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Abstract
An efficient method for the synthesis of the (S)-4-(tert-butyl)-2-(pyridin-2-yl)-4,5-dihydrooxazole ((S)-t-BuPyOx) ligand has been

developed. Inconsistent yields and tedious purification in known routes to (S)-t-BuPyOx suggested the need for an efficient,

dependable, and scalable synthetic route. Furthermore, a route suitable for the synthesis of PyOx derivatives is desirable. Herein,

we describe the development of a three-step route from inexpensive and commercially available picolinic acid. This short proce-

dure is amenable to multi-gram scale synthesis and provides the target ligand in 64% overall yield.
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Introduction
Pyridinooxazoline (PyOx) ligands represent a growing class of

bidentate dinitrogen ligands used in asymmetric catalysis

[1-23]. Recently, our laboratory reported the catalytic asym-

metric conjugate addition of arylboronic acids to cyclic,

β,β-disubstituted enones utilizing (S)-t-BuPyOx (1) as the chiral

ligand (Figure 1) [24]. This robust reaction is insensitive to

oxygen atmosphere, highly tolerant of water [25], and provides

cyclic ketones bearing β-benzylic quaternary stereocenters in

high yields and enantioselectivities. While the reaction itself

proved to be amenable to multi-gram scale, the ligand is not yet

commercially available and no reliable method for the large-

scale synthesis of (S)-t-BuPyOx was known (a number of

syntheses are known, including [26]). We sought to address this

shortcoming by developing an efficient route starting from a

cheap, commercially available precursor to pyridinooxazoline

ligands. Herein, we report an efficient, highly scalable syn-

thesis of (S)-t-BuPyOx.

Results and Discussion
Initially, (S)-t-BuPyOx (1) was synthesized by methanolysis of

2-cyanopyridine (2) to afford methoxyimidate 3, and subse-

quent acid-catalyzed cyclization to afford the (S)-t-BuPyOx
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Figure 1: Initial PyOx synthesis and revised plan.

ligand (Figure 1) [27]. We found the yields of this reaction

sequence to be highly variable, and the purification by silica gel

chromatography to be tedious. In the revised retrosynthesis,

picolinic acid (5) was identified as a comparably priced,

commonly available surrogate for cyanopyridine 2. Amidation

of (S)-tert-leucinol (6) and picolinic acid (5) would generate

amide 4, which upon cyclization would generate the ligand

framework.

Initial efforts focused on the amidation reaction between

(S)-tert-leucinol and picolinic acid (5) via acid chloride 7

(Table 1), which was generated in situ by treatment of acid 5

with a number of chlorinating agents. Oxalyl chloride (Table 1,

entries 1,2) provided reasonable yields of amide 4, however bis-

acylation of (S)-tert-leucinol was observed as a common side

product. Importantly, temperature control of this reaction

(Table 1, entry 2) allowed the isolation of 75% of desired

alcohol 4 in acceptable purity without the use of column chro-

matography. Use of diphenyl chlorophosphate (Table 1, entries

3,5,6) also resulted in noticeable quantities of over-acylation

products, as well as the generation of a small amount of phos-

phorylation of amide 4. These results encouraged us to explore

alternative activation strategies to generate the desired amide

bond. Adapting a procedure from Sigman, activation of acid 5

by treatment with isobutylchloroformate and N-methylmorpho-

line (anhydride 8) facilitated the desired transformation with the

highest overall yield, with amide 4 being isolated in 92% yield,

albeit requiring column chromatography [28].

Satisfied with our ability to generate amide 4 on gram-scale

with good yield, we turned our attention to the completion of

the synthesis. The cyclization of amide 4 to (S)-t-BuPyOx (1)

proved more challenging than anticipated. Activation of alcohol

4 as mesylate 9 (Table 2, entries 1,2) and tosylate 10 (Table 2,

entry 3) followed by in situ cyclization gave the desired prod-

uct in low yield and incomplete conversion. This could poten-

tially result from ligand hydrolysis under the given reaction

conditions [29]. As an alternative to insitu cyclization of an

activated intermediate, alcohol 4 was reacted with thionyl chlo-

ride (Table 2, entries 4–10) to yield chloride 11, which was

isolated as the hydrochloric acid salt and dried under vacuum.

This compound proved to be bench stable and was spectroscop-

ically unchanged after being left open to oxygen atmosphere

and adventitious moisture for more than one week. Further-

more, chloride 11 proved to be a superior cyclization substrate.

A series of bases were screened. Organic amine bases (Table 2,

entries 4,5) and sodium hydride (Table 2, entry 6) provided

inadequate conversion and low yields, whereas hydroxide and

alkoxide bases proved superior (Table 2, entries 7–10). Finally,

sodium methoxide was chosen to be optimal, as slower rates of

hydrolysis of chloride 11 were observed when compared to the

use of potassium hydroxide.

Attempts to purify ligand 1 via salt formation failed due to

instability of the generated products [30]. Purification by silica

gel chromatography also proved challenging as up to 10% of

crude ligand 1 was observed to decompose, even with the addi-
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Table 1: Amidation reactions of picolinic acid.

entry reagent solvent 1/2 temp (°C)a base time (h)b yield (%)c

1 (COCl)2 THF/THF 50 Et3N 1 55
2 (COCl)2 THF/THF 0 to rt Et3N 7 75d

3 DPCP THF/THF 0 to rt Et3N 6 72
4 SOCl2 toluene/THF rt none 5 trace
5 DPCP THF/THF 50 none 2 30
6 DPCP THF/THF 0 to rt Et3N 3 65d

7 iBuOCOCl, NMM CH2Cl2/CH2Cl2 0 to rt NMM 3 92

DPCP = diphenyl chlorophosphate, NMM = N-methylmorpholine. aTemperature for second step; bTime for second step; cIsolated yield; dPurification
by flash chromatography not required.

Table 2: Cyclization screen.

entry conditions R temp (°C) base time (h) yield (%)a

1 MsCl, Et3N, CH2Cl2 OMs 0 to 40 Et3N 12 N.D.b

2 MsCl, Et3N, ClCH2CH2Cl OMs 0 to 80 Et3N 12 N.D.b

3 TsCl, DMAP, Et3N, ClCH2CH2Cl OTs 0 to 80 Et3N 12 N.D.b

4 SOCl2 Clc rt DABCO 18 38
5 SOCl2 Clc 50 DBU 12 59
6 SOCl2 Clc 0 to 50 NaH, THF 18 60
7 SOCl2 Clc 50 5% KOH/EtOH 11 58
8 SOCl2 Clc 50 5% KOH/MeOH 11 62
9 SOCl2 Clc 50 25% NaOMe/MeOH 10 71
10 SOCl2 Clc 50 25% NaOMe/MeOH 3 72

MsCl = methanesulfonyl chloride, TsCl = 4-toluenesulfonyl chloride, DMAP = 4-dimethylaminopyridine, DABCO = 1,4-diazabicyclo[2.2.2]octane,
DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene. aIsolated yield; bIncomplete conversion; cIntermediate 11 isolated as HCl salt and dried under high
vacuum before use in cyclization reactions.

tion of triethylamine to the eluent. Finally, the use of neutral

silica gel (American International Chemical ZEOprep ECO

silica gel, 40–63 micron, $18/kg) allowed isolation of ligand 1

in high purity and with no observed decomposition.

Conclusion
In conclusion, we have developed a concise, highly efficient

and scalable synthesis of the chiral ligand (S)-t-BuPyOx (1)

(Figure 2). Efforts to further refine the synthesis by telescoping
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Figure 2: Scale-up synthesis of (S)-t-BuPyOx.

the procedure and removing chromatographic purifications are

currently underway.

Experimental

(S)-N-(1-hydroxy-3,3-dimethylbutan-2-yl)picolinamide (4):

To a 200 mL round bottom flask was added picolinic acid

(2.46 g, 20.0 mmol, 1.00 equiv), 50 mL CH2Cl2, and N-methyl-

morpholine (3.03 g, 30.0 mmol, 1.50 equiv). The reaction mix-

ture was cooled to 0 °C in an ice bath and isobutyl chlorofor-

mate (3.14 g, 23.0 mmol, 1.15 equiv) was added dropwise over

30 min. Following complete addition, the reaction mixture was

stirred for 30 min at 0 °C. In a separate flask, (S)-tert-leucinol

(2.58 g, 22.0 mmol, 1.10 equiv) was dissolved in CH2Cl2

(25 mL), and N-methylmorpholine (2.43 g, 24.0 mmol,

1.20 equiv) was added. This solution was transferred dropwise

over the course of 1 h to the cooled reaction mixture using a

syringe pump. The cooling bath was removed and the reaction

mixture was allowed to warm to room temperature and stirred

for 2 h. The mixture was quenched with an aqueous solution of

NH4Cl (10 g in 50 mL H2O) and the aqueous phase was

extracted with CH2Cl2 (20 mL). The combined organic phase

was dried over Na2SO4 (5 g), filtered, and concentrated under

reduced pressure. The residue was purified with flash silica gel

column chromatography (4:1 hexanes/acetone) to afford amide

alcohol 4 as a white solid (4.10 g, 92% yield). Rf 0.32 with

3:2 hexanes/acetone; mp 79.6–79.9 °C; 1H NMR (500 MHz,

CDCl3) δ 8.56 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 8.32 (br d,

J = 8.9 Hz, -NH), 8.19 (dt, J = 7.8, 1.1 Hz, 1H), 7.85 (td,

J = 7.7, 1.7 Hz, 1H), 7.43 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H),

4.02–3.96 (m, 2H), 3.69 (m, 1H), 2.72 (br t, J = 6.5 Hz, -OH),

1.05 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 165.6, 149.7,

148.2, 137.6, 126.4, 122.6, 63.7, 60.6, 33.9, 27.1; IR (neat film,

NaCl): 3375, 2962, 1669, 1591, 1570, 1528, 1465, 1434, 1366,

1289, 1244, 1088, 1053, 998 cm−1; HRMS (MultiMode

ESI/APCI) m/z: [M + H]+ calcd for C12H19N2O2, 223.1447;

found, 223.1448; [α]25
D −8.7 (c 1.17, CHCl3, >99% ee).

(S)-N-(1-chloro-3,3-dimethylbutan-2-yl)picolinamide hydro-

chloride (11): A 500 mL 3-neck round bottom flask was

charged with a stir bar, amide alcohol 4 (8.89 g, 40.0 mmol,

1.00 equiv) and toluene (140 mL). The resulting clear solution

was warmed to 60 °C. In a separate flask, SOCl2 (9.25 g,

80.0 mmol, 2.00 equiv) was diluted with toluene (20 mL). This

solution was transferred slowly, dropwise, over 20 min to the

vigorously stirring reaction mixture at 60 °C. The reaction mix-

ture was stirred at 60 °C for 4 h, at which time the slurry was

cooled to ambient temperature, concentrated on a rotary evapo-

rator under reduced pressure (40 °C, 40 mmHg), and dried

under vacuum (0.15 mmHg) to give a white powder of amide

chloride hydrochloric salt 11 (10.80 g, 98% yield). This ma-

terial was used in the following step without purification.
1H NMR (500 MHz, DMSO-d6) δ 8.70 (ddd, J = 4.8, 2.0,

1.0 Hz, 1H), 8.66 (br d, J = 9.9 Hz, -NH), 8.10 (dt, J = 8.0,

1.0 Hz, 1H), 8.06 (td, J = 7.5, 1.4 Hz, 1H), 7.66 (ddd, J = 7.4,

4.8, 1.4 Hz, 1H), 4.08 (td, J = 9.9, 3.7 Hz, 1H), 3.97–3.90 (m,

2H), 0.93 (s, 9H); 13C NMR (125 MHz, DMSO-d6) δ 163.6,

149.0, 147.8, 138.1, 126.5, 122.0, 59.0, 44.9, 35.0, 26.3; IR

(neat film, NaCl): 3368, 2963, 1680, 1520, 1465, 1434, 1369,

1285, 1239, 1087, 998 cm−1; HRMS (MultiMode ESI/APCI)
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m/z: [M + H]+ calcd for C12H18ClN2O, 241.1108; found,

241.1092; [α]25
D +39.4 (c 0.96, MeOH, >99% ee).

(S)-4-(tert-butyl)-2-(pyridin-2-yl)-4,5-dihydrooxazole (1): A

500 mL 3-neck round bottom flask was charged with a stir bar,

amide chloride hydrochloric acid salt 11 (10.26 g, 37.0 mmol,

1.00 equiv) and MeOH (100 mL). To the clear solution

was added powdered NaOMe (9.99 g, 185.0 mmol, 5.00 equiv),

and the resulting mixture was heated to 55 °C in an oil

bath. The slurry was stirred for 3 h until the free amide

chloride was fully consumed, according to TLC analysis

(4:1 hexanes/acetone). After removing the oil bath, toluene

(100 mL) was added and the mixture was concentrated on a

rotary evaporator (40 °C, 60 mmHg) to remove MeOH. The

residual mixture was extracted with H2O (100 mL) and the

aqueous phase was back extracted with toluene (40 mL × 2).

The combined organic extracts were dried over Na2SO4 (10 g),

filtered, and concentrated under reduced pressure. The residue

was purified by flash column chromatography using American

International Chemical ZEOprep® 60 ECO 40-63 micron silica

gel (4:1 hexanes/acetone) to yield (S)-t-BuPyOx (1) as a white

solid (5.44 g, 72% yield). Rf 0.44 with 3:2 hexanes/acetone;

mp 70.2–71.0 °C; 1H NMR (500 MHz, CDCl3) δ 8.71 (ddd,

J = 4.8, 1.8, 0.9 Hz, 1H), 8.08 (dt, J = 7.9, 1.1 Hz, 1H), 7.77 (dt,

J = 7.7, 1.7 Hz, 1H), 7.37 (ddd, J = 7.0, 4.5, 1.0 Hz, 1H), 4.45

(dd, J = 10.2, 8.7 Hz, 1H), 4.31 (t, J = 8.5 Hz, 1H), 4.12 (dd,

J = 10.2, 8.5 Hz, 1H), 0.98 (s, 9H); 13C NMR (125 MHz,

CDCl3) δ 162.4, 149.6, 147.0, 136.5, 125.4, 124.0, 76.5, 69.3,

34.0, 26.0; IR (neat film, NaCl): 2981, 2960, 2863, 1641, 1587,

1466, 1442, 1358, 1273, 1097, 1038, 968 cm−1; HRMS (Multi-

Mode ESI/APCI) m/z: [M + H]+ calcd for C12H17ON2,

205.1335; found, 205.1327; [α]25
D −90.5 (c 1.15, CHCl3,

>99% ee).

Supporting Information
Materials and methods, auxiliary experimental details, and

relevant NMR spectra are provided.

Supporting Information File 1
Experimental details.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-9-187-S1.pdf]
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