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A Facile H2SO4-SiO2–Catalyzed
Ferrier Rearrangement
of 3,4,6-Tri-O-benzyl-D-glucal

Jianbo Zhang,1 Bo Zhang,1 Jiafen Zhou,1 Heshan Chen,1

Juan Li,1 Guofang Yang,1 Zhongfu Wang,2 and Jie Tang1

1Department of Chemistry, East China Normal University, Shanghai 200241, China
2School of Life Sciences, Northwest University, Xi’an 710069, China

Sulfuric acid immobilized on silica gel (H2SO4-SiO2) was used as an efficient and conve-
nient promoter for Ferrier-type rearrangement of 3,4,6-tri-O-benzyl-D-glucal in CH2Cl2,
which is a difficult donor for this type of reaction. The acceptors include primary alco-
hols, secondary alcohols, pentanol, halogenated alcohol, sterols, thiol, and 2-naphthol.
Thus, 2,3-unsaturated glycosides were obtained rapidly (<2 h) and efficiently (>62%)
in good α-selectivity (α/β>4.2:1) under mild conditions.

Keywords Immobilized sulfuric acid; Silica gel; 3,4,6-Tri-O-benzyl-D-glucal; Glycosy-
lation; Ferrier rearrangement

INTRODUCTION

Since R. J. Ferrier et al. reported that 3,4,6-tri-O-acetyl-D-glucal catalyzed by
Lewis acid in the presence of an alcohol could afford 2,3-unsaturated glyco-
sides,[1] the Ferrier reaction has received extensive attention in organic syn-
thesis for many decades.[2] The products 2,3-unsaturated glycosides as chiral
intermediates[3] have played an important role in the synthesis of many bioac-
tive compounds, such as glycopeptide building blocks,[4] oligosaccharides,[5]

uronic acids,[6] modified carbohydrates,[7] and some useful antibiotics[8] and
nucleosides.[9] To facilitate these conversions, a diversity of catalysts have
been employed, such as SnCl4,[10] InBr3,[11] TMSOTf,[12] Dy(OTf)3,[13] BiCl3,[14]

Sc(OTf)3,[15] LiBF4,[16] InCl3,[17] ZnCl2,[18] HClO4-SiO2,[19] ZrCl4,[20] NbCl5,[21]
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Ferrier Rearrangement of 3,4,6-tri-O-benzyl-D-glucal 381

Er(OTf)3,[22] Fe2(SO4)3·χH2O,[23] H2SO4,[24] NaHSO4-SiO2,[25] and CF3SO3H-
SiO2.[26] Despite these achievements with different acyl glycals, Ferrier rear-
rangement of glycals having ether protection at position 3 is hardly ever at-
tained,[23,27] since many side reactions would occur more favorably, such as
intramolecular rearrangement and 2-deoxy-glycoside formation.[28–31] Besides,
the known catalysts often suffer from disadvantages including narrow scope
of acceptors, low yields, high catalyst loading, long reaction times, stringent
conditions, and the usage of toxic agents.

In the search for an alternative and green procedure for Ferrier rearrange-
ment of ether-protected substrates, we examined sulfuric acid immobilized on
silica (H2SO4-SiO2) that has been utilized well in organic reactions.[32] This
handy and metal-free catalyst has shown many advantages such as being in-
expensive and safe, rapid reactions, high yields of products, and simple workup
procedure. In our previous research, we found that this convenient reagent can
catalyze the typical Ferrier rearrangement of tri-O-acetyl-D-glucal[33] and per-
acetylation of carbohydrates.[34] We expect that this mild approach will find
more applications in glycoside syntheses. This report describes the Ferrier re-
arrangement of 3,4,6-tri-O-benzyl-D-glucal using H2SO4-SiO2 as a catalyst un-
der mild conditions (Sch. 1).

Scheme 1: H2SO4-SiO2-catalyzed Ferrier rearrangement of 3,4,6-tri-O-benzyl-D-glucal.

RESULTS AND DISCUSSION

Initially, H2SO4, an efficient catalyst for Ferrier rearrangement of acyl-
protected glycosyl donors, was applied directly in the reaction of 3,4,6-
tri-O-benzyl-D-glucal.[24] Unfortunately, no desired products were obtained.
However, when 3,4,6-tri-O-benzyl-D-glucal was treated with solid acid, H2SO4-
SiO2, we found that the intramolecular Ferrier product was formed quickly
with or without external benzyl alcohol. In the literature, P. Nagaraj et al.
also witnessed the similar phenomenon with InCl3 catalyst.[35] Therefore, we
changed the model acceptor for the Ferrier reaction into n-butyl alcohol to dis-
tinguish the intermolecular rearrangement. At the same time, to eliminate the
possible intramolecular Ferrier rearrangement and other side reactions with
benzyl alcohol generated in situ, more than 1 equivalent of the alcohol acceptor
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382 J. Zhang et al.

Table 1: H2SO4-SiO2–catalyzed Ferrier rearrangement of 3,4,6-tri-O-benzyl-D-glucals
in CH2Cl2

Entry Acceptors Products Time (h) Yielda (%) α:βb

1 1.2 87 7.1:1

2 1 86[32] 8.5:1

3 1 88 4.2:1

4 2 81[23] 11:1

5 0.5 91[25b] 5.9:1

6 0.5 90 7.4:1

7 0.5 93 6.7:1

8 0.5 94 5.6:1

9 1 81 10:1
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Ferrier Rearrangement of 3,4,6-tri-O-benzyl-D-glucal 383

Table 1: H2SO4-SiO2–catalyzed Ferrier rearrangement of 3,4,6-tri-O-benzyl-D-glucals
in CH2Cl2 (Continued)

Entry Acceptors Products Time (h) Yielda (%) α:βb

10 1 90[32] 10:1

11 0.5 93[25b] 8.7:1

12 1 87 >19:1

13 1 81 >19:1

14 1 71[33] 5.6:1

15 1 62 >19:1

aIsolated yields.
bAnomeric ratios were determined by 500 MHz 1H NMR.

was applied and 4 equivalent of the alcohol was found to be optimal, while 0.4
equivalent of H2SO4-SiO2 was found to promote the reaction well in CH2Cl2.
We also examined acetonitrile as the reaction solvent, which led to reduced
yields.[33]

To examine whether or not this novel method had generality, a variety
of acceptors were tested. As summarized in Table 1, the desired reactions
were completed in 0.5–2 h at rt with high to excellent yields (81%–93%, en-
tries 1–11) for primary, secondary, benzyl, pentenyl, and halogenated alcohols
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384 J. Zhang et al.

and thiol. Good α-stereoselectivities as determined by NMR spectroscopy were
in the range observed previously with other catalysts on similar donors.[36,37]

The complex sterols, such as cholesterol and sterone dehydroisoandrosterone
(DHEA), were able to give high yields, 81% and 87%, respectively, with ex-
cellent α-selectivity and without the formation of 2-deoxy hexopyranosides
as side products (entries 12 and 13). Furthermore, we obtained disaccharide
14b smoothly with the the acid-sensitive ketal group intact when diacetone-
D-galactose 14a was used as the acceptor (entry 14), which demonstrated the
potential application of our method in oligosaccharide synthesis.

It should be noted that the reaction failed with phenol,[38] however, when
the donor reacted with 2-naphthol, and a 2,3-unsaturated aryl C-glycoside
(15b) was obtained. The structure of 15b was confirmed by spectral analy-
sis. From the 1H NMR spectrum, the peak at the chemical shift value of 9.12
(s, 1H) is typical for the hydroxyl group of 2-naphthol, and the absorption peak
at 3308 cm−1 in the IR spectrum further indicates the presence of the free hy-
droxyl group (see supplementary file for more information). In addition, from
the 13C NMR spectrum, there were no peaks between 90 and 100 ppm, the typ-
ical range for anomeric carbon of O-glycosides. Instead, the anomeric carbon
of 15b appeared at 77.65 ppm. All of this indicates that the glycoside must
be a C-glycoside rather than an O-glycoside. The C1 of the 2-naphtol is more
reactive than other positions of the acceptor, which is in agreement with the
previous report.[39] The successful synthesis of 15b establishes an alternative
synthetic approach for aryl C-glycoside (entry 15).[40,41]

CONCLUSION

In summary, as a convenient and green catalyst, H2SO4-SiO2 can be efficiently
utilized to promote Ferrier rearrangement of glycals with benzyl ether protec-
tion. The acceptors are widely available, and the catalyst could be simply fil-
tered off after the reaction. We can synthesize glycosides, oligosaccharides, and
C-glycosides from glycals via this new approach easily. It is a simple, clean, effi-
cient, and environmentally benign method with excellent yields and dominant
α-selectivity. Thus, we expect that this methodology will find widespread use in
glycoside and oligosaccharide syntheses. Further exploration of this methodol-
ogy is currently under way in our laboratory.

EXPERIMENTAL

General Experimental Methods
1H NMR spectra and 13C NMR spectra were recorded on a Bruker

DRX-500MHz spectrometer using tetramethylsilane as internal standard and
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Ferrier Rearrangement of 3,4,6-tri-O-benzyl-D-glucal 385

CDCl3 as solvent. Mass spectra were determined on an LTQ-XL (Thermo Sci-
entific, USA) with an (ESI) ion trap mass spectrometer. Fourier transform in-
frared (FT-IR) spectra were collected on a Nicolet-Nexus 670 FI-IR Spectrome-
ter. Silica gel (10–40 μm, Yantai, China) was used for column chromatography.
TLC plates (10–40 μm, Yantai, China) were applied to monitor the reactions.

General Synthetic Procedure
Typically, 10 mg of H2SO4-SiO2 (0.04 mmol) was added to the solution of

3,4,6-tri-O-benzyl-D-glucal (0.10 mmol, 40 mg) in dichloromethane (3 mL), and
then was added n-butyl alcohol (1a, 36 μL, 0.40 mmol). The reaction mix-
ture was stirred for 1.2 h at rt. After the reaction was completed, the reac-
tion mixture was filtered and the catalyst was washed with dichloromethane.
The organic phase was combined and condensed under vacuum to get crude
product, which was purified by silica gel column chromatography (petroleum
ether/EtOAc = 20/1) to get 1b as yellow syrup in an 87% yield (32.0 mg, α:β =
7.1:1). All new compounds were fully characterized by NMR and MS. Spectral
and analytical data were in good agreement with the desired structures.

Butyl 4,6-di-O-benzyl-2,3-dideoxy-D-erythro-hex-2-
enopyranoside (1b)
α:β = 7.1:1, 1H NMR (500 MHz, CDCl3): δ (ppm): 7.36–7.24 (m, 10H), 6.08

(d, J = 10.2 Hz, 1H), 5.78 (d, J = 10.2, 1H), 5.11 (br s, 1H, H-1β), 5.02 (br
s, 1H, H-1α), 4.66 (d, J = 12.1 Hz, 1H), 4.61 (d, J = 11.6 Hz, 1H), 4.51 (d,
J = 12.1 Hz, 1H), 4.45 (d, J = 11.6 Hz, 1H), 4.18 (d, J = 9.3 Hz,1H), 3.98
(d, J = 7.5, 1H), 3.82–3.70 (m, 3H), 3.52–3.47 (m, 1H), 1.60–1.56 (m, 2H),
1.40–1.35 (m, 2H), 0.93–0.89 (m, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm):
138.14, 138.02, 130.42, 128.36, 128.32, 128.27, 127.92, 127.79, 127.68, 127.64,
127.54, 126.68, 95.95 (β-isomer), 94.52 (α-isomer), 73.29, 70.97, 70.29, 69.02,
68.78, 68.25, 31.79, 19.34, 13.82. MS (ESI): m/z = 405.23 (M + Na+).

Isooctyl 4,6-di-O-benzyl-2,3-dideoxy-D-erythro-hex-2-
enopyranoside (6b)
α:β = 7.4:1 1H NMR (500 MHz, CDCl3): δ (ppm): 7.35–7.22 (m, 10H), 6.06

(d, J = 10.2 Hz, 1H), 5.77 (d, J = 10.2 Hz, 1H), 5.08 (br s, 1H, H-1β), 4.98
(br s, 1H, H-1α), 4.67 (d, J = 12.2 Hz, 1H), 4.60 (d, J = 11.5 Hz, 1H), 4.51
(d, J = 12.2 Hz, 1H), 4.43 (d, J = 11.5 Hz, 1H), 4.19 (d, J = 11.5 Hz, 1H),
3.94 (d, J = 11.5 Hz, 1H), 3.76–3.72 (m, 1H), 3.71–3.67 (m, 2H), 3.36–3.34
(m, 1H), 1.58–1.56 (m, 1H), 1.33–1.25 (m, 8 H), 0.88–0.82 (m, 6H). 13C NMR
(125 MHz, CDCl3): δ (ppm): 138.15, 137.99, 130.26, 128.34, 128.30, 128.26,
127.93, 127.86, 127.82, 127.72, 127.61, 127.54, 126.75, 94.82 (β-isomer), 94.72
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386 J. Zhang et al.

(α-isomer), 73.31, 71.17, 71.09, 70.32, 69.12, 68.73, 39.44, 30.30, 28.89, 23.68,
23.05, 14.11, 10.77. MS (ESI): m/z = 461.25 (M + Na+).

Nonyl 4,6-di-O-benzyl-2,3-dideoxy-D-erythro-hex-2-
enopyranoside (7b)
α:β = 6.7:1, 1H NMR (500 MHz, CDCl3): δ (ppm): 7.35–7.25 (m, 10H), 6.09

(d, J = 10.2 Hz, 1H), 5.79 (d, J = 10.2 Hz, 1H), 5.12 (br s, 1H, H-1β), 5.03 (br
s, 1H, H-1α), 4.68 (d, J = 12.2 Hz, 1H), 4.60 (d, J = 11.5 Hz, 1H), 4.54 (d, J =
12.2 Hz, 1H), 4.47 (d, J = 11.5 Hz, 1H), 4.19 (d, J = 9.3 Hz, 1H), 3.99 (d, J =
7.8 Hz, 1H), 3.82–3.71 (m, 3H), 3.52–3.47 (m, 1H), 1.61–1.56 (m, 2H), 1.27 (br,
12H), 0.91–0.88 (m, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm): 138.19, 138.07,
130.45, 128.36, 128.32, 128.27, 127.78, 127.68, 127.63, 127.53, 126.72, 95.11 (β-
isomer), 94.55 (α-isomer), 73.31, 70.98, 70.35, 69.06, 68.85, 68.63, 31.85, 29.77,
29.53, 29.40, 29.25, 26.19, 22.64, 14.09. MS (ESI): m/z = 475.33 (M + Na+).

Decyl 4,6-di-O-benzyl-2,3-dideoxy-D-erythro-hex-2-
enopyranoside (8b)
α:β = 5.6:1, 1H NMR (500 MHz, CDCl3): δ (ppm): 7.35–7.23 (m, 10H), 6.07

(d, J = 10.5 Hz, 1H), 5.78 (d, J = 10.5 Hz, 1H), 5.10 (br s, 1H, H-1β), 5.01(br
s, 1H, H-1α), 4.67 (d, J = 12.2 Hz, 1H), 4.61 (d, J = 11.5 Hz, 1H), 4.52 (d, J =
12.2 Hz, 1H), 4.45 (d, J = 11.5 Hz, 1H), 4.18 (d, J = 9.5 Hz, 1H), 3.97 (d, J =
8 Hz, 1H), 3.78–3.69 (m, 3H), 3.49–3.47 (m, 1H), 1.59–1.56 (m, 2H), 1.32–1.25
(m, 14H), 0.89–0.86 (m, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm): 138.18,
138.06, 130.45, 128.36, 128.32, 128.27, 127.91, 127.78, 127.68, 127.63, 127.53,
126.72, 95.11 (β-isomer), 94.55 (α-isomer), 73.31, 70.98, 70.35, 69.06, 68.86,
68.63, 31.86, 29.77, 29.71, 29.57, 29.55, 29.40, 29.30, 26.19, 22.65, 14.10. MS
(ESI): m/z = 489.58 (M + Na+).

2-Chloroethanyl 4,6-di-O-benzyl-2,3-dideoxy-α,β-D-erythro-hex-
2-enopyranoside (9b)
α:β = 10:1, 1H NMR (500 MHz, CDCl3): δ = 7.34–7.23 (m, 10H), 6.10 (d,

J = 10.2 Hz, 1H), 5.78 (d, J = 10.2 Hz, 1H), 5.12 (br s, 1H, H-1β), 5.06 (br s,
1H, H-1α), 4.65 (d, J = 12.2 Hz, 1H), 4.60 (d, J = 11.5 Hz, 1H), 4.55 (d, J =
12.2 Hz, 1H), 4.48 (d, J = 11.5 Hz, 1H), 4.17 (d, J = 9.3 Hz, 1H), 4.04–3.97
(m, 2H), 3.82–3.77 (m, 1H), 3.72–3.64 (m, 4H). 13C NMR (125 MHz, CDCl3):
138.08, 137.96, 131.06, 128.37, 128.33, 127.93, 127.81, 127.76, 127.62, 125.99,
95.03, 73.39, 71.06, 70.20, 69.35, 68.83, 68.62, 43.10. MS (ESI): m/z = 411.25
(M + Na+).
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Ferrier Rearrangement of 3,4,6-tri-O-benzyl-D-glucal 387

Dehydroepiandrosteronyl 4,6-di-O-benzyl-2,3-dideoxy-D-
erythro-hex-2-enopyranoside (12b)
mp = 146–149◦C; [α]D

20 = +140 (c 0.89, CH2Cl2); α only, 1H NMR
(500 MHz, CDCl3): δ (ppm) 7.35–7.23 (m, 10H), 6.09 (d, J = 10.2 Hz, 1H),
5.77 (m, 1H), 5.27 (m, 1H), 5.17 (s, 1H), 4.67 (d, J = 12.2 Hz, 1H), 4.62 (d,
J = 11.5 Hz, 1H), 4.52 (d, J = 12.2 Hz, 1H), 4.45 (d, J = 11.5 Hz, 1H), 4.17
(d, J = 9.3 Hz, 1H), 4.04–4.02 (m, 1H), 3.75–3.68 (m, 2H), 3.60–3.56 (m, 1H),
2.45–2.30 (m, 3H), 2.11–2.05 (m, 2H), 1.87–1.83 (m, 4H), 1.65–1.62 (m, 2H),
1.57 (s, 3H), 1.54–1.48 (m, 2H), 1.30–1.25 (m, 2H), 1.03–1.02 (m, 1H), 1.00 (s,
3H), 0.88 (s, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm): 221.08, 141.11, 138.20,
138.11, 130.39, 128.33, 128.27, 127.81, 127.75, 127.67, 127.50, 127.08, 120.81,
92.89, 73.34, 70.90, 70.44, 69.10, 68.99, 51.76, 50.22, 47.52, 40.29, 37.11, 36.77,
35.82, 31.48, 31.43, 30.79, 28.19, 21.18, 20.31, 19.32, 13.52. IR (film, cm−1):
3065, 3030, 2940, 2861, 1728, 1455,1374, 1095, 1015, 754, 705; MS (ESI): m/z =
619.33 (M + Na+); ESI-HRMS: Calcd for C39H48NaO5(M + Na+) 619.3394,
found 619.3415.

Cholesteryl 4,6-di-O-benzyl-2,3-dideoxy-D-
erythro-hex-2-enopyranoside (13b)
mp = 129–132◦C; [α]D

20 = +82 (c 0.66, CH2Cl2); α only, 1H NMR (500 MHz,
CDCl3): δ (ppm): 7.36–7.24 (m, 10H), 6.09 (d, J = 10.2 Hz, 1H), 5.77–5.74 (m,
1H), 5.26–5.25 (m, 1H), 5.17 (s, 1H), 4.67 (d, J = 12.2 Hz, 1H), 4.62 (d, J =
11.5 Hz, 1H), 4.52 (d, J = 12.2 Hz, 1H), 4.45 (d, J = 11.5 Hz, 1H), 4.18 (d,
J = 9.3 Hz, 1H), 4.04–4.02 (m, 1H), 3.76–3.70 (m, 2H), 3.59–3.57 (m, 1H),
2.42–2.31 (m, 2H), 2.02–1.83 (m, 5H), 1.57 (s, 3H), 1.51–1.29 (m, 6H), 1.26
(s, 3H), 1.15–1.00 (m, 6H), 0.98 (s, 3H), 0.87 (s, 3H), 0.92–0.86 (m, 9H), 0.67
(s, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm): 140.86, 138.20, 138.15, 130.39,
128.36, 128.32, 128.28, 127.82, 127.74, 127.65, 127.51, 127.15, 121.60, 92.84,
77.48, 73.34, 70.88, 70.43, 69.03, 68.95, 56.75, 56.14, 50.11, 42.30, 40.35, 39.77,
39.50, 37.17, 36.64, 36.17, 35.77, 31.92, 31.87, 28.22, 27.99, 24.27, 23.80, 22.80,
22.54, 21.03, 19.30, 18.70, 11.84. IR (film, cm−1): 3060, 3030, 2935, 2861, 1454,
1382, 1297, 1096, 1014, 752, 702; (ESI): m/z = 717.50 (M + Na+); ESI-HRMS:
Calcd for C47H66NaO4(M + Na+) 717.4853, found 717.4882.

1-(4,6′-di-O-benzyl-2′,3′-dideoxy-α,β-D-hex-2′-enopyranosyl-(1-
>6)-1,2; 3,4-di-O-isopropylidene-α-D-galactopyranoside
(14b)
α:β = 5.6:1, 1H NMR (500 MHz, CDCl3): δ(ppm): 7.33–7.23 (m, 10H), 6.07

(d, J = 10 Hz, 1H), 5.78–5.76 (m, 1H), 5.51 (d, J = 5 Hz, 1H), 5.29 (d, J = 1 Hz,
1H, H-1β), 5.08 (s, 1H, H-1α), 4.66–4.54 (m, 3H), 4.50 (d, J = 12.2 Hz, 1H), 4.44
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(d, J = 11.5 Hz, 1H), 4.32–4.29 (m, 2H), 4.24–4.20 (m, 1H), 4.04–3.99 (m, 1H),
3.97–3.93 (m, 1H), 3.88–3.84 (m, 1H), 3.82–3.70 (m, 3H), 1.51 (s, 3H), 1.43 (s,
3H), 1.34 (s, 3H), 1.31 (s, 3H). MS (ESI): m/z = 591.20 (M + Na+).

1-(4′,6′-di-O-benzyl-2′, 3′-dideoxy-α-D-erythro-hex-2′-
enopyranosyl)-2-naphthol (15b)
α only, 1H NMR (500 MHz, CDCl3): δ (ppm): 9.09 (s, 1H), 7.77–7.66 (m, 3H),

7.35–7.25 (m, 12H), 7.14–7.12 (m, 1H), 6.27 (s, 1H), 6.06 (d, J = 10.5 Hz, 1H),
5.91 (d, J = 10.5 Hz, 1H), 4.69 (dd, J = 5 Hz, 11.5 Hz, 2H), 4.54–4.49 (m, 3H),
3.91–3.89 (m, 1H), 3.85–3.80 (m, 2H). 13C NMR (125 MHz, CDCl3): δ (ppm):
154.21, 137.97, 137.82, 130.96, 129.85, 129.00, 128.82, 128.50, 128.44, 128.06,
127.97, 127.80, 127.71, 126.76, 125.81, 122.90, 120.80, 120.24, 113.57, 77.65,
75.12, 73.46, 71.65, 69.13, 68.20. IR (film, cm−1): 3308, 2962, 2925, 2854, 1262,
1094, 1026, 802; MS (ESI): m/z = 475.33 (M + Na+), ESI-HRMS: Calcd for
C30H28NaO4(M + Na+) 475.1880, found 475.1893.
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