 h
with 1 equiv ZnCl2 91 %, 24 h

1n n = 2, R = Ph

without ZnCl2 0 %, 24 h
with 10 mol% ZnCl2 64%, 24h
with 1 equiv ZnCl2,
7.5 mol% [{Rh(cod)Cl}2] , 18 mol% dppp

77%, 24h

Table 3: Substrate scope for decarbonylative alkyne insertion.[a]

Entry Substrate Product Yield [%][b]

1 1 l R1 = Et
R2 = H

3 l R1 = Et
R2 = H

64

2 1m R1 = Ph
R2 = H

3m R1 = Ph
R2 = H

83

3 1o R1 = p-C6H4OMe
R2 = H

3o R1 = p-C6H4OMe
R2 = H

64 (68)

4 1p R1 = p-C6H4F
R2 = H

3p R1 = p-C6H4F
R2 = H

75

5 1q R1 = p-C6H4Cl
R2 = H

3q R1 = p-C6H4Cl
R2 = H

75

6 1r R1 = 1-naphthyl
R2 = H

3r R1 = 1-naphthyl
R2 = H

76

7 1s R1 = p-C6H4CO2Me
R2 = H

3s R1 = p-C6H4CO2Me
R2 = H

62

8 1 t R1 = o-C6H4Me
R2 = H

3 t R1 = o-C6H4Me
R2 = H

28 (33)

9 1u R1 = Et
R2 = Me

3u R1 = Et
R2 = Me

57( 62)

10 1v R1 = Et
R2 = CO2Et

3v R1 = Et
R2 = CO2Et

56

11 1w R1 = Ph
R2 = Me

3w R1 = Ph
R2 = Me

68 (73)

12 1n 3n 23 (48)

[a] Reaction conditions: [{Rh(cod)Cl}2] (7.5 mol%), DTBM-segphos
(18 mol%), xylenes, reflux, 48 h. [b] Yields of isolated products. Values
within parentheses are yields based on recovered starting material.
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unfavorable steric interactions during the cyclization (entry 8,
Table 3). In addition, the seven-membered-ring fused indene
product was also obtained (entry 12, Table 3). The structure
of indene 3o was unambiguously characterized by X-ray
crystallography (see the Supporting Information).

In conclusion, we have developed a divergent approach to
access fused b-naphthol and indene rings by the rhodium-
catalyzed C�C activation of benzocyclobutenones [Eq. (2)].
The unique selectivity of cleaving the usually less-reactive
C1�C2 bond distinguishes this direct alkyne insertion from
other cyclobutenone–alkyne couplings.[14,15] It is also distinct
from the saturated cyclobutanone-[12e] and cyclobutenol-
mediated[3k, 12f] alkyne insertion reactions because of their
different mechanistic feature. Furthermore, it illustrates that
the feasibility of a decarbonylative “cut and sew” pathway
with C�C activation of benzocyclobutenones, enables an
unusual [4+2�1] transformation. Finally, it demonstrates that
the selectivity for either the direct or decarbonylative
insertion can be controlled by choosing different ligands
and other reaction conditions. Efforts towards expansion of
the reaction scope (i.e. nitrogen-containing fused rings by
both alkene and alkyne insertion), detailed mechanistic
studies to enhance the catalyst activity, and application of
this method to synthesize bioactive molecules are in prog-
ress.[24]
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