880

Polycyclic *N*-Heterocyclic Compounds. Part 84: Reaction of *N*-(pyrido [3',2':4,5]thieno[3,2-*d*]pyrimidin-4-yl)amidines or *N*-(pyrido[2',3':4,5]furo [3,2-*d*]pyrimidin-4-yl)amidines with Hydroxylamine Hydrochloride

Kensuke Okuda,^{a*} Ryota Ide,^b Naoto Uramaru,^{b†} and Takashi Hirota^b

^aLaboratory of Medicinal and Pharmaceutical Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan ^bLaboratory of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama 700-8530, Japan

[†]Present address: Department of Health Biosciences, Nihon Pharmaceutical University, Saitama 362-0806, Japan

*E-mail: okuda@gifu-pu.ac.jp

Received January 22, 2013 DOI 10.1002/jhet.2033

Published online 11 June 2014 in Wiley Online Library (wileyonlinelibrary.com).

The reactions of nine *N*-(pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-yl)amidines (**3**) with hydroxylamine hydrochloride produced new cyclization products. These were formed via ring cleavage of the pyrimidine component followed by a 1,2,4-oxadiazole-forming ring closure to give *N*-[2-([1,2,4]oxadiazol-5-yl)thieno [2,3-b]pyridin-3-yl]formamide oximes (**11**). Reaction of six *N*-(pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4-yl) amidines (**12**) with hydroxylamine hydrochloride gave similar results. Effects of the newly synthesized compounds on pentosidine formation were also evaluated.

J. Heterocyclic Chem., 52, 880 (2015).

INTRODUCTION

Addition of a nucleophile to an electron poor heterocycle can initiate a ring opening/ring closure-like rearrangement that has proven to be a useful strategy in organic synthesis [1]. Hydroxylamines are often utilized as 1,2-bidentate nucleophiles for this type of conversion [2–4]. Recently, we have reported that reaction of N-(quinazolin-4-yl)amidines (2) with hydroxylamine hydrochloride leads to a pyrimidine ring opening reaction followed by formation of the 1,2,4-oxadiazole ring to produce N-[2-([1,2,4]oxadiazol-5-yl)phenyl]formamide oximes (1) (Figure 1) [5,6]. We also reported that some of the products (1) showed significant inhibitory effects on the formation of pentosidine, which is one of the representatives of advanced glycation end products [5,6]. Recognizing that other fused aromatic derivatives in addition to quinazolines should be susceptible to this transformation [7], we decided to explore reactions of hydroxylamine hydrochloride with pyrido [3',2':4,5]thieno[3,2-d]pyrimidines and pyrido[2',3':4,5]furo[3,2-d]pyrimidines as an approach to potential pharmaceutics. These are aza-analogs of [1]benzofuro[3,2*d*]pyrimidines and [1]benzothieno[3,2-*d*]pyrimidines [7], products of rearrangement from which also showed some inhibitory effects on pentosidine formation. Here, we report in detail the results of our present investigation.

RESULTS AND DISCUSSIONS

First, we examined N-(pyrido[3',2':4,5]thieno[3,2-d] pyrimidin-4-yl)amidines (3). As shown in Scheme 1, the requisite amidine 3 starting materials were synthesized from 2-chloropyridin-3-carbonitrile (4) by several steps. First, the chlorine substituent was converted to a sulfanyl group by nucleophilic displacement to give (5), which was then alkylated by bromoacetonirile to give 2-(cyanomethylsulfanyl)pyridin-3-carbonitrile (6). Baseinduced cyclization afforded 3-aminothieno[2,3-b] pyridin-2-carbonitrile (7) [8], which was converted to N, N-dimethylformamidine derivative (8) by reaction with N,N-dimethylformamide dimethyl acetal. Cyclization of 8 with ammonium acetate gave 4-aminopyrido[3',2':4,5]thieno[3,2-d]pyrimidine (9) [9]. Amidine 3a was prepared by the reaction of 9 with commercially available N,N-dimethylacetamide dimethyl acetal in refluxing toluene. Other amidines **3b-j** were produced by the reaction of compound 9 with the Vilsmeier reagent prepared from the corresponding N,N-dimethylamide and phosphoryl chloride. Because 3b-j were subjects to decomposition during purification by column chromatography, they were used as crude amidines for the next reaction.

First, we carried out the reaction of **3a** with 1.2 equiv of hydroxylamine hydrochloride in methanol at room

Figure 1. Substrates (2) and their rearranged products (1).

temperature. We observed incomplete consumption of **3a** on TLC. However, reaction of **3a** with 4.0 equiv of hydroxylamine hydrochloride in methanol led to complete consumption of **3a** and gave the 1,2,4-oxadiazole derivative (**11a**) in 73% yield. In the ¹H NMR spectrum of **11a**, a characteristic formamide oxime one-proton doublet (J=10.2 Hz) appeared at 7.88 ppm coupled with an adjacent NH proton (J=10.2 Hz). This NH is exchangeable and thus the formamide oxime signal changed to a singlet in the presence of deuterium oxide. The one-proton singlet at 8.83 ppm (pyrimidine ring proton) present in **3a** was absent in the product. These NMR data indicate that pyrimidine ring cleavage, and 1,2,4-oxadiazole ring formation occurred during reaction of **3a** with hydroxylamine hydrochloride [10]. Other amidines **3b–i** having ethyl group or aryl group substituted in the amidine moiety needed reflux conditions with an excess amount of hydroxylamine hydrochloride to consume starting materials completely. In every case, we did not observe **10**, which one can assume is the probable intermediate in the conversion of **3** to **11** [5,6]. In contrast, reaction of **3j** under the same conditions did not give **11j** but led to a decomposition product **9**, which was observed in the reaction mixture by TLC analysis.

Next, we focused our attention on *N*-(pyrido[2',3':4,5]furo [3,2-d]pyrimidin-4-yl)amidines (**12**). As shown in Scheme 2, the requisite amidine starting materials **12** were prepared from 4-aminopyrido[2',3':4,5]furo[3,2-d]pyrimidine (**13**) [11] by

Journal of Heterocyclic Chemistry DOI 10.1002/jhet

the same method as described earlier for amidines **3** except that phosphorus pentoxide instead of phosphoryl chloride was employed. The reactivity of each **12** with hydroxylamine hydrochloride was the same as that of **3**. Amidines **12a–f** did not afford isolable amide oximes such as **10** but produced 1,2,4-oxadiazole derivatives (**14a–f**) directly by using excess hydroxylamine hydrochloride.

Finally, preliminary evaluation of the products on pentosidine formation was evaluated *in vitro*. *N*-[4-Nitro-2-([1,2,4] oxadiazol-5-yl)phenyl]formamide oxime (**1**, R=H, R₁=H, R₂=NO₂) [5,6] was used as a positive control. We found that **11a** and **11h** had some inhibitory activity (33.8% and 36.7%, respectively) against pentosidine formation; however, their potency was lower than **1** (R=H, R₁=H, R₂=NO₂) (94.5%). We are currently exploring their structure–activity relationships for further elucidation of anti-advanced glycation end products compounds.

EXPERIMENTAL

All melting points were determined on a Yanagimoto (Kyoto, Japan) micro-melting point apparatus and are uncorrected. Elemental analyses were performed on a Yanagimoto (Kyoto, Japan) MT-5 CHN Corder elemental analyzer. The ESI-mass spectra were obtained on a Waters (Milford, MA, USA) ZMD mass spectrometer. FAB mass spectra were obtained on a Micromass (Manchester, UK) Autspec-OA-Tof spectrometer and *m*-nitrobenzyl alcohol was used as the matrix. The IR spectra were recorded on a Japan Spectroscopic (Hachioji, Japan) FT/IR-200 spectrophotometer with potassium bromide and frequencies are expressed in cm⁻¹. The ¹H NMR spectra were recorded on a Varian (Palo Alto, CA, USA) VXR-200 instrument operating at 200 MHz or VXR-300 instrument operating at 300 MHz with tetramethylsilane as an internal standard. Chemical shifts are given in ppm (δ) and J values in Hz, and the signals are designated as follows: s, singlet; d, doublet; dd, double doublet; t, triplet; q, quartet; br, broad; and m, multiplet. Column chromatography was performed on silica gel (IR-60-63-210-W, Daiso, Osaka, Japan). TLC was carried out on Kieselgel 60F254 (Merck, Darmstadt, Germany).

2-(Cyanomethylsulfanyl)pyridin-3-carbonitrile (6). To a solution of 2-chloropyridin-3-carbonitrile (**4**, 10.0 g, 72.1 mmol) in dry THF (100 mL) were added thioacetamide (16.3 g, 217 mmol) and DBU (32.4 mL, 217 mmol), and the mixture was then refluxed for 5 h. After evaporation *in vacuo*, ice water was added, and the solution was made acidic (pH 1) by addition of 10% hydrochloric acid. The precipitated solid was filtrated to yield 2-sulfanylpyridin-3-carbonitrile (**5**) as a yellow solid (9.70 g). This intermediate was used without further purification.

To a suspension of this crude **5** in dry acetone (150 mL) were added bromoacetonitrile (6.0 mL, 86.1 mmol) and potassium carbonate (20.0 g, 145 mmol), the reaction mixture was then stirred at room temperature for 1 h. After filtration to remove insoluble inorganic material followed by evaporation *in vacuo*, the residue was extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous sodium sulfate, and then evaporated *in vacuo*. The residue was purified by column chromatography (ethyl acetate/*n*-hexane, 1:10) to give a white solid, which was recrystallized from ethyl acetate-*n*-hexane to give **6** (8.70 g, 69% (2 steps)) as colorless needles, mp 134–135 °C; IR

(potassium bromide) cm⁻¹: 2224, 2249 (CN); ¹H NMR (200 MHz, DMSO- d_6): δ 4.39 (s, 2H, CH₂), 7.46 (dd, 1H, J = 7.8, 5.0 Hz, H5), 8.34 (dd, 1H, J = 7.8, 1.8 Hz, H4), 8.82 (dd, 1H, J = 5.0, 1.8 Hz, H6); FAB-ms m/z: 176 (MH⁺). Anal. Calcd. for C₈H₅N₃S: C, 54.84; H, 2.88; N, 23.98. Found: C, 54.99; H, 3.11; N, 24.36.

 N^{I} , N^{I} -Dimethyl- N^{2} -(2-cyanothieno[2,3-b]pyridin-3-yl) formamidine (8). To a solution of 6 (100 mg, 0.571 mmol) in dry DMF (5.0 mL) was added calcium oxide (64.4 mg, 1.15 mmol), and the mixture was stirred at 80 °C for 1 h. After filtration to remove insoluble inorganic material followed by evaporation *in vacuo*, the residue was partially purified by recrystallization from ethyl acetate-*n*-hexane to give 3-aminothieno[2,3-*b*]pyridin-2-carbonitrile (7) [8] (88.6 mg, 89%) as yellow feathers, mp 218–219 °C; This compound 7 was used without further purification. IR (potassium bromide) cm⁻¹: 2199 (CN), 3211, 3344, 3398 (NH); ¹H NMR (200 MHz, DMSO-*d*₆): δ 7.35 (2H, br s, deuterium oxide exchangeable, NH₂), 7.53 (dd, 1H, *J*=6.2, 4.4 Hz, H5), 8.51 (dd, 1H, *J*=6.2, 1.6 Hz, H4), 8.71 (dd, 1H, *J*=4.4, 1.6 Hz, H6).

To a suspension of **7** (100 mg, 0.571 mmol) in dry toluene (5.0 mL) was added *N*,*N*-dimethylformamide dimethyl acetal (90.0 μ L, 0.677 mmol), and the mixture was refluxed for 2 h. After removal of solvent *in vacuo*, the residue was recrystallized from ethyl acetate-*n*-hexane to give **8** (92.6 mg, 62% (2 steps)) as yellow feathers, mp 101–102 °C; IR (potassium bromide) cm⁻¹: 2198 (CN); ¹H NMR (300 MHz, deuterochloroform): δ 3.18 and 3.22 (each s, each 3H, NMe₂), 7.35 (dd, 1H, *J*=8.1, 4.8 Hz, H5), 8.07 (s, 1H, NCH), 8.24 (dd, 1H, *J*=8.1, 1.8 Hz, H4), 8.68 (dd, 1H, *J*=4.8, 1.8 Hz, H6); ESI-ms *m/z*: 231 (MH⁺). *Anal.* Calcd. for C₁₁H₁₀N₄S: C, 57.37; H, 4.38; N, 24.33. Found: C, 57.27; H, 4.77; N, 24.31. **4-Aminopyrido[3',2':4,5]thieno[3,2-***d***]pyrimidine (9) [9]. To a**

4-Aminopyrido[3',2':4,5]thieno[3,2-d]pyrimidine (9) [9]. To a solution of 8 (1.00 g, 4.34 mmol) in ethanol (15 mL) were added ammonium acetate (3.70 g, 47.8 mmol) and water (1.0 mL), and the mixture was then refluxed for 3 h. After cooling to room temperature, it was made basic with sat. sodium bicarbonate aq. The precipitate was filtered, washed with water, and then recrystallized from DMF to give 9 (676.2 mg, 77%) as colorless granules, mp > 300 °C; IR (potassium bromide) cm⁻¹: 3124, 3294, 3360 (NH); ¹H NMR (200 MHz, DMSO-d₆): δ 7.63 (dd, 1H, *J*=8.0, 4.6 Hz, H8), 7.67 (br s, 2H, deuterium oxide exchangeable, NH₂), 8.56 (s, 1H, H2), 8.63 (dd, 1H, *J*=8.0, 1.8 Hz, H9), 8.83 (dd, 1H, *J*=4.6, 1.8 Hz, H7); ESI-ms *m*/z: 203 (MH⁺). *Anal.* Calcd. for C₉H₆N₄S: C, 53.45; H, 2.99; N, 27.70. Found: C, 53.26; H, 3.18; N, 28.02.

 N^{1} , N^{1} -Dimethyl- N^{2} -(pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-yl)acetamidine (3a). Compound 9 (200 mg, 0.989 mmol) and N,N-dimethylacetamide dimethyl acetal (220 µL, 1.50 mmol) in dry toluene (5.0 mL) was refluxed for 1.5 h. After removal of solvent, the residue was recrystallized from ethyl acetate-*n*hexane to give **3a** (228.1 mg, 85%) as colorless needles, mp 127–128 °C; ¹H NMR (300 MHz, DMSO- d_{6}): δ 2.36 (s, 3H, CMe), 3.20 (s, 6H, NMe₂), 7.64 (dd, 1H, J = 7.8, 4.5 Hz, H8), 8.66 (dd, 1H, J = 7.8, 1.8 Hz, H9), 8.82 (dd, 1H, J = 4.5, 1.8 Hz, H7), 8.83 (s, 1H, H2); FAB-ms *m*/*z*: 272 (MH⁺). Anal. Calcd. for C₁₃H₁₃N₅S: C, 57.54; H, 4.83, N, 25.81. Found: C, 57.20; H, 4.88; N, 25.95.

 N^{I} , N^{I} -Dimethyl- N^{2} -(pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-yl)propionamidine (3b). To a solution of 9 (300 mg, 1.48 mmol) in dry pyridine (40 mL) were added N, N-dimethylpropionamide (0.200 mL, 1.82 mmol) and phosphoryl chloride (2.10 g, 13.7 mmol), and the mixture was then refluxed for 5 h. After removal of solvent *in vacuo*, ice water was added to the residue. The mixture was made basic with sodium carbonate then extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous sodium sulfate and then evaporated *in vacuo*. The brown oily residue (crude **3b**) was used without further purification. ¹H NMR (300 MHz, deuterochloroform): δ 1.22 (t, 3H, J=7.5 Hz, CH₂CH₃), 2.84 (q, 2H, J=7.5 Hz, CH₂CH₃), 3.26 (s, 6H, NMe₂), 7.48 (dd, 1H, J=8.1, 4.5 Hz, H8), 8.72 (br d, 1H, J=8.1 Hz, H9), 8.78 (dd, 1H, J=4.5, 1.8 Hz, H7), 8.83 (s, 1H, H2).

 N^{I} , N^{I} -Dimethyl- N^{2} -(pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-yl)benzamidine (3c). To a solution of 9 (300 mg, 1.48 mmol) in dry pyridine (40 mL) were added *N*,*N*-dimethylbenzamide (265.6 mg, 1.78 mmol) and phosphoryl chloride (2.10 g, 13.7 mmol), and the mixture was then refluxed for 18 h. After removal of solvent *in vacuo*, ice water was added to the residue. The mixture was made basic with sodium carbonate then extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous sodium sulfate, and then evaporated *in vacuo*. The brown oily residue (crude **3c**) was used without further purification. ¹H NMR (300 MHz, deuterochloroform): δ 2.99 and 3.37 (each br s, each 3H, NMe₂), 7.22–7.26 (m, 5H, Ph), 7.44 (dd, 1H, *J*=8.1, 4.8 Hz, H8), 8.58 (dd, 1H, *J*=8.1, 1.8 Hz, H9), 8.59 (s, 1H, H2), 8.76 (dd, 1H, *J*=4.8, 1.8 Hz, H7).

 N^{I} , N^{I} -Dimethyl- N^{2} -(pyrido[3', 2':4,5]thieno[3,2-d]pyrimidin-4-yl)-4-methylbenzamidine (3d). To a solution of 9 (300 mg, 1.48 mmol) in dry pyridine (40 mL) were added N,N-dimethyl-4-methylbenzamide [12] (290.5 mg, 1.78 mmol) and phosphoryl chloride (2.10 g, 13.7 mmol), and the mixture was then refluxed for 12 h. After removal of solvent in vacuo, ice water was added to the residue. The mixture was made basic with sodium carbonate then extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous sodium sulfate, and then evaporated in vacuo. The brown oily residue (crude 3d) was used without further purification. ¹H NMR (300 MHz, deuterochloroform): δ 2.26 (s, 3H, CMe), 2.99 and 3.35 (each br s, each 3H, NMe₂), 7.02 (br d, 2H, J = 7.8 Hz, H3['] and 5'), 7.13 (br d, 2H, J=7.8 Hz, H2' and 6'), 7.44 (dd, 1H, J=7.8, 4.8 Hz, H8), 8.59 (dd, 1H, J=7.8, 1.5 Hz, H9), 8.61 (s, 1H, H2), 8.76 (dd, 1H, J=4.8, 1.5 Hz, H7).

N¹,N¹-Dimethyl-N²-(pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4yl)-3,4-dimethylbenzamidine (3e). To a solution of 9 (300 mg, 1.48 mmol) in dry pyridine (40 mL) were added N,N-dimethyl-3, 4-dimethylbenzamide [13] (315.5 mg, 1.78 mmol) and phosphoryl chloride (2.10 g, 13.7 mmol), and the mixture was refluxed for 20 h. After removal of solvent in vacuo, ice water was added to the residue. The mixture was made basic with sodium carbonate then extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous sodium sulfate, and then evaporated in vacuo. The brown oily residue (crude 3e) was used without further purification. ¹H NMR (300 MHz, deuterochloroform): δ 2.14 and 2.16 (each s, each 3H, $2 \times CMe$), 3.01 and 3.35 (each br s, each 3H, NMe₂), 7.05 (br s, 1H, H5'), 7.12 (br s, 1H, H6'), 7.25 (br s, 1H, H2'), 7.44 (dd, 1H, J=8.1, 4.5 Hz, H8), 8.60 (s, 1H, H2), 8.62 (br d, 1H, J=8.1 Hz, H9), 8.76 (dd, 1H, J=4.5, 1.8 Hz, H7).

 N^{t} , N^{t} -Dimethyl- N^{2} -(pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4yl)-4-methoxybenzamidine (3f). To a solution of 9 (200 mg, 0.989 mmol) in dry pyridine (30 mL) were added *N*,*N*-dimethyl-4methoxybenzamide [14] (212.7 mg, 1.19 mmol) and phosphoryl chloride (1.40 g, 9.13 mmol), and the mixture was refluxed for 16.5 h. After removal of solvent *in vacuo*, ice water was added to the residue. The mixture was made basic with sodium carbonate then extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous sodium sulfate, and then evaporated *in vacuo*. The brown oily residue (crude **3f**) was used without further purification. ¹H NMR (300 MHz, deuterochloroform): δ 3.09 and 3.38 (each br s, each 3H, NMe₂), 3.75 (s, 3H, OMe), 6.89 (dd, 2H, J=9.0, 1.2 Hz, H3' and 5'), 7.33 (br d, 2H, J=9.0 Hz, H2' and 6'), 7.47 (dd, 1H, J=7.8, 4.5 Hz, H8), 8.57 (s, 1H, H2), 8.68 (br d, 1H, J=7.8 Hz, H9), 8.78 (dd, 1H, J=4.5, 1.5 Hz, H7).

 N^{1} , N^{1} -Dimethyl- N^{2} -(pyrido[3', 2':4,5]thieno[3,2-d]pyrimidin-4yl)-4-fluorobenzamidine (3g). To a solution of 9 (200 mg, 0.989 mmol) in dry pyridine (30 mL) were added N,N-dimethyl-4fluorobenzamide [15] (198.4 mg, 1.19 mmol) and phosphoryl chloride (1.40 g, 9.13 mmol), and the mixture was refluxed for 28 h. After removal of solvent in vacuo, ice water was added to the residue. The mixture was made basic with sodium carbonate then extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous sodium sulfate, and then evaporated in vacuo. The brown oily residue (crude 3g) was used without further purification. ¹H NMR (300 MHz, deuterochloroform): δ 2.99 and 3.36 (each br s, each 3H, NMe₂), 6.93 (t, 2H, J = 9.0 Hz, H3' and 5'), 7.24–7.26 (m, 2H, H2' and 6'), 7.45 (dd, 1H, J=8.4, 4.8 Hz, H8), 8.60 (dd, 1H, J=8.4, 1.8 Hz, H9), 8.61 (s, 1H, H2), 8.77 (dd, 1H, J=4.8, 1.8 Hz, H7).

N',*N'*-*Dimethyl*-*N'*-(*pyrido*[3',2':4,5]*thieno*[3,2-*d*]*pyrimidin*-4-*yl*)-4-*chlorobenzamidine* (3*h*). To a solution of **9** (300 mg, 1.48 mmol) in dry pyridine (40 mL) were added *N*,*N*-dimethyl-4-chlorobenzamide [14] (326.9 mg, 1.78 mmol) and phosphoryl chloride (2.10 g, 13.7 mmol), and the mixture was refluxed for 14 h. After removal of solvent *in vacuo*, ice water was added to the residue. The mixture was made basic with sodium carbonate then extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous sodium sulfate, and then evaporated *in vacuo*. The brown oily residue (crude **3h**) was used without further purification. ¹H NMR (300 MHz, deuterochloroform): δ 2.98 and 3.36 (each br s, each 3H, NMe₂), 7.20–7.25 (m, 4H, H2', 3', 5', and 6'), 7.46 (dd, 1H, *J*=8.1, 4.8 Hz, H8), 8.60 (dd, 1H, *J*=8.1, 1.8 Hz, H9), 8.61 (s, 1H, H2), 8.77 (dd, 1H, *J*=4.8, 1.8 Hz, H7).

 N^{1} , N^{1} -Dimethyl- N^{2} -(pyrido[3', 2':4,5]thieno[3,2-d]pyrimidin-4-yl)-4-nitrobenzamidine (3i). To a solution of 9 (300 mg, 1.48 mmol) in dry pyridine (40 mL) were added N,N-dimethyl-4-nitrobenzamide [14] (345.7 mg, 1.78 mmol) and phosphoryl chloride (2.10 g, 13.7 mmol), and the mixture was refluxed for 18 h. After removal of solvent in vacuo, ice water was added to the residue. The mixture was made basic with sodium carbonate then extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous sodium sulfate, and then evaporated in vacuo. The brown oily residue (crude 3i) was used without further purification. ¹H NMR (300 MHz, deuterochloroform): δ 2.96 and 3.41 (each br s, each 3H, NMe₂), 7.44–7.48 (m, 1H, H8), 7.58 (dd, 2H, J=9.0, 2.1 Hz, H2' and 6'), 8.27 (dd, 2H, J=9.0, 2.1 Hz, H3' and 5'), 8.56 (s, 1H, H2), 8.60 (dd, 1H, J=7.8, 1.8 Hz, H9), 8.77 (dd, 1H, J = 4.8, 1.8 Hz, H7).

 N^{I} , N^{I} -Dimethyl⁻ N^{2} -(pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4yl)nicotinamidine (3j). To a solution of 9 (500 mg, 2.47 mmol) in dry pyridine (60 mL) were added *N*,*N*-dimethylnicotinamide (556.9 mg, 3.71 mmol) and phosphoryl chloride (3.50 g, 22.8 mmol), and the mixture was refluxed for 6.5 h. After removal of solvent *in vacuo*, ice water was added to the residue. The mixture was made basic with sodium carbonate then extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous sodium sulfate, and then evaporated *in vacuo*. The residue was recrystallized from ethanol to give **3j** (383.8 mg, 46%) as yellow granules, mp 200–201 °C; ¹H NMR (300 MHz, deuterochloroform): δ 3.02 and 3.42 (each br s, each 3H, NMe₂), 7.22 (ddd, 1H, *J*=7.8, 4.8, 0.6 Hz, H5'), 7.46 (dd, 1H, *J*=7.8, 4.5 Hz, H8), 7.63 (br d, 1H, *J*=7.8 Hz, H4'), 8.51–8.55 (m, 2H, H2' and 6'), 8.56 (s, 1H, H2), 8.62 (dd, 1H, *J*=7.8, 1.8 Hz, H9), 8.78 (dd, 1H, *J*=4.5, 1.8 Hz, H7); ESI-ms *n*/*z*: 335 (MH⁺). *Anal.* Calcd. for C₁₇H₁₄N₆S: C, 61.06; H, 4.22; N, 25.13. Found: C, 61.02; H, 4.49; N, 25.29.

General procedure for the reaction of 3 with hydroxylamine hydrochloride to give 11. To a solution of amidine (3) in dry methanol was added hydroxylamine hydrochloride, and the reaction mixture was stirred at an appropriate temperature. Then, it was made basic with sat. sodium bicarbonate aq. The precipitate was filtered, washed with water, and then recrystallized from methanol or DMF to give 11.

N-[2-(3-Methyl[1,2,4]oxadiazol-5-yl)thieno[2,3-b]pyridin-3yl]formamide oxime (11a). Compound **3a** (200 mg, 0.737 mmol) was allowed to react with hydroxylamine hydrochloride (204.9 mg, 2.95 mmol) in dry methanol (20 mL) at room temperature for 1 h. Compound 11a (148.1 mg, 73%) from methanol as colorless feathers, mp 232-233 °C; IR (potassium bromide) cm⁻¹: 3216, 3245, 3405 (NH and OH); ¹H NMR (300 MHz, DMSO-d₆): δ 2.44 (s, 3H, Me), 7.56 (dd, 1H, J = 8.4, 4.5 Hz, H5), 7.88 (d, 1H, J = 10.2 Hz, changed to singlet after addition of deuterium oxide, NCHNOH), 8.63 (dd, 1H, J = 8.4, 1.5 Hz, H4), 8.86 (dd, 1H, J = 4.5, 1.5 Hz, H6), 9.87 (d, 1H, J = 10.2 Hz, deuterium oxide exchangeable, NH), 10.60 (s, 1H, deuterium oxide exchangeable, OH); FAB-ms m/z: 276 (MH⁺). Anal. Calcd. for $C_{11}H_9N_5O_2S$: C, 47.99; H, 3.30; N, 25.44. Found: C, 47.73; H, 3.60; N, 25.60.

N-[2-(3-Ethyl[1,2,4]oxadiazol-5-yl)thieno[2,3-b]pyridin-3-yl] formamide oxime (11b). Crude intermediate 3b was allowed to react with hydroxylamine hydrochloride (263.0 mg, 3.78 mmol) in dry methanol (20 mL) under reflux for 18 h. Compound 11b (60.1 mg, 14% (two steps)) from methanol as yellow feathers, mp 235–236 °C; IR (potassium bromide) cm⁻¹: 3188, 3405 (NH and OH); ¹H NMR (300 MHz, DMSO- d_6): δ 1.32 (t, 3H, J=7.5 Hz, CH₂CH₃), 2.82 (q, 2H, J=7.5 Hz, CH_2CH_3), 7.57 (dd, 1H, J=8.4, 4.8 Hz, H5), 7.93 (d, 1H, $J = 10.2 \,\text{Hz}$, changed to singlet after addition of deuterium oxide, NCHNOH), 8.68 (dd, 1H, J=8.4, 1.5 Hz, H4), 8.76 (dd, 1H, J=4.8, 1.5 Hz, H6), 10.08 (d, 1H, J=10.2 Hz, deuterium oxide exchangeable, NH), 10.64 (s, 1H, deuterium oxide exchangeable, OH); FAB-ms m/z: 290 (MH⁺). Anal. Calcd. for C₁₂H₁₁N₅O₂S · 1/2H₂O: C, 48.31; H, 4.05; N, 23.48. Found: C, 48.27; H, 4.05; N, 23.43.

N-[2-(3-Phenyl[1,2,4]oxadiazol-5-yl)thieno[2,3-b]pyridin-3-yl] formamide oxime (11c). Crude intermediate **3c** was allowed to react with hydroxylamine hydrochloride (355.2 mg, 5.11 mmol) in dry methanol (20 mL) under reflux for 12 h. Compound **11c** (230.2 mg, 42% (two steps)) from DMF as yellow needles, mp 240–242 °C; IR (potassium bromide) cm⁻¹: 3211, 3415 (NH and OH); ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.57–7.66 (m, 4H, H5, 3', 4', and 5'), 8.06 (d, 1H, *J* = 10.2 Hz, changed to singlet after addition of deuterium oxide, NCHNOH), 8.15 (dd, 2H, *J*=7.8, 1.5 Hz, H2' and 6'), 8.74 (dd, 1H, *J*=8.4, 1.2 Hz, H4), 8.79 (dd, 1H, *J*=4.5, 1.2 Hz, H6), 10.49 (d, 1H, *J*=10.2 Hz, deuterium oxide exchangeable, NH), 10.85 (s, 1H, deuterium oxide exchangeable, OH); FAB-msm/z: 338 (MH⁺). *Anal.* Calcd. for $C_{16}H_{11}N_5O_2S \cdot 1/2DMF$: C, 56.21; H, 3.91; N, 20.60. Found: C, 56.58; H, 3.84; N, 20.81.

N-{2-[3-(4-Methylphenyl)[1,2,4]oxadiazol-5-yl]thieno[2,3-b] pyridin-3-yl}formamide oxime (11d). Crude intermediate 3d was allowed to react with hydroxylamine hydrochloride (412.3 mg, 5.93 mmol) in dry methanol (30 mL) under reflux for 10 h. Compound 11d (375.3 mg, 72% (2 steps)) from DMF as yellow feathers, mp 250-252 °C; IR (potassium bromide) cm⁻ 3211, 3423 (NH and OH); ¹H NMR (300 MHz, DMSO-*d*₆): δ 2.42 (s, 3H, Me), 7.40 (br d, 2H, J=8.1 Hz, H3' and 5'), 7.59 (dd, 1H, J = 8.4, 4.5 Hz, H5), 8.02 (br d, 2H, J = 8.1 Hz, H2' and 6'), 8.05 (d, 1H, J = 10.2 Hz, changed to singlet after addition of deuterium oxide, NCHNOH), 8.75 (dd, 1H, J=8.4, 1.5 Hz, H4), 8.79 (dd, 1H, J=4.5, 1.5 Hz, H6), 10.48 (d, 1H, J=10.2 Hz, deuterium oxide exchangeable, NH), 10.80 (s, 1H, deuterium oxide exchangeable, OH); FAB-ms m/z: 352 (MH⁺); Anal. Calcd. for C₁₇H₁₃N₅O₂S: C, 58.11; H, 3.73; N, 19.93. Found: C, 58.10; H, 4.12; N, 20.10.

N-{2-{3-(3,4-Dimethylphenyl)[1,2,4]oxadiazol-5-yl]thieno[2,3-b] pyridin-3-yl]formamide oxime (11e). Crude intermediate 3e was allowed to react with hydroxylamine hydrochloride (412.3 mg, 5.93 mmol) in dry methanol (30 mL) under reflux for 11 h. Compound 11e (357.7 mg, 60% (two steps)) from DMF as yellow feathers, mp 241–242 °C; IR (potassium bromide) cm⁻¹: 3210, 3406 (NH and OH); ¹H NMR (300 MHz, DMSO-*d*₆): δ 2.32 and 2.34 (each s, each 3H, 2 × Me), 7.34 (d, 1H, *J* = 8.1 Hz, H5'), 7.59 (dd, 1H, *J* = 8.4, 4.8 Hz, H5), 7.85 (br d, 1H, *J* = 8.1 Hz, H6'), 7.87 (br s, 1H, H2'), 8.08 (d, 1H, *J* = 10.2 Hz, changed to singlet after addition of deuterium oxide, NCHNOH), 8.75–8.79 (m, 2H, H4 and 6), 10.56 (d, 1H, *J* = 10.2 Hz, deuterium oxide exchangeable, NH), 10.92 (s, 1H, deuterium oxide exchangeable, OH); FABms *m/z*: 366 (MH⁺). Anal. Calcd. for C₁₈H₁₅N₅O₂S · 1/2DMF: C, 58.27; H, 4.64; N, 19.17. Found: C, 58.65; H, 4.73; N, 19.28.

N-{2-[3-(4-Methoxyphenyl)[1,2,4]oxadiazol-5-yl]thieno[2,3-b] pyridin-3-yl]formamide oxime (11f). Crude intermediate 3f was allowed to react with hydroxylamine hydrochloride (274.9 mg, 3.96 mmol) in dry methanol (20 mL) under reflux for 33 h. Compound 11f (7.2 mg, 2% (two steps)) from DMF as yellow feathers, mp 254–255 °C; IR (potassium bromide) cm⁻¹: 3217, 3423 (NH and OH); ¹H NMR (300 MHz, DMSO-d₆): δ 3.87 (s, 3H, OMe), 7.12 (br d, 2H, *J*=8.4 Hz, H3' and 5'), 7.58 (dd, 1H, *J*=8.1, 4.8 Hz, H5), 8.05 (d, 1H, *J*=10.2 Hz, changed to singlet after addition of deuterium oxide, NCH=NOH), 8.08 (br d, 2H, *J*=8.4 Hz, H2' and 6'), 8.73–8.79 (m, 2H, H4 and 6), 10.46 (d, 1H, *J*=10.2 Hz, deuterium oxide exchangeable, NH), 10.82 (s, 1H, deuterium oxide exchangeable, OH); FAB-ms *m/z*: 368 (MH⁺). Anal. Calcd. for C₁₇H₁₃N₅O₃S · H₂O: C, 52.98; H, 3.92; N, 18.17. Found: C, 52.92; H, 4.03; N, 17.90.

N-{2-[3-(4-Fluorophenyl)[1,2,4]oxadiazol-5-yl]thieno[2,3-b] pyridin-3-yl]formamide oxime (11g). Crude intermediate 3g was allowed to react with hydroxylamine hydrochloride (219.9 mg, 3.16 mmol) in dry methanol (20 mL) under reflux for 9 h. Compound 11g (179.2 mg, 46% (two steps)) from DMF as yellow feathers, mp 258–260 °C; IR (potassium bromide) cm⁻¹: 3212, 3415 (NH and OH); ¹H NMR (300 MHz, DMSO-d₆): δ 7.44 (t, 2H, *J*=9.0 Hz, H3' and 5'), 7.60 (dd, 1H, *J*=8.4, 4.8 Hz, H5), 8.04 (d, 1H, *J*=10.2 Hz, changed to singlet after addition of deuterium oxide, NCHNOH), 8.19 (dd, 2H, *J*=9.0, 5.1 Hz, H2' and 6'), 8.74–8.80 (m, 2H, H4 and 6), 10.43 (d, 1H, *J*=10.2 Hz, deuterium oxide exchangeable, NH), 10.83 (s, 1H, deuterium oxide exchangeable, OH); FAB-msm/z: 356 (MH⁺). Anal. Calcd. for C₁₆H₁₀FN₅O₂S · 1/2DMF: C, 53.63; H, 3.47; N, 19.66. Found: C, 53.61; H, 3.28; N, 19.85.

N-{2-[3-(4-Chlorophenyl)[1,2,4]oxadiazol-5-yl]thieno[2,3-b] pyridin-3-yl]formamide oxime (11h). Crude intermediate 3h was allowed to react with hydroxylamine hydrochloride (338.1 mg, 4.87 mmol) in dry methanol (20 mL) under reflux for 8 h. Compound 11h (275.8 mg, 46% (two steps)) from DMF as yellow feathers, mp 254–255 °C; IR (potassium bromide) cm⁻¹: 3211, 3433 (NH and OH); ¹H NMR (300 MHz, DMSO- d_6): δ 7.59 (dd, 1H, J=8.4, 4.8 Hz, H5), 7.66 (br d, 2H, J=8.7 Hz, H3' and 5'), 8.04 (d, 1H, J = 10.2 Hz, changed to singlet after addition of deuterium oxide, NCHNOH), 8.13 (br d, 2H, J = 8.7 Hz, H2' and 6'), 8.74–8.80 (m, 2H, H4 and 6), 10.42 (d, 1H, J = 10.2 Hz, deuterium oxide exchangeable, NH), 10.82 (s, 1H, deuterium oxide exchangeable, OH); FAB-ms m/z: 372 (MH^{+}) , 374 $(MH^{+} + 2)$. Anal. Calcd. for $C_{16}H_{10}CIN_5O_2S$. 1/2DMF: C, 51.47; H, 3.33; N, 18.87. Found: C, 51.57; H, 3.19; N, 19.05.

N-{2-[3-(4-Nitrophenyl)[1,2,4]oxadiazol-5-yl]thieno[2,3-b] pyridin-3-yl]formamide oxime (11i). Crude intermediate 3i was allowed to react with hydroxylamine hydrochloride (362.8 mg, 5.22 mmol) in dry methanol (20 mL) under reflux for 10 h. Compound 11i (340.3 mg, 55% (two steps)) from DMF as a yellow powder, mp > 300 °C; IR (potassium bromide) cm⁻¹: 3218, 3433 (NH and OH); ¹H NMR (300 MHz, DMSO-d₆): δ 7.58 (dd, 1H, *J*=8.4, 4.5 Hz, H5), 8.04 (d, 1H, *J*=10.2 Hz, changed to singlet after addition of deuterium oxide, NCHNOH), 8.33–8.42 (m, 4H, H2', 3', 5', and 6'), 8.73–8.79 (m, 2H, H4 and 6), 10.44 (d, 1H, *J*=10.2 Hz, deuterium oxide exchangeable, NH), 10.84 (s, 1H, deuterium oxide exchangeable, OH); FAB-ms *m/z*: 383 (MH⁺). Anal. Calcd. for C₁₆H₁₀N₆O₄S · 1/2DMF: C, 50.18; H, 3.25; N, 21.73. Found: C, 49.79; H, 3.11; N, 21.87.

 N^{I} , N^{I} -Dimethyl- N^{2} -(pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4-yl) acetamidine (12a). To a suspension of 4-aminopyrido[2',3':4,5] furo[3,2-d]pyrimidine (13, 186 mg, 0.999 mmol) [11] in dry toluene (10 mL) was added *N*,*N*-dimethylacetamide dimethyl acetal (160 mg, 1.20 mmol), the mixture was refluxed for 2 h. After evaporation of solvent *in vacuo*, the residue was recrystallized from *n*-hexane/ethyl acetate to give **12a** (227 mg, 89%) as pale yellow needles, mp 125–126 °C; ¹H NMR (300 MHz, deuterochloroform): δ 2.34 (s, 3H, CMe), 3.22, 3.32 (each s, each 3H, NMe₂), 7.51 (dd, 1H, *J*=8.4, 4.8 Hz, H7), 7.94 (dd, 1H, *J*=8.4, 1.2 Hz, H6), 8.81 (dd, 1H, *J*=4.8, 1.2 Hz, H8), 8.89 (s, 1H, H2). FAB-ms: *m/z* 256 (MH⁺); *Anal.* Calcd. for C₁₃H₁₃N₅O: C, 61.17; H, 5.13; N, 27.43. Found: C, 60.94; H, 5 19: N 27.07

5.19; N, 27.07. N^{I} , N^{I} -Dimethyl- N^{2} -(pyrido[2',3':4,5][furo[3,2-d]pyrimidin-4-yl) benzamidine (12b). To a solution of 13 (186 mg, 0.999 mmol) in dry pyridine (30 mL) were added N,N-dimethylbenzamide (179 mg, 1.20 mmol) and phosphorus pentoxide (1.42 g, 10.0 mmol), and the mixture was refluxed for 6 h. After removal of solvent *in vacuo*, ice water was added to the residue. The mixture was made basic with sodium carbonate then extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous magnesium sulfate, and then evaporated *in vacuo*. The brown oily residue (crude 12b) was used without further purification. ¹H NMR (300 MHz, deuterochloroform): δ 3.33, 3.59 (each s, each 3H, NMe₂), 7.19–7.29 (m, 3H, H3', 4', and 5'), 7.62 (dd, 1H, J=9.3, 4.5 Hz, H7), 7.79–7.85 (m, 2H, H2' and 6'), 8.01 (br d, 1H, J=9.3 Hz, H6), 8.46 (s, 1H, H2), 8.89 (br d, 1H, J=4.5 Hz, H8).

 N^{1} , N^{1} -Dimethyl- N^{2} -(pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4*yl)-4-methoxybenzamidine (12c).* To a solution of **13** (186 mg, 0.999 mmol) in dry pyridine (30 mL) were added N.N-dimethyl-4-methoxybenzamide [14] (215 mg, 1.20 mmol) and phosphorus pentoxide (1.42 g, 10.0 mmol), and the mixture was refluxed for 14 h. After removal of solvent in vacuo, ice water was added to the residue. The mixture was made basic with sodium carbonate, then extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous magnesium sulfate, and then evaporated in vacuo. The brown oily residue (crude 12c) was used without further purification. ¹H NMR (300 MHz, deuterochloroform): δ 3.06, 3.43 (each s, each 3H, NMe₂), 3.83 (s, 3H, OMe), 6.73 (d, 2H, J = 8.4 Hz, H3' and 5'), 7.31 (d, 2H, J=8.4 Hz, H2' and 6'), 7.51 (dd, 1H, J=8.4, 4.5 Hz, H7), 7.91 (br d, 1H, J=8.4 Hz, H6), 8.65 (s, 1H, H2), 8.82 (br d, 1H, J = 4.5 Hz, H8).

 N^{I} , N^{I} -Dimethyl- N^{2} -(pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4yl)-4-fluorobenzamidine (12d). To a solution of 13 (186 mg, 0.999 mmol) in dry pyridine (30 mL) were added *N*,*N*-dimethyl-4-fluorobenzamide [15] (201 mg, 1.20 mmol) and phosphorus pentoxide (1.42 g, 10.0 mmol), and the mixture was refluxed for 8 h. After removal of solvent *in vacuo*, ice water was added to the residue. The mixture was made basic with sodium carbonate then extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous magnesium sulfate, and then evaporated *in vacuo*. The brown oily residue (crude 12d) was used without further purification. ¹H NMR (300 MHz, deuterochloroform): δ 3.14, 3.48 (each s, each 3H, NMe₂), 7.01 (br t, 2H, *J*=8.7 Hz, H3' and 5'), 7.40 (br d, 2H, *J*=8.7 Hz, H2' and 6'), 7.56 (dd, 1H, *J*=8.4, 4.5 Hz, H7), 7.95 (dd, 1H, *J*=8.4, 1.2 Hz, H6), 8.57 (s, 1H, H2), 8.83 (dd, 1H, *J*=4.5, 1.2 Hz, H8).

 N^{1} , N^{1} -Dimethyl- N^{2} -(pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4-yl)-4-chlorobenzamidine (12e). To a solution of 13 (186 mg, 0.999 mmol) in dry pyridine (30 mL) were added N,Ndimethyl-4-chlorobenzamide [14] (220 mg, 1.20 mmol) and phosphorus pentoxide (1.42 g, 10.0 mmol), and the mixture was refluxed for 10h. After removal of solvent in vacuo, ice water was added to the residue. The mixture was made basic with sodium carbonate, then extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous magnesium sulfate, and then evaporated in vacuo. The brown oily residue (crude 12e) was used without further purification. ¹H NMR (300 MHz, deuterochloroform): δ 3.03, 3.54 (each s, each 3H, NMe₂), 7.22 (br d, 2H, J = 9.0 Hz, H3' and 5'), 7.31 (br d, 2H, *J*=9.0 Hz, H2' and 6'), 7.52 (dd, 1H, *J*=8.4, 4.5 Hz, H7), 7.92 (dd, 1H, J=8.4, 1.2 Hz, H6), 8.64 (s, 1H, H2), 8.79 (dd, 1H, J = 4.5, 1.2 Hz, H8).

 N^{I} , N^{I} -Dimethyl- N^{2} -(pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4yl)-4-nitrobenzamidine (12f). To a solution of 13 (186 mg, 0.999 mmol) in dry pyridine (30 mL) were added *N*,*N*-dimethyl-4-nitrobenzamide [14] (233 mg, 1.20 mmol) and phosphorus pentoxide (1.42 g, 10.0 mmol), and the mixture was refluxed for 9 h. After removal of solvent *in vacuo*, ice water was added to the residue. The mixture was made basic with sodium carbonate then extracted with ethyl acetate. The organic phase was washed with sat. brine, dried over anhydrous magnesium sulfate, and then evaporated *in vacuo*. The brown oily residue (crude **12f**) was used without further purification. ¹H NMR (300 MHz, deuterochloroform): δ 3.07, 3.38 (each s, each 3H, NMe₂), 7.41–7.44 (m, 3H, H7, 2', and 6'), 7.87 (br d, 1H, *J*=7.9 Hz, H6), 8.05 (br d, 2H, *J*=7.0 Hz, H3' and 5'), 8.54 (s, 1H, H2), 8.72 (dd, 1H, *J*=4.8, 1.5 Hz, H8). General procedure for the reaction of 12 with hydroxylamine hydrochloride to give 14. To a solution of amidine (12) in dry methanol was added hydroxylamine hydrochloride, and the reaction mixture was stirred at room temperature for an appropriate time. After evaporation of solvent *in vacuo*, the residue was made basic with sat. sodium bicarbonate aq. The precipitate was collected on a filter, washed with water, and then recrystallized from dioxane/methanol to give 14.

N-[2-(3-*Methyl*[1,2,4]oxadiazol-5-yl)furo[3,2-b]pyridin-3-yl] formamide oxime (14a). Compound 12a (255 mg, 0.999 mmol) was allowed to react with hydroxylamine hydrochloride (278 mg, 4.00 mmol) in dry methanol (20 mL) at room temperature for 3 h. Compound 14a (210 mg, 79%) as colorless feathers, mp 225–226 °C; IR (potassium bromide) cm⁻¹: 3300, 3363, 3450 (NH and OH); ¹H NMR (300 MHz, DMSO-*d*₆): δ 2.32 (s, 3H, Me), 7.65 (dd, 1H, *J*=8.4, 4.8 Hz, H6), 8.23 (dd, 1H, *J*=8.4, 1.2 Hz, H7), 8.70 (d, 1H, *J*=10.2 Hz, changed to singlet with addition of deuterium oxide, NCHNOH), 8.71 (dd, 1H, *J*=4.8, 1.2 Hz, H5), 8.97 (d, 1H, *J*=10.2 Hz, deuterium oxide exchangeable, NH), 10.65 (s, 1H, deuterium oxide exchangeable, OH); FAB-ms: *m*/z 260 (MH⁺). Anal. Calcd. for C₁₁H₉N₅O₃ · 1/4CH₃OH: C, 50.56; H, 3.77; N, 26.21. Found: C, 50.87; H, 3.67; N, 26.45.

N-[2-(3-Phenyl[1,2,4]oxadiazol-5-yl)furo[3,2-b]pyridin-3-yl] formamide oxime (14b). Crude intermediate **12b** was allowed to react with hydroxylamine hydrochloride (278.0 mg, 4.00 mmol) in dry methanol (20 mL) at room temperature for 6 h. Compound 14b (202 mg, 55% (two steps)) as colorless feathers; mp 246–247 °C. IR (potassium bromide) cm⁻¹: 3073, 3270, 3339 (NH and OH); ¹H NMR (300 MHz, DMSO- d_6): δ 7.57–7.63 (m, 3H, H3', 4', and 5'), 7.67 (dd, 1H, J=8.7, 4.8 Hz, H6), 8.09 (dd, 2H, J=7.5, 2.4 Hz, H2' and 6'), 8.27 (dd, 1H, J = 8.7, 1.2 Hz, H7), 8.72 (dd, 1H, J = 4.8, 1.2 Hz, H5),8.74 (d, 1H, J=9.0 Hz, changed to singlet with addition of deuterium oxide, NCHNOH), 9.31, 10.75 (each br, each 1H, deuterium oxide exchangeable, NH, OH); FAB-ms: m/z 322 (MH⁺). Anal. Calcd. for C₁₆H₁₁N₅O₃ · 1/2dioxane: C, 59.18; H, 4.14; N, 19.17. Found: C, 58.81; H, 4.18; N, 19.05.

N-{2-[3-(4-Methoxyphenyl)[1,2,4]oxadiazol-5-yl]furo[3,2-b] pyridin-3-yl}formamide oxime (14c). Crude intermediate 12c was allowed to react with hydroxylamine hydrochloride (278.0 mg, 4.00 mmol) in dry methanol (20 mL) at room temperature for 5 h. Compound 14c (207 mg, 55% (two steps)) as colorless feathers, mp 243–244 °C; IR (potassium bromide) cm⁻¹: 3230, 3350, 3448 (sh.) (NH and OH); ¹H NMR (300 MHz, DMSO- d_6): δ 3.90 (s, 3H, OMe), 7.19 (d, 2H, J = 9.0 Hz, H3' and 5'), 7.71 (dd, 1H, J=8.7, 4.8 Hz, H6), 8.06 (d, 2H, J=9.0 Hz, H2' and 6'), 8.31 (br d, 1H, J=8.7 Hz, H7), 8.76 (d, 1H, J=4.8, H5), 8.76 (d, 1H, J=4.2 Hz, changed to singlet with addition of deuterium oxide, NCHNOH), 9.32, 10.81 (each br, each 1H, deuterium oxide exchangeable, NH and OH); FAB-ms: m/z 352 (MH⁺). Anal. Calcd. for $C_{17}H_{13}N_5O_4 \cdot 1/2H_2O \cdot 1/2CH_3OH$: C, 55.85; H, 4.29; N, 18.61. Found: C, 56.20; H, 4.00; N, 18.35.

N-{2-[3-(4-Fluorophenyl)[1,2,4]oxadiazol-5-yl]furo[3,2-b] pyridin-3-yl]formanide oxime (14d). Crude intermediate 12d was allowed to react with hydroxylamine hydrochloride (278.0 mg, 4.00 mmol) in dry methanol (20 mL) at room temperature for 7 h. Compound 14d (153 mg, 42% (two steps)) as pale green feathers, mp 237–238 °C; IR (potassium bromide) cm⁻¹: 3110, 3280, 3480 (sh.) (NH and OH); ¹H NMR (300 MHz, DMSO- d_6): δ 7.40–7.50 (m, 2H, H3' and 5'), 7.67 (dd, 1H, J=8.4, 4.5 Hz, H6), 8.06–8.15 (m, 2H, H2' and 6'), 8.27 (br d, 1H, J=8.4 Hz, H7), 8.71 (br d, 1H, J=4.5 Hz, H5), 8.74 (d, 1H, J=10.5 Hz, changed to singlet with addition of deuterium oxide, NCH=NOH), 9.24 (d, 1H, J=10.5 Hz, deuterium oxide exchangeable, NH), 10.76 (s, 1H, deuterium oxide exchangeable, OH); FAB-ms: m/z 340 (MH⁺). *Anal.* Calcd. for C₁₆H₁₀FN₅O₃•1/3dioxane: C, 56.47; H, 3.46; N, 19.00. Found: C, 56.60; H, 3.69; N, 19.04.

N-{2-[3-(4-Chlorophenyl)[1,2,4]oxadiazol-5-yl]furo[3,2-b] pyridin-3-yl}formamide oxime (14e). Crude intermediate 12e was allowed to react with hydroxylamine hydrochloride (278.0 mg, 4.00 mmol) in dry methanol (20 mL) at room temperature for 4 h. Compound 14e (231 mg, 64% (two steps)) as pale green feathers, mp 248–249 °C; IR (potassium bromide) cm⁻¹: 3187, 3339, 3490 (NH and OH); ¹H NMR (300 MHz, DMSO-d₆): δ 7.64–7.72 (m, 3H, H6, 3', and 5'), 8.06 (d, 2H, J=8.4 Hz, H2' and 6'), 8.26 (dd, 1H, J=8.7, 1.2 Hz, H7), 8.71 (d, 1H, J=4.5 Hz, changed to singlet with addition of deuterium oxide, NCHNOH), 8.72 (dd, 1H, J=4.5, 1.2 Hz, H5), 9.21, 10.78 (each br, each 1H, deuterium oxide exchangeable, NH and OH); FAB-ms: m/z 356 (MH⁺), 358 (MH⁺+2). Anal. Calcd. for C₁₆H₁₀ClN₅O₃·1/4H₂O: C, 53.35; H, 2.94; N, 19.44. Found: C, 53.64; H, 3.00; N, 19.28.

N-{2-{3-(4-*Nitrophenyl*)[1,2,4]oxadiazol-5-yl]furo[3,2-b]pyridin-3-yl]formamide oxime (14f). Crude intermediate 12f was allowed to react with hydroxylamine hydrochloride (278.0 mg, 4.00 mmol) in dry methanol (20 mL) at room temperature for 5 h. Compound 14f (256 mg, 66% (two steps)) as pale yellow feathers, mp 229–230 °C; IR (potassium bromide) cm⁻¹: 3110, 3229, 3490 (NH and OH); ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.68 (dd, 1H, *J*=8.7, 4.8 Hz, H6), 8.27 (br d, 1H, *J*=8.7 Hz, H7), 8.30 (d, 2H, *J*=9.0 Hz, H3' and 5'), 8.44 (d, 2H, *J*=9.0 Hz, H2' and 6'), 8.74 (d, 1H, *J*=10.2 Hz, changed to singlet with addition of deuterium oxide, NCHNOH), 8.76 (br d, 1H, *J*=4.8 Hz, H5), 9.21 (d, 1H, *J*=10.2 Hz, deuterium oxide exchangeable, NH), 10.81 (s, 1H, deuterium oxide exchangeable, OH); FABms: *m*/z 367 (MH⁺). Anal. Calcd. for C₁₆H₁₀N₆O₅•1/4dioxane: C, 52.58; H, 3.11; N, 21.64. Found: C, 52.73; H, 3.24; N, 21.74.

Determination of pentosidine formation *in vitro*. Test compound stock solutions were prepared at 100 mM concentration in DMSO. The reaction mixture (total volume $200 \,\mu$ L) consisting of 24 mg/mL bovine serum albumin, 10 mM D-glucose, and 2.0 mM test compounds was incubated at 37 °C for 4 weeks in 100 mM phosphate buffer (pH 7.4). Then, 10% trichloroacetic acid was added to precipitate proteins. After collecting the precipitate by centrifugation, 2% protease (Sigma) was added and incubated for 18 h at 37 °C followed by 2% aminopeptidase (Sigma) for 18 h at 37 °C. After digestion, samples were filtered through a 0.22 mm filter (Millipore, USA) for ESI/LC/MS analysis. The quantitative ESI/LC/MS analysis was performed on the basis of a method described previously [16].

Acknowledgments. The authors are grateful to the SC-NMR Laboratory of Okayama University for 200 and 300 MHz 1 H NMR experiments. They also thank Dr. K. L. Kirk (NIDDK, NIH) for the helpful comments on the manuscript.

REFERENCES AND NOTES

[1] van der Plas, H. C. Adv Heterocycl Chem 1999, 74, 1.

[2] Buscemi, S.; Pace, A.; Pibiri, I.; Vivona, N.; Lanza, C. Z.; Spinelli, D. Eur J Org Chem 2004, 974.

[3] Adamo, M. F. A.; Donati, D.; Sarti-Fantoni, P.; Buccioni, A. Tetrahedron Lett 2008, 49, 941.

[4] Piccionello, A. P.; Pace, A.; Buscemi, S.; Vivona, N.; Giorgi, G. Tetrahedron Lett 2009, 50, 1472.

[5] Okuda, K.; Zhang, Y.-X.; Ohtomo, H.; Hirota, T.; Sasaki, K. Chem Pharm Bull 2010, 58, 369.

[6] Okuda, K.; Muroyama, H.; Hirota, T. J Heterocycl Chem 2011, 48, 1407.

[7] Okuda, K.; Tsuchie, K.; Hirota, T. J Heterocycl Chem 2012, 49, 755.[8] Guerrera, F.; Siracusa, M. A.; Tornetta, B. Farmaco, Ed Sci 1976, 31, 21.

[9] Zhao, C.; Tovar, C.; Yin, X.; Xu, Q.; Todorov, I. T.; Vassilev, L. T.; Chen, L. Bioorg Med Chem Lett 2009, 19, 319.

[10] The reaction mechanism was already proposed in the precedent literature, see, Sasaki, K.; Zhang, Y.-X.; Yamamoto, H.; Kashino, S.; Hirota, T. J Chem Res (S) 1999, 92. [11] Loidreau, Y.; Marchand, P.; Dubouilh-Benard, C.; Nourrisson, M.-R.; Duflos, M.; Besson, T. Tetrahedron Lett 2012, 53, 944.

[12] Ślebocka-Tilk, H.; Brown, R. S. J Org Chem 1988, 53, 1153.

[13] Naumov, Y. A.; Isakova, A. P.; Kost, A. N.; Dremova, V. P. Environ Qual Saf 1975, Supp, 3(Pesticides), 722.

[14] Sunada, Y.; Kawakami, H.; Imaoka, T.; Motoyama, Y.; Nagashima, H. Angew Chem Int Ed Engl 2009, 48, 9511.

[15] Patel, B.; Firkin, C. R.; Snape, E. W.; Jenkin, S. L.; Brown, D.; Chaffey, J. G. K.; Hopes, P. A.; Reens, C. D.; Butters, M.; Moseley, J. D. Org Process Res Dev 2012, 16, 447.

[16] Odani, H.; Shinzato, T.; Usami, J.; Matsumoto, Y.; Frye, E. B.; Baynes, J. W.; Maeda, K. FEBS Lett 1998, 427, 381. Copyright of Journal of Heterocyclic Chemistry is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.