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1 |  INTRODUCTION

Out of the many clinically used antitumor drugs, microtubule 
targeting agents (MTAs) (e.g., taxanes and vinca alkaloids) 
have achieved considerable success in the treatment of var-
ious types of tumors such as melanoma and prostate cancer. 
However, those tubulin- targeting agents are naturally derived 

with high structural complexity which hampers further struc-
tural optimizations (Li et al., 2019; Lu et al., 2012; Vuuren 
et  al.,  2015). Of the four types of tubulin inhibitors which 
bind the taxane- , vinca alkaloid- , laulimalide-  and colchicine- 
site, colchicine binding site inhibitors (CBSI) are generally 
more amenable to modifications due to the relative structural 
simplicity as compared to the other three types of MTAs 
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Abstract
A series of benz- fused five- membered heterocyclic compounds were designed and 
synthesized as novel tubulin inhibitors targeting the colchicine binding site. Among 
them, compound 4d displayed the highest antiproliferative activity against four 
cancer cell lines with an IC50 value of 4.9 μM in B16- F10 cells. Compound 4d ef-
fectively inhibited tubulin polymerization in vitro (IC50 of 13.1  μM). Further, 4d 
induced cell cycle arrest in G2/M phase. Finally, 4d inhibited the migration of cancer 
cells in a dose- dependent manner. In summary, these results suggest that compound 
4d represents a new class of tubulin inhibitors deserving further investigation.
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with a natural origin (Bai et al., 1990; Bennett et al., 2012; 
Bollag et  al.,  1995; Kingston,  2009; Risinger et  al.,  2009; 
Wei et al., 2004). Therefore, the development of CBSIs has 
been intensified in the past two decades with numerous novel 
and potent CBSIs being discovered (Figure 1), for example, 
ATCAA (Lu et al., 2009), AICA (Lu et al., 2010), SMART (Lu 
et al., 2011), PAT (Lu et al., 2014), ABI- I (Chen et al., 2010), 
ABI- II (Chen et al., 2011), ABI- III (Chen et al., 2012), and 
RABI (Xiao et al., 2013).

We previously discovered a series of 2-aryl- 4- benzoyl- 
imidazole (ABI- II) analogs as antiproliferative agents targeting 
the colchicine binding site in tubulin for treating melanoma and 
prostate cancer. The ABI- II analogs were designed based on the 
first generation ABI- I analogs utilizing a ring- fusion strategy, 
namely, fusing the A-  and B- ring of ABI- I (Figure 1). However, 
we only synthesized a very limited number of compounds (<5) 
that showed moderate antiproliferative activities with IC50 in 
the micromolar range (e.g., ~10 μM). To extend the structure- 
activity relationship study of this scaffold, we designed two 
series of target compounds (Benz- fused five- membered hetero-
cyclic compounds, Figure 2) based on the following rationales: 
1) incorporating different five- membered heterocyclic B- ring 
(e.g., thiazole, oxazole, pyrrole, triazole) to understand the toler-
ability of the B- ring modifications (Series 1), as benzimidazole 
and benzothiazole moieties are found in many existing tubulin 
inhibitors (Ashraf et al., 2016; Fu et al., 2020). 2) shifting the 
position of the 3,4,5- trimethoxyphenyl (TMP) group from 2 to 
1 to explore the effects of different geometric configurations 
(Series 2); With the TMP moiety at position- 1, series 2 is es-
sentially a structure mimic of CA- 4, which is a highly potent 
CBSI in clinical trials. Herein, we describe the synthesis and 
biological evaluation of these compounds as detailed in the fol-
lowing section.

2 |  RESULTS AND DISCUSSION

2.1 | Chemistry

As outlined in Scheme 1, the synthesis of series 1 compounds 
started with commercially available 4-  or 5- substituted 2- nitro 

phenol (1, X = O). Initially, the nitro group was reduced by 
H2 in the presence of Pd/C to obtain the amine derivatives (2, 
X = O) which were converted to benzoxazoles (3, X = O) 
using triethyl orthoformate in the presence of 3Ao molecular 
sieves (MS) at 130°C (Scheme 1, step b). The same synthetic 
strategy was applied to the synthesis of substituted thiophenol 
derivatives (Scheme 1, step b). The synthesis of compound 4 
(a- j) was achieved by oxidative C- H activation at the C- 2 po-
sition of benzoxazole or benzothiazole with 3,4.5- trimethoxy 
benzaldehyde using ammonium persulphate and tetrabutyl 
ammonium bromide (Siddaraju et al., 2014) as a phase trans-
fer catalyst (Scheme 1, step c). Compound 5f was prepared 
through Suzuki coupling by reacting 4f with 3- fluoro- 4- meth
oxy- phenylboronic acid (Scheme 1, step d).

The synthesis of series 2 compounds [1- (3,4,5- trimethox
ybenzoyl)- benzimidazoles, 10a- 10f)] is shown in Scheme 2. 
Briefly, the substituted 1,2- diaminobenzene 8 was re-
acted with ethyl formate to generate the benzimidazole 9. 
Compound 9 was acylated by 3,4.5- trimethoxy benzaldehyde 
at the N- 1 position to give the desired 1- (3,4,5- trimethoxybe
nzoyl)- benzimidazoles 10a- 10f.

In addition to the 1- (3,4,5- trimethoxybenzoyl)- benzim
idazole compounds 10a- 10f, we also synthesized series 2 
compounds with the 3,4,5- trimethoxybenzoyl moiety at the 
1- position of the benz- , pyridine or pyrimidine- fused five- 
membered heterocycles, as shown in Scheme 3.

2.2 | Biological evaluation

2.2.1 | In vitro antiproliferative activity and 
structure- activity relationship

The antiproliferative activities of the newly synthesized 
compounds were evaluated against four cancer cell lines 
(MCF- 7, H1299, HeLa and B16- F10) by an MTT assay 
with CA- 4 and colchicine as the positive controls. As pre-
sented in Table 1, most of the compounds are not very ac-
tive with IC50 > 10 μM. Compounds 4d, 4f, 4g exhibited 
moderate potency with IC50 ranging from 4.9 to 10  μM. 
In general, the benzothiazole analogs (e.g., 4d- 4g, IC50 of 

F I G U R E  1  Structures of known 
CBSIs [Colour figure can be viewed at 
wileyonlinelibrary.com]
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4.9~18.6 μM) exhibited slightly higher potency than that 
of the benzoxazole (e.g., 4a- c, IC50 of 16.5 ~ 46.2 μM) and 
benzimidazole (e.g., 10a- f, IC50 of 12.58~46.8 μM) com-
pounds. For the R1 and R2 substituents on the benz- fused 
ring systems, when R1 is a hydrogen, the compounds are 
generally less potent than that of the corresponding analogs 

with R2 as a hydrogen (4b vs. 4a; 4e vs. 4d; 4i vs. 4h, 10b 
vs. 10a; 10d vs. 10c). Also, the geometrically “extended” 
Series 1 compounds are slightly better than their geometri-
cally “bent” counterparts Series 2 compounds (4b vs. 10f; 
4f vs. 10a; 4d vs. 10c; 4e vs. 10d). Specifically, for se-
ries 1 compounds, converting the oxazole (4a) to thiazole 
(4g) led to improved potency. Compounds with electron- 
withdrawing groups on the benzothiazole ring displayed 
higher potency than the ones with electron- donating groups 
(e.g., 4d, 4f, 4g and 4h; - Br>- Cl>- OCH3>- NH2). Among 
them, compound 4d (6- Br benzothiazole) exhibited the 
highest activity with an average IC50 value of 7.219 μM. 
The 6- substituted benzothiazole derivatives are less potent 
than that of 5- substituted benzothiazole derivatives [4d 
(IC50 = 7.219 μM) vs. 4e (IC50 > 10 μM)]. These results 
indicated that the 6- Br benzothiazole moiety is optimal for 
activity. Series 2 compounds (10a- f, 11– 15) showed low ac-
tivities (IC50 > 10 μM), which might be due to the shift of the 
position of C- Ring (3,4,5- trimethoxy benzoyl group) from 
2- position to 1- position of the imidazole ring. Compound 
4j with a N- methyl indolyl group as C- ring showed essen-
tially a total loss of activity (IC50 > 10 μM), comparing to 
compound 4f, suggesting that the 3,4,5- trimethoxypheny 

F I G U R E  2  Rationale for the design of target compounds [Colour 
figure can be viewed at wileyonlinelibrary.com]

S C H E M E  1  Synthesis of series 1 compounds

S C H E M E  2  Synthesis of series 2 compounds (10a- 10f)
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play an important role in maintaining the cytotoxic activity. 
The positions of substituents on the benz- fused rings (10a, 
10c vs. 10b, 10d) do not affect the potencies, but electron- 
withdrawing groups (10a- d, 11, 12) seem to be better than 
that of electron- donating substituents (10e- f, 13, 14). In ad-
dition, the cytotoxicity of these compounds was examined 
against a normal cell line HUVEC (human umbilical vein 
endothelial cell). As shown in Table 1, all the compounds 
demonstrated little toxicity to HUVEC with IC50 > 50 μM, 
suggesting that these compounds cause selective toxicity 
to cancer cells over normal cells. Interestingly, similar 
benzimidazole and benzothiazole analogs have been re-
ported (Ashraf et al., 2016; Fu et al., 2020), but our com-
pounds showed slightly lower potencies probably due to 
a higher fraction of drugs being transported out of cells 
by efflux pumps (Figure S55). Also the newly synthesized 
compounds are generally less potent than that of CA- 4 
and of the natural ligand colchicine, partially because of 
the lower binding affinities in the colchicine binding site 
of tubulin, as seen from the molecular docking studies of 
colchicine and compound 4d (Figure  S54). However, the 
advantages of these compounds may be the higher stability 
(Figure S57) over CA- 4 because there will be no cis- trans 
conversion due to the presence of a double bond as in the 
case of CA- 4.

Cells were exposed to different concentrations of com-
pounds for 48 hr to determine the cell viability through MTT 
assay. IC50 values are presented as the mean ± SD of at least 
three independent experiments.

2.2.2 | In vitro tubulin polymerization assay

To explore the mechanism of action, compound 4d was 
chosen to evaluate the effects on tubulin polymerization 
with CA- 4 and colchicine as positive controls. The results 

indicated that compound 4d inhibited tubulin polymeri-
zation with an IC50 of 13.1 μM (Figure 3a), weaker than 
that of CA- 4 (IC50 = 1.84 μM, Figure 3b) and colchicine 
(IC50 = 7.15 μM, Figure 3c). Furthermore, compound 4d 
inhibited tubulin polymerization in a dose- dependent man-
ner (Figure 3d).

2.2.3 | Immunofluorescence studies

It is known that microtubule dynamics play an important 
role in cancer cell growth. To validate whether compound 
4d might influence microtubule dynamics, an immunofluo-
rescent assay in B16- F10 cells was performed. As showed 
in Figure 4, in the control group, the microtubule networks 
exhibited a normal arrangement with slim and fibrous mi-
crotubules (green) wrapped around the cell nucleus (blue). 
However, when cells were exposed to compound 4d (1, 5 
and 10  μM) or CA- 4 (10  nM) for 6  hr, the microtubule 
networks were disrupted in comparison with the control. 
These results suggest that compound 4d might induce the 
collapse of the microtubule networks in a dose- dependent 
manner.

2.2.4 | Cell cycle study by flow cytometry

Tubulin polymerization inhibitors have been previously 
known to impact cell division. Thus, we evaluated the effects 
of compound 4d on the cell cycle of B16- F10 cells with flow 
cytometry. As shown in Figure 5, compound 4d arrested cell 
cycle at G2/M phase (Figure 5a) in a dose- dependent man-
ner. When B16- F10 cells were exposed to increasing con-
centrations of compound 4d (1, 5 and 10 μM), the percentage 
of cells in the G2/M phase was significantly increased from 
8.27% to 82.90%.

S C H E M E  3  Synthesis of series 2 compounds (11– 15) [Colour figure can be viewed at wileyonlinelibrary.com]
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2.2.5 | Inhibition of cancer cell migration

Knowing that cancer cells are able to migrate to distant 

organs and microtubule play an important role in cell mi-
gration. A wound healing assay was performed in order to 
confirm the effects of compound 4d in cell migration. When 

T A B L E  1  In vitro antiproliferative activity of series 1 and 2 compounds

Structure Compound X R1 R2

IC50 (μM)

MCF−7 H1299 HeLa B16- F10 HUVEC

4a O OCH3 H 21.58 ± 1.23 24.60 ± 0.98 19.58 ± 0.47 16.49 ± 1.05 >50

4b O H OCH3 32.85 ± 2.51 44.12 ± 3.41 27.65 ± 1.87 30.17 ± 0.69 >50

4c O CH3 H 46.18 ± 1.96 38.66 ± 0.82 29.78 ± 2.54 30.06 ± 3.81 >50

4d S Br H 9.450 ± 0.292 7.652 ± 0.215 6.862 ± 0.144 4.912 ± 0.088 >50

4e S H Br 16.79 ± 0.35 18.62 ± 0.54 12.85 ± 0.40 21.39 ± 0.63 >50

4f S Cl H 10.00 ± 0.14 6.761 ± 0.171 7.605 ± 0.238 7.273 ± 0.411 >50

4g S OCH3 H 9.253 ± 0.065 6.538 ± 0.152 15.72 ± 0.28 13.14 ± 0.32 >50

4h S NH2 H 25.47 ± 1.36 32.18 ± 2.17 22.07 ± 0.66 19.03 ± 0.25 >50

4i S H NH2 50.25 ± 3.87 61.24 ± 5.66 39.87 ± 3.25 41.08 ± 2.96 >50

4j 16.20 ± 0.68 13.88 ± 0.60 19.67 ± 1.02 13.56 ± 0.24 >50

5f 32.90 ± 1.94 38.62 ± 1.03 41.37 ± 1.26 22.53 ± 1.97 >50

10a Cl H 13.77 ± 0.51 24.18 ± 0.85 31.21 ± 2.09 19.84 ± 2.45 >50

10b H Cl 17.22 ± 0.62 27.17 ± 3.15 18.96 ± 0.67 22.68 ± 0.55 >50

10c Br H 12.58 ± 1.21 20.73 ± 2.30 25.36 ± 1.71 17.52 ± 1.37 >50

10d H Br 15.29 ± 0.68 32.08 ± 1.59 22.14 ± 0.96 18.81 ± 1.09 >50

10e H CH3 35.68 ± 3.76 52.12 ± 4.63 45.39 ± 2.64 38.47 ± 2.35 >50

10f H OCH3 29.60 ± 2.33 46.97 ± 1.26 39.85 ± 1.80 33.46 ± 2.11 >50

11 18.30 ± 4.51 27.24 ± 0.81 34.12 ± 2.07 23.59 ± 0.58 >50

12 20.88 ± 2.01 19.05 ± 1.70 24.86 ± 2.31 30.17 ± 1.06 >50

13 32.90 ± 3.14 25.83 ± 0.77 36.10 ± 1.27 45.92 ± 3.32 >50

14 69.17 ± 3.61 72.64 ± 2.08 48.19 ± 2.15 67.83 ± 6.18 >50

15 55.28 ± 7.23 69.40 ± 4.28 74.32 ± 3.49 60.12 ± 2.37 >50

CA- 4 0.013 ± 0.002 0.014 ± 0.002 0.009 ± 0.005 0.007 ± 0.001 >50

Colchicine 0.024 ± 0.006 0.120 ± 0.016 0.045 ± 0.004 0.068 ± 0.012 >50
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treating the B16- F10 cells with 1, 5 and 10 μM of compound 
4d, the wound closure was potently suppressed (Figure 6), 
showing that the migration of cancer cells was inhibited by 
compound 4d in a dose- dependent manner.

3 |  CONCLUSION

In summary, a series of benz- fused five- membered hetero-
cyclic compounds were designed and synthesized as tubu-
lin polymerization inhibitors and a focused SAR study 
was performed. Most of these compounds exhibited low 

antiproliferative potency with IC50 values larger than 
10 μM. Several of them (4d, 4f, 4g) demonstrated moderate 
potency against a panel of cancer cell lines with IC50 val-
ues in the micromolar range (e.g., 4.7– 10  μM). Structure- 
activity relationships revealed that the relative position of 
the 3,4,5- trimethoxybenzoyl group on the five- membered 
heterocyclic ring has significant influence on the biological 
activities of the compounds, with 2- position being optimal. 
Among the newly synthesized compounds, 4d displayed 
the highest antiproliferative activity against four cancer cell 
lines in vitro. In addition, compound 4d was able to inhibit 
tubulin polymerization in vitro in a dose- dependent manner. 

F I G U R E  3  Inhibition of tubulin polymerization in vitro. (a) The inhibition of tubulin polymerization by compound 4d. (b) The inhibition 
of tubulin polymerization by CA- 4. (c) The inhibition of tubulin polymerization by colchicine. (d) Compound 4d exhibited a dose- dependent 
inhibition of tubulin polymerization [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  4  Effects of compound 4d on microtubules. B16- F10 cells were treated with vehicle control 0.1% DMSO (a), compound 4d (1 μM) 
(b), compound 4d (5 μM) (c), compound 4d (10 μM) (d), CA- 4 (10 nM) (e) for 6 hr. Microtubules were visualized with an anti- β- tubulin antibody 
(green), and the cell nucleus was visualized with DAPI (blue). Fluorescence images were collected by LSM 880 laser confocal microscope (Carl 
Zeiss, Germany) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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Further mechanism studies indicated that compound 4d in-
duced cell cycle arrest in G2/M phase. Finally, compound 
4d inhibited the migration of cancer cell in a dose- dependent 
manner. Taken together, these results suggest that compound 
4d represents a promising tubulin inhibitor deserving further 
investigation.

3.1 | Supporting information availability

The supporting information contains 1H NMR, 13C NMR and 
mass spectra (Figure  S1 to Figure  S50). The purity of com-
pounds 4d, 4f and 4g was determined by HPLC (Figure S51 to 
Figure S53). Molecular modeling of colchicine and compound 
4d at colchicine binding site of tubulin was shown in Figure S54. 
The concentrations of compounds 10c and 11 at various time 
points in cell media (with cells co- cultured) were determined 
by HPLC (Figure  S55, Figure  S56). The concentrations of 

compounds 10c and 11 at various time points in cell media (with-
out cells) were determined by HPLC (Figure S57, Figure S58).
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