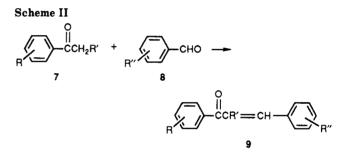

Chalcones: A New Class of Antimitotic Agents

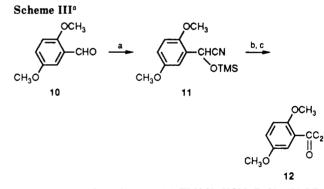
Michael L. Edwards,* David M. Stemerick, and Prasad S. Sunkara

Merrell Dow Research Institute, P.O. Box 156300, Cincinnati, Ohio 45215. Received November 3, 1989

A series of chalcones was evaluated as antimitotic agents. One of these, (E)-1-(2,5-dimethoxyphenyl)-3-[4-(dimethylamino)phenyl]-2-methyl-2-propen-1-one) (73), was found to be an effective antimitotic agent at a concentration of 4 nM in an in vitro HeLa cell test system. When evaluated in experimental tumor models in vivo, this compound exhibited antitumor activity against L1210 leukemia and B₁₆ melanoma.

Vincristine and vinblastine are anticancer agents which inhibit microtubule assembly by binding in an irreversible manner to tubulin.¹ With the exception of colchicine (1),



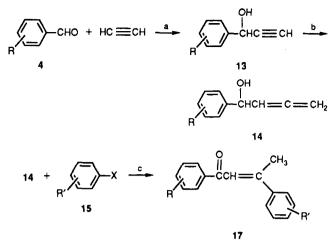

reversible inhibitors of microtubule assembly^{2a-j} are generally not clinically useful. Colchicine's reversible binding site on tubulin is different from that of the vinca alkaloids.³

Recent reports have delineated the SAR of colchicinetubulin binding^{4a-e} and the antimitotic activity of analogues of colchicine,^{5a-e} podophyllotoxin,^{6a-c} and steganocin.^{7a,b} These studies have shown that the important structural features of the colchicine molecule for binding to tubulin are the methoxy groups of the A ring and the carbonyl of the C ring. The combretastatins^{9a} and compound 2,^{9b} with

- Dustin, P. Microtubules, 2nd ed.; Springer-Verlag: New York, 1984; Chapter 5 (Microtubule Poisons).
- (2) (a) Hoebeke, J.; Vannigen, G.; DeBrabander, M. Biochem. Biophys. Res. Commun. 1976, 69, 319. (b) Arai, T. FEBS Lett. 1983, 155, 273. (c) Wheeler, G. P.; Bowdon, B. J.; Temple, C., Jr.; Adamson, D. J.; Webster, J. Cancer Res. 1983, 43, 3567. (d) Lesieur, I.; Delacourte, A.; Cazin, M. Acta Ther. 1984, 10, 145. (e) Rossi, M.; Link, J.; Lee, J. C. Arch. Biochem. Biophys. 1984, 231, 470. (f) Geyens, G. M. A.; Nuydens, R. M.; Willebrords, R. E.; Vandeveire, F. M. L.; Goosens, F.; Dragonetti, C. H.; Marcel, M. M. K.; DeBrander, M. J. Cancer Res. 1985, 45, 433. (g) Lacey, E.; Watson, T. R. Biochem. Pharmacol. 1985, 34, 1073. (h) Barta, J. K.; Jurd, L.; Hamel, E. Biochem. Pharmacol. 1986, 35, 4013. (i) Barta, J. K.; Powers, L. J.; Danaltess, F.; Hamel, E. Cancer Res. 1986, 46, 1889. (j) Pettit, G. R.; Singh, S. B.; Niven, M. L.; Hamel, E.; Schmidt, J. M. J. Nat. Prod. 1987, 50, 119.
- (3) Dustin, P. Microtubules, 2nd ed.; Springer-Verlag: New York, 1984.
- (4) (a) Fitzgerald, T. J. Biochem. Pharmacol. 1976, 25, 1383. (b) Andrew, J. M.; Timasheff, S. N. Biochemistry 1982, 21, 534.
 (c) Andrew, J. M.; Gorbunoff, M. J.; Lee, J. C.; Timasheff, S. N. Biochemistry 1984, 24, 1742. (d) Bane, S.; Puett, D.; MacDonald, T. L.; Williams, R. C. J. Biol. Chem. 1984, 259, 7391. (e) Ross, M.; Link, J.; Lee, J. C. Arch. Biochem. Biophys. 1984, 231, 470.
- (5) (a) Quinn, F.; Beisler, J. J. Med. Chem. 1981, 24, 251. (b) Iorio, M.; Williams, T.; Sik, R.; Chignell, C. J. Med. Chem. 1981, 24, 257. (c) Margulis, T. Biochem. Biophys. Res. Commun. 1977, 76 (4), 1293.
- (6) (a) Cortese, F.; Bhattacharyya, B.; Wolff, J. J. Biol. Chem. 1977, 252 (4), 1134. (b) Loike, J. D.; Brewer, C. F.; Sternlicht, H.; Gensler, W. J.; Horwitz, S. F. Cancer Res. 1978, 38, 2688. (c) Kelleher, J. Mol. Pharmacol. 1977, 13, 232.
- (7) (a) Wang, R.; Rebhun, L.; Kuechan, S. Cancer Res. 1977, 37, 3071. (b) Zauala, F.; Guenanr, D.; Robin, J.; Brown, E. J. Med. Chem. 1980, 23, 546.
- (8) Fitzgerald, T. Biochem. Pharmacol. 1976, 25, 1383.

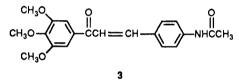
Scheme I R' 5 $CHO + GCH_3$ G R' CCH_3 G R' CCH = CH - CR RR' G

 aReagents and conditions: (a) TMSCl, KCN, ZnCl_2; (b) LDA, $C_2H_5I;$ (c) N(Bu)_4F.


no B ring, exhibit tubulin binding of the same order as that of colchicine.

Sulfhydryl reagents also interfere with microtubule assembly^{10a,b} and this effect can be inhibited by the presence of colchicine or podophyllotoxin,^{11a,b} suggesting the presence of a sulfhydryl residue at the colchicine-binding site on tubulin. These results prompted us to examine com-

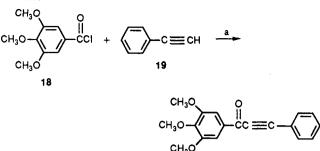
- (9) (a) Lin, C. M.; Singh, S. B.; Chu, P. S.; Dempcy, R. O.; Schmidt, J. M.; Pettit, E. R.; Hamel, E. Molec. Pharmacol. 1989, 34, 200. (b) Zwieg, M.; Chignell, C. Biochem. Pharmacol. 1973, 22, 2141.
- (10) (a) Aikeda, Y.; Steiner, M. Biochemistry 1978, 17 (17), 3454.
 (b) Lee, V.; Yaple, R.; Baldridge, R.; Kirsh, M.; Himes, R. Biochim. Biophys. Acta 1981, 671, 71.
- (11) (a) Ludveña, R.; Roach, M. Biochemistry 1981, 20, 4444. (b) Roach, M.; Bane, S.; Ludveña, R. J. Biol. Chem. 1985, 260 (5), 3015.


Scheme I

Scheme IV^a

 a Reagents and Conditions: (a) EtMgBr; (b) $\dot{C}H_2O,$ LDA, CuBr; (c) $Pd(OAc)_2.$

pounds incorporating in their structures both a trimethoxyphenyl group and a group capable of interaction with sulfhydryl residues as potential irreversible tubulin polymerization inhibitors. Appropriately substituted chalcones, as typified by compound 3, were found to be potent antimitotic agents. In this paper we report the synthesis of this new class of antimitotic agents and their structure-activity relationships.



Chemistry

The majority of the title compounds were synthesized by a base-catalyzed condensation of appropriately substituted aldehyde 5 and ketone 4^{12} (Scheme I, procedure A; see compound 61 in the Experimental Section). The α -alkyl chalcones of general structure 9 were prepared in a similar manner with piperidinium acetate as catalyst and molecular sieves to remove water from the reaction solvent (Scheme II, procedure B; see compound 73 in the Experimental Section). Ketones (7) not commercially available were prepared as described by Hünig¹³ from aldehyde 10 as exemplified by 2,5-dimethoxypropiophenone (12) (Scheme III).

Reaction of an α -unsubstituted chalcone with Br₂ or SO₂Cl₂ followed by base-catalyzed elimination afforded the corresponding α -halogenated derivatives¹⁴ 65–70 (procedures C and D). Palladium-assisted reaction¹⁵ of an allene (14) and a halogen-substituted benzene (15) produced β -alkyl chalcones 17 (Scheme IV, procedure E). Coupling of phenylacetylene (19) and 3,4,5-trimethoxybenzoyl chloride (18) produced acetylenic ketone 20¹⁶ (Scheme V). Selective reduction of either the carbonyl group (NaBH₄) or double bond (Pd/C, H₂) of 36 was readily accomplished to prepare compounds 80 and 81, respectively. Displacement of the aromatic fluoride of 24 by morpholine or nJournal of Medicinal Chemistry, 1990, Vol. 33, No. 7 1949

^aReagents and conditions: (a) PdCl₂P(Ph₃)₂, CuI.

Table I. Physical Properties and Equivalent Dose of SelectedChalcones in the 6-h HeLa Cell Test^a

20

compd ^b	R	6-h test ED, $\mu g/mL$	mp, °C
3	3,4,5-(OCH ₃) ₃	3.1	190-191
21	$3-C_2H_5$	>100	119-120
22	4-0ČH ₃	3.1	185.5-186.5
23	3-CF ₃	25	179-180
24	4-t-Bu	0.25	183-184
25	4-CN	25	214
26	$4-C(O)NH_2$	3.1	298-299
27	3-C1	>100	
28	$2,5-(OCH_3)_2$	6.25	154-155°
29	$2,4,6-(OCH_3)_3$	3.1	207 - 208
30	$2,3,4-(OCH_3)_3$	3.1	113-114
colchicine		0.05	

^aCells were exposed to test compound continuously for 6 h. The mitotic index no. of cells in mitosis/no. of cells counted was determined after a total of approximately 300 cells from three fields had been counted. The concentration of test compound giving the same mitotic index as colchicine $(0.05 \ \mu g/mL)$ is given as the equivalent dose (ED). ^bAll compounds were prepared by procedure A. ^cAnal. C: calcd, 70.14; found, 69.54.

butylamine provided products 48 and 49^{17} (procedure F).

NMR analysis of the chalcones obtained by procedures A and B indicated formation of only the expected E isomers. In the case of compound 73, an X-ray study¹⁸ confirmed the assignment of E stereochemistry.

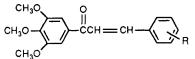
Results and Discussion

To identify compounds with antimitotic activity, an in vitro assay system (HeLa cells) was used. In this asynchronous line, the cell cycle is 24 h and mitosis requires 1 h, so about 4% of the cells are in mitosis at any given time. Colchicine, a known antimitotic agent, was used as a standard. Colchicine does not prevent cells from entering mitosis but prevents completion of cell division. It arrested mitosis at a concentration of 0.05 μ g/mL, i.e. it increased the number of mitotic cells in the culture $\sim 4\%$ every hour so that on completion of a 6-h incubation 20-24% of the cells in culture were arrested in mitosis (6 h \times 4%/h). The activity of test compounds is reported as the equivalent dose (ED) which is the concentration of test compound found to be equivalent to 0.05 $\mu g/mL$ colchicine. To evaluate irreversible activity, test compounds or vinblastine $(0.06 \ \mu g/mL)$ were incubated with HeLa cells for 1 h, the cells were washed free of drug, and after 24 h the per-

⁽¹²⁾ Dhar, D. N. The Chemistry of Chalcones and Related Compounds; John Wiley and Sons: New York, 1981.

⁽¹³⁾ Deuchert, S. K.; Hertenstein, U.; Hünig, S. Synthesis 1973, 777.

⁽¹⁴⁾ Bickel, C. J. Am. Chem. Soc. 1950, 72, 349.


⁽¹⁵⁾ Shimizo, I.; Sugiura, T.; Tsuji, J. J. Org. Chem. 1985, 50, 537.

⁽¹⁶⁾ Tohda, Y.; Bonogashirn, K.; Hagihara, N. Synthesis 1977, 777.

⁽¹⁷⁾ McCarty, F. J.; Bader, A. J. Org. Chem. 1966, 31, 2319-2321.

⁽¹⁸⁾ X-ray determined by Dr. J. C. Huffman at Indiana University, Department of Chemistry.

 Table II. Physical Properties and Equivalent Dose of Chalcones,^a 6-h Test

compd	R	ED, µg/mL	prep. ^b	mp, °C
3	4-NHCOCH ₃	3.1	<u> </u>	190-191
31	3-NHCOCH ₃	>100	с	164-165
32	4- <i>t</i> -Bu	2.5	•	100-101
33	H	0.15		87-88
34	4-SCH ₃	0.3		88-89
35	4-SOCH ₃	>100	d	131 - 132
36	$4-N(CH_3)_2$	0.015		148 - 149
37	$3 - N(CH_3)_2$	>100	е	198-200
38	$4-NH_2$	0.15		
39	$3 - NO_2$	>100		147 - 148
40	4-F	>25	f	115 - 116
41	4-CN	3.1	g	198 - 199.5
42	4- <i>O</i> - <i>i</i> Pr	>25		112 - 113
43	4-Br	0.015		88-91
44	$4-CF_3$	6.25		136.5 - 138
45	$4-NO_2$	25		190-191
46	$6-CF_3$	100		237 - 238
47	$3-NH_2$	0.15	h	198 - 203
48	4-NO	6.25	i	187-188
49	4-NHC₄H ₉	6.25	i	125 - 127
50	$4 - OC_4 H_9$	>25		117 - 118
51	4-NHCO ₂ CH ₃	3.1		178 - 179
52	$4 - OC_2H_5$	0.15		90-91
53	$4 - N(\tilde{C}_2 \tilde{H}_5)_2$	0.0075		140 - 141
colchicine		0.05		
vinblastine		0.0015		

^aSee footnote a, Table I. ^bPrepared by procedure A, unless stated otherwise. ^cAnal. N: calcd, 3.94; found, 4.38. ^dPrepared by oxidation of 34 with *m*-chloroperbenzoic acid. HCl salt·H₂O: Anal. N: calcd, 3.58; found, 4.69. ^fAnal. C: calcd, 68.34; found, 67.69. ^gAnal. C: calcd, 70.58; found, 70.03. ^hHCl salt; Anal. C: calcd, 61.80; found, 61.05. ⁱPrepared from compound 40 and the appropriate amine (procedure F).

centage of cells in mitosis was determined. Again, the data are reported as ED—that concentration of test compound equivalent to $0.06 \ \mu g/mL$ vinblastine.

A systematic program of structural variation of lead compound 3 was undertaken. Substitution of the trimethoxyphenyl and acetamidophenyl rings was varied and substituents were added on the double bond at positions α and β to the carbonyl. The data in Table I examine the effect of substitution on the trimethoxyphenyl ring. In general, these variations did not greatly enhance activity relative to parent compound 3. Interestingly, meta substitution (21, 23, 27) greatly diminished activity. The three trimethoxy analogues (3, 29, 30) were essentially equipotent. Structural variations involving the acetamido-substituted ring resulted in considerable improvement in ED values when the substituent was 4-dimethylamino (36) or diethylamino (53) (Table II). Again, meta substituents dramatically diminished the activity (compare compound 3, 31; 36, 37).

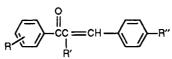
The data in Table III are for analogues with methoxy positional variations and substitution (alkyl, halogen) on the double bond. Several compounds were active in the 6-h assay at the nanogram level and selected compounds were found to bind in an irreversible manner, as demonstrated by activity in the 1-h test.

Data for a group of miscellaneous chalcone analogues are presented in Table IV. From these data it can be seen that substitution of the dimethylaminobenzene ring by heterocyclic rings is detrimental to biological activity; reduction of the carbonyl group (80) or the double bond (81) diminished activity. It should be noted that β -alkyl groups (87, 88, 90) do not enhance activity. The butadiene analogue (83) of 3 and the analogue of 3 with the substituents on the two rings reversed (84) each demonstrated modest activity.

The three most potent analogues in the 1-h assay were evaluated in experimental animal tumor models and the results are found in Table V. These compounds were of comparable activity to that of vinblastine at the optimum doses tested. Higher doses of these compounds relative to vinblastine were needed to obtain this activity. Higher doses of vinblastine were toxic. In summary, we report a new class of antimitotic agents, some of which are as active in vivo in experimental tumor test systems in mice as vinblastine. In addition, data presented elsewhere¹⁹ show one of these compounds (73) to be inhibitory in vitro against both a murine leukemia cell line resistant to adriamycin and vinblastine and a Chinese hamster ovary tumor resistant to vinblastine. When evaluated in a bovine brain tubulin assay, the respective IC₅₀ values were colchicine, 6 μ M; vinblastine, 0.6 μ M; nocardazole, 3 μ M; and compound 73, 1 µM.^{20a} In PtK2 cell culture, 73 was reported to show superior affinity for tubulin compared to that of the vinca alkaloids.^{20b}

Experimental Section

Melting points were determined with a Thomas-Hoover melting point apparatus and are uncorrected. Elemental analysis was performed by the Merrell Dow Research Institute Analytical Department and, unless otherwise indicated, agree with theoretical values within $\pm 0.4\%$. NMR spectra were obtained on a Varian VXR-300 or a Varian EM-360L spectrometer. Chemical shifts are reported downfield from TMS in spectra obtained in CDCl₃. IR spectra were obtained on a Perkin-Elmer 1800 FT IR spectrometer. MS were obtained on a Finnigan MAT 4600 spectrometer. All spectra were consistent with structure. Thin-layer chromatography (TLC) was done on Merck silica gel 60 F254 analytical plates, visualized with I₂ and/or UV.


3-Phenyl-1-(3,4,5-trimethoxyphenyl)-2-propyn-1-one (20). A mixture of 3,4,5-trimethoxybenzoyl chloride (4.6 g, 0.02 mol), phenylacetylene (2.04 g, 0.02 mol), cuprous iodide (20 mg), bis-(triphenylphosphine)palladium chloride (20 mg), and triethylamine (40 mL) was stirred at ambient temperature under a N₂ atmosphere for 18 h. The reaction mixture was taken up in ethyl acetate (250 mL) and the solution was extracted with 1 N HCl, water, and brine. The organic layer was separated, dried (MgSO₄), and evaporated. The residue was chromatographed (35% Et-OAc/hexane) and the purified material was recrystallized (hexane/EtOAc) to give 2.2 g (37%) of a yellow solid: mp 94-95 °C; NMR (CDCl₃) δ 7.70-7.25 (m, 7 H), 3.85 (s, 9 H); IR (KBr) 2940, 2215, 1660, 1585 cm⁻¹; MS (CI/CH₄) m/e (M + H) 297. Anal. C₁₈H₁₆O₄ C, H.

3-[4-(4-Morpholinyl)phenyl]-1-(3,4,5-trimethoxyphenyl)-2-propen-1-one (48) (Procedure F). A mixture of compound 40 (3.16 g, 10 mmol), morpholine (0.85 g, 11 mmol), and potassium carbonate (1.52 g, 11 mmol) in DMF (12 mL) was heated at reflux for 18 h. The mixture was cooled and diluted with EtOAc (400 mL), and the solution was extracted with aqueous NaHCO₃ and brine. The organic layer was separated, dried, and evaporated. Chromatography (50% EtOAc/hexane) followed by recrystallization (EtOAc/hexane) gave 0.7 g (17%) of a yellow solid: mp 187-188 °C; NMR (CDCl₃) δ 7.75 (d, J = 11 Hz, 1 H), 7.60 (d, J = 7 Hz, 2 H), 7.35 (d, J = 11 Hz, 1 H), 7.30 (s, 2 H), 6.90 (d, J = 7 Hz, 2 H), 3.95 (s, 9 H), 3.85 (m, 4 H), 3.25 (m, 4

⁽¹⁹⁾ Sunkara, P. S.; Lachmann, P. J.; Stemerick, D. M.; Edwards, M. L. J. Cell Biol. 1987, 105, 202a.

^{20) (}a) Sunkara, P. S.; Lachmann, P. J.; Stemerick, D. M.; Edwards, M. L.; Zwolshen, J. H. Cancer Res., submitted for publication. (b) Peyrot, V.; Leynadier, D.; Sarrazin, M.; Braind, C.; Fernandez, A.; Nieto, J. M. Bull. Cancer 1989, 76, 552.

Table III. Physical Properties and Equivalent Dose of Chalcones

				ED, μ	ıg∕mL		
compd	R	R'	R″	6 hª	1 h ^b	prep.	mp, °C
36	3,4,5-(OCH ₃) ₃	Н	N(CH ₃) ₂	0.015	12.5	Α	148-149
54	2-OCH ₃	н	$N(CH_3)_2$	0.15	6.25	Α	165-169
55	2,4,6-(OCH ₃) ₃	Н	$N(CH_3)_2$	12.5		Α	149-150
56	$2,5-(OCH_3)_2$	Н	$N(CH_3)_2$	0.0075	1.5	Α	108-109
57	$3,4-(OCH_3)_2$	Н	$N(CH_3)_2$	3.1		Α	83-84
58	$2,4-(OCH_3)_2$	Н	$N(CH_3)_2$	6.25		Α	124-125
59	$2,3,4-(OCH_3)_3$	Н	$N(CH_3)_2$	0.015		Α	86-88
60	3,5-(OCH ₃) ₂ , 4-OH	Н	$N(CH_3)_2$	3.1		Α	202-203
61	$2,3,4-(OCH_3)_3$	Н	$N(C_2H_5)_2$	0.15		Α	95-96
62	$2,3,4-(OCH_3)_3$	CH_3	$N(C_{2}H_{5})_{2}$	25		A B B B	78-79
63	$3,4,5-(OCH_3)_3$	CH ₃	$N(C_2H_5)_2$	0.0075		В	220-225
64	$2,5-(OCH_3)_2$	CH_3	$N(C_2H_5)_2$	0.15		В	60-61
65	$2,5-(OCH_3)_2$	Br	$N(CH_3)_2$	0.0075		C^{c}	74-75
66	$1,3,4-(OCH_3)_3$	Br	$N(CH_3)_2$	0.15	6.25	C C	139-140
67	3,4,5-(OCH ₃) ₃	Br	$N(CH_3)_2$	0.0038	1.5	С	111-113
68	$2,5-(OCH_3)_2$	Cl	$N(CH_3)_2$	0.015		\mathbf{D}^{d}	205-210
69	$2,3,4-(OCH_3)_3$	Cl	$N(CH_3)_2$	0.015		D	125-126
70	$3,4,5-(OCH_3)_3$	Cl	$N(CH_3)_2$	3.1		D	86-87
71	$2,3,4-(OCH_3)_3$	н	2-F			Α	71-73
72	$2,3,4-(OCH_3)_3$	C_2H_5	$N(CH_3)_2$	0.15		В	260
73	$2,5-(OCH_3)_2$	CH ₃	$N(CH_3)_2$	0.0038	0.06	В	85-86
74	$2,3,4-(OCH_3)_3$	CH_3	Н		6.25	A B B B B	oil
75	$2,3,4-(OCH_3)_3$	CH_3	$N(CH_3)_2$	1.5		В	97-98
76	$3,4,5-(OCH_3)_3$	CH_3	$N(CH_3)_2$	0.019	0.3	В	113-114
colchicine		Ū	0.2	0.05	inactive		
vinblastine				0.0015	0.06		

^aSix-hour test—see footnote a, Table I. ^bHeLa cells were exposed to test compound for 1 h. The cells were washed in fresh medium and incubated in compound-free medium for 18 h. The mitotic index was determined as previously described. That concentration of test compound which gave the same mitotic index as vinblastine $(0.06 \ \mu g/mL)$ is listed as the equivalent dose (ED). ^cPrepared by addition of Br₂ to unsubstituted precursor (procedure C). ^dPrepared by reaction of unsubstituted precursor with sulfuryl chloride (procedure D).

H); IR (KBr) 3440, 1650, 1570 cm⁻¹; MS (EI) m/e (M⁺) 383. Anal. C₂₂H₂₅NO₅ C, H, N.

(E)-3-[4-(Diethylamino)phenyl]-1-(2,3,4-trimethoxyphenyl)-2-propen-1-one (61) (Procedure A). A mixture of ethanol (50 mL), 2,3,4-trimethoxyacetophenone (3.1 g, 0.015 mol), 4-(diethylamino)benzaldehyde (2.5 g, 0.015 mol), and 50% aqueous NaOH (1 mL) was stirred 18 h at ambient temperature. The mixture was evaporated and the residue was chromatographed on a flash silica gel column (toluene/ethyl acetate, 10/1). The purified material from the column was recrystallized from ethanol to give the product (1.7 g, 31%) as bright yellow needles: mp 95-96 °C; NMR (CDCl₃) δ 1.2 (t, J = 9 Hz, 6 H), 3.4 (q, J = 9 Hz, 4 H), 3.8 (s, 9 H), 6.5-6.75 (m, 3 H), 7.25-7.5 (m, 5 H); IR (KBr) 1650, 1595, 1575, 1550, 1520, 1460, 1410, 1360, 1290, 1250, 1185, 1160, 1100, 1075, 1020, 810 cm⁻¹; MS (EI) m/e (M⁺) 369. Anal. C₂₅H₂₇NO₄ C, H, N.

(Z)-2-Bromo-3-[4-(dimethylamino)phenyl]-1-(3,4,5-trimethoxyphenyl)-2-propen-1-one (67) (Procedure C). A solution of compound 36 (20.3 g, 0.054 mol) in CCl₄ (650 mL) was stirred at ambient temperature while a solution of bromine (8.6 g, 0.054 mol) in CCl₄ (100 mL) was added dropwise over 45 min. The solvent was removed at reduced pressure and the residue was chromatographed (35% EtOAc/hexane). The purified material was recrystallized from ethyl acetate/hexane to give 4.2 g (23%) of yellow powder: mp 111-113 °C; NMR (CDCl₃) δ 7.85 (d, J =9 Hz, 2 H), 7.20 (s, 1 H), 6.95 (s, 2 H), 7.70 (d, J = 9 Hz, 2 H), 3.90 (s, 3 H), 3.80 (s, 6 H), 3.05 (s, 6 H); IR (KBr) 3440, 1700, 1630, 1570 cm⁻¹. Anal. C₂₀H₂₂BrNO₄ C, H, N, Br.

(Z)-2-Chloro-3-[4-(dimethylamino)phenyl]-1-(2,3,4-trimethoxyphenyl)-2-propen-1-one (69) (Procedure D). A solution of compound 59 (1.4 g, 7.2 mmol) in CCl₄ (20 mL)/CH₂Cl₂ (10 mL) was chilled to 0 °C. A solution of sulfuryl chloride (1.06 g, 7.8 mmol) in CH₂Cl₂ (4 mL) was added dropwise. The mixture was stirred for 1 h at 0 °C and poured into saturated NaHCO₃, and the organic layer was separated, dried (MgSO₄), and evaporated. Chromatography (25% EtOAc/hexane) followed by two recrystallizations (Et₂O/hexane) gave 0.630 g (23%) of yellow solid: mp 125–126 °C; NMR (CDCl₃) δ 7.80 (d, J = 9 Hz, 2 H), 7.35 (s, 1 H), 7.05 (d, J = 8 Hz, 1 H), 7.20 (d, J = 8 Hz, 1 H), 7.15 (d, J = 9 Hz, 2 H), 3.85 (s, 9 H), 3.00 (s, 6 H); IR (KBr) 3440, 3089, 1641, 1616, 1594, 1301 cm⁻¹; MS (CI/CH₄) m/e (M⁺H) 376. Anal. C₂₀H₂₂ClNO₄ C, H, N, Cl.

(E)-1-(2,5-Dimethoxyphenyl)-3-[4-(dimethylamino)phenyl]-2-methyl-2-propen-1-one (73) (Procedure B). A solution of 2,5-dimethoxypropiophenone (14.8 g, 0.076 mol), 4-(dimethylamino)benzaldehyde (11.6 g, 0.078 mol), piperidine (15 mL), and acetic acid (7.5 mL) in ethanol (80 mL) was heated at reflux. The ethanol was dried by passing the distillate through 3-Å sieves by use of a Soxhlet apparatus. After 18 h the solvent was removed and the residue was chromatographed on a flash silica gel column using 25% EtOAc in hexane as eluant. The product was recrystallized from ether to give 17.2 g (70%) of a bright yellow solid: mp 85-86 °C; NMR (CDCl₃) δ 7.30 (d, J =9 Hz, 2 H), 7.10 (br s, 1 H), 6.85-6.50 (m, 5 H), 3.75 (s, 3 H), 3.70 (s, 3 H), 2.95 (s, 6 H), 2.25 (br s, 3 H); IR (KBr) 3420, 2900, 1630, 1590 cm⁻¹; MS (CI/CH₄) m/e (M⁺H) 326. Anal. C₂₀H₂₃NO₃ C, H, N.

(E)-[2-[4-(Dimethylamino)phenyl]ethenyl](3,4,5-trimethoxyphenyl)methanol (80). Sodium borohydride (0.5 g, 13 mmol) was added to a solution of compound 36 (2 g, 5.2 mmol) in ethanol (100 mL) and the mixture was stirred at ambient temperature for 18 h. The solvent was removed and the residue was taken up in EtOAc (200 mL). The solution was extracted with aqueous Na₂CO₃; the organic layer was separated, dried, and evaporated. The residue was chromatographed (50% EtOAc/hexane) and the purified material was recrystallized from ether to yield 0.07 g (3.5%) of 80: mp 69-70 °C; NMR (CDCl₃) δ 7.30-7.0 (m, 3 H), 6.75-6.40 (m, 5 H), 3.75 (s, 9 H), 3.50 (m, 1 H), 2.85 (s, 6 H); IR (KBr) 3440, 2940, 1610, 1590, 1175 cm⁻¹. Anal. C₂₀H₂₅NO₄ H, N; C: calcd, 69.95; found, 69.51.

3-[4-(Dimethylamino)phenyl]-1-(3,4,5-trimethoxyphenyl)-1-propanone (81). A solution of compound 36 (2.4 g, 7 mmol) in acetic acid (600 mL) was hydrogenated at atmospheric pressure in the presence of 10% Pd/C (0.6 g) until the theoretical

Table IV.	Physical Pro	perties and E	quivalent	Dose ((ED) of	Analogues	with HeLa	Cells.	6-h Test
-----------	--------------	---------------	-----------	--------	---------	-----------	-----------	--------	----------

compd	structure	ED,ª µg/mL	prep.	mp, °C
20		>6.25	\mathbf{E}^{b}	94–95
77		25	В	128-129
78	сн _з о сн _з о сн _з о Сн _з о	3.1	A	6 9 –71
79	сн _з о-Ссн=сн-С	5	A	72-73
80	сн _з о осн _з сн _з о сн _з о осн _з	3.1	\mathbf{E}^{b}	69–70°
81		3.1	E	98.5-100
82		3.1	E	56–57 ^d
83	$CH_{3}O \longrightarrow C(CH = CH)_2 \longrightarrow N(CH_3)_2$	3.1	A	141-142
84	сн ₃ о сн ₃ о сн ₃ о сн ₃ о сн ₃ о сн ₃ о сн ₃ о	0.15	A	159–160
85	CH ₃ O CH	0.0075	A	163-164
86	CH ₃ 0 CH ₃ 0 CH ₃ 0 CH ₃ 0 CH ₃ 0 CH ₃ CH ₃ CH ₃ 0 CH	0.3	E	113-114
87		0.3	Fe	117-118
88		3.1	Fe	oil
89		3.1	A	69-71
	CH ₃ O CH ₃ OCH ₃ CCH=CH S			

Table IV (Continued)

		ED,ª			_
compd	structure	$\mu g/mL$	prep.	mp, °C	
90	CH ₃ O CH	>100	E ^b , F ^e	104-105	_
91	$CH_{3}O \xrightarrow{O}_{CCH_{3}}O \xrightarrow{CH_{3}}O (CH_{3})_{2}$	3.1	Α	76–77	
92		>25	Α	133–134	
colchicine		0.05			

^aSee footnote a, Table I. ^bLetter E denotes that preparation is described in the Experimental Section. ^cAnal. C: calcd, 69.96; found, 69.51. ^dPurchased from Aldrich Chemical Co. ^eLetter F denotes preparation by procedure E as represented by Scheme IV.

Table V. In Vivo Evaluation of Selected Chalcones^a

	L1210 leu	kemia	B ₁₆ melanoma			
compd	dose, mg/kg	% T/C	dose, mg/kg	% T/C		
66	25	145	100	192		
	50	140				
73	6.25	126	12.5	146		
	12.5	137	25	183		
	25	146				
	50	154				
75	25	121	25	190		
	50	138				
vinblastine	0.2	140	0.2	180		

^a Test animals were inoculated with either L1210 cells or B₁₆ melanoma (1×10^5) ip on day 0. The compounds were suspended (66, 73, 75) or dissolved (vinblastine) in 5% PVP and administered ip once daily on days 1–9. The survival time was noted and an average was determined. The ratio of survival time for treated divided by survival time of control \times 100 is reported as % T/C.

uptake of H₂ had occurred. The mixture was filtered and the filtrate was evaporated; the residue was taken up in ethyl acetate, and the solution was extracted with aqueous NaHCO₃. The organic layer was dried (MgSO₄) and evaporated. The residue was chromatographed (50% EtOAc/hexane) and the purified product was recrystallized (Et₂O) to give 81 (0.9 g, 37%): mp 98.5-100 °C; NMR (CDCl₃) δ 7.15 (s, 2 H), 7.10 (d, J = 9 Hz, 2 H), 6.70 (d, J = 9 Hz, 2 H), 3.80 (s, 9 H), 3.25-2.80 (m, 4 H), 2.80 (s, 6 H); IR (KBr) 3440, 2940, 1740, 1580 cm⁻¹. Anal. C₂₀H₂₅NO₄ C, H, N.

(E)-3-[4-(Dimethylamino)phenyl]-1-(3,4,5-trimethoxyphenyl)-2-propen-1-one O-Methyloxime (86). A mixture of 36 (1.7 g, 5 mmol), methoxyamine hydrochloride (0.46 g, 5.5 mmol), and pyridine (1.18 g, 1.5 mmol) in ethanol (50 mL) was stirred at reflux for 18 h. The solvent was evaporated, the residue was dissolved in EtOAc (300 mL), and the solution was extracted with water, dried, and evaporated. The residue was recrystallized from EtOAc/hexane then from EtOH to give 0.38 g (21%) of product: mp 113-114 °C; NMR (CDCl₃) δ 7.4-7.3 (m, 3 H), 7.8-7.6 (m, 3 H), 7.75 (s, 2 H), 4.1 (s, 3 H), 3.85 (s, 9 H), 3.0 (s, 6 H); IR (KBr) 3420, 1590, 1580, 1350 cm⁻¹; MS (CI/isobutane) m/e (M⁺H) 371. Anal. C₂₁H₂₆N₂O₄ C, H, N.

3-[4-(Dimethylamino)phenyl]-1-(3,4,5-trimethoxyphenyl)-2-buten-1-one (90) (Procedure E). A mixture of dimethyl sulfoxide (DMSO) (30 mL), triethylamine (10 mL), 3,4,5-trimethoxy- α -1,2-propadienylbenzenemethanol²¹ (2.6 g, 11.0 mmol), 4-bromo-N,N-dimethylaniline (2.0 g, 10 mmol), palladium acetate (0.11 g, 0.05 mmol), and tritolylphosphine (0.61 g, 2.0 mmol) was heated at 110 °C (bath temperature) for 20 min. The mixture was cooled and poured into EtOAc (200 mL), and the solution was extracted with water. The organic layer was dried and evaporated. The residue was chromatographed (25% EtOAc/hexane) and crystallized from Et₂O/hexane to give a yellow solid (0.4 g, 11%): mp 104-105 °C; NMR (CDCl₃) δ 7.50 (d, J = 8 Hz, 2 H), 7.20 (s, 2 H), 7.10 (br s, 1 H), 6.40 (d, J = 8 Hz, 2 H), 3.85 (s, 9 H), 3.00 (s, 6 H), 2.65 (br s, 3 H); IR (KBr) 3442, 1637, 1611, 1563 cm⁻¹; MS (CI/CH₄) m/e (M⁺H) 350. Anal. C₂₁H₂₅NO₄ C, H, N.

Registry No. 3, 127033-84-5; 20, 127033-85-6; 21, 127033-86-7; 22, 127033-87-8; 23, 127033-88-9; 24, 127033-89-0; 25, 127033-90-3; 26, 127033-91-4; 27, 127033-92-5; 28, 127033-93-6; 29, 127033-94-7; **30**, 127033-95-8; **31**, 127033-96-9; **32**, 127033-97-0; **33**, 127033-98-1; 34, 127033-99-2; 35, 127034-00-8; 35·HCl, 127034-01-9; 36, 127034-02-0; 37, 127034-03-1; 38, 127034-04-2; 39, 127034-05-3; 40, 127034-06-4; 41, 127034-07-5; 42, 127034-08-6; 43, 127034-09-7; 44, 127034-10-0; 45, 127034-11-1; 46, 127034-12-2; 47, 127034-13-3; 48, 127034-14-4; 49, 127034-15-5; 50, 127034-16-6; 51, 127034-17-7; 52, 127034-18-8; 53, 127034-19-9; 54, 127034-20-2; 55, 127034-21-3; 56, 127034-22-4; 57, 127034-23-5; 58, 127034-24-6; 59, 127034-25-7; 60, 127034-26-8; 61, 127034-27-9; 62, 127034-28-0; 63, 127034-29-1; 64, 127034-30-4; 65, 127034-31-5; 66, 127034-32-6; 67, 127034-33-7; 68, 127034-34-8; 69, 127034-35-9; 70, 127034-36-0; 71, 127034-37-1; 72, 127034-38-2; 73, 124711-23-5; 74, 127034-39-3; 75, 127034-40-6; 76, 127034-41-7; 77, 127034-42-8; 78, 127034-43-9; 79, 127034-44-0; **80**, 127034-45-1; **81**, 127034-46-2; **82**, 614-47-1; **83**, 127034-47-3; 84, 127034-48-4; 85, 127034-49-5; 86, 127034-50-8; 87, 127034-51-9; 88, 127063-58-5; 89, 127034-52-0; 90, 127034-53-1; 91, 127034-54-2; 92, 127034-55-3; m-EtC₆H₄Ac, 22699-70-3; p-MeOC₆H₄Ac, 100-06-1; m-F₃CC₆H₄Ac, 349-76-8; p-t-BuC₆H₄Ac, 943-27-1; p-NCC₆H₄Ac, 1443-80-7; p-H₂NCOC₆H₄Ac, 67014-02-2; m-ClC₆H₄Ac, 99-02-5; m-AcNHC₆H₄CHO, 59755-25-8; p-t-BuC₆H₄CHO, 939-97-9; PhCHO, 100-52-7; p-MeSC₆H₄CHO, 3446-89-7; m-Me₂NC₆H₄CHO, 619-22-7; p-H₂NC₆H₄CHO, 556-18-3; m-O2NC6H4CHO, 99-61-6; p-FC6H4CHO, 459-57-4; p-NCC6H4CHO, 105-07-7; p-i-PrOC₆H₄CHO, 18962-05-5; p-BrC₆H₄CHO, 1122-91-4; $p-F_3CC_6H_4CHO$, 455-19-6; $p-O_2NC_6H_4CHO$, 555-16-8; $m-F_3CC_6H_4CHO$, 454-89-7; $m-H_iNC_6H_4CHO$, 1709-44-0; $p-F_3CC_6H_4CHO$, 1709-400, 1709-400, 1700, 1700, 1700, 1700, 1700, BuNHC₆H₄CHO, 89074-18-0; p-BuOC₆H₄CHO, 5736-88-9; p-MeOCONHC₆H₄CHO, 20131-81-1; p-EtOC₆H₄CHO, 10031-82-0; o-FC₆H₄CHO, 446-52-6; 3,4,5-MeOC₆H₂COCH=CHCH₃, 67382-46-1; p-Me₂NC₆H₄COCH₃, 2124-31-4; p-BrC₆H₄NH₂, 106-40-1; PhBr, 108-86-1; 3,4,5-trimethoxybenzoyl chloride, 4521-61-3; phenylacetylene, 536-74-3; 2,3,4-trimethoxyacetophenone, 13909-73-4; 4-(diethylamino)benzaldehyde, 120-21-8; 2,5-dimethoxypropiophenone, 5803-30-5; 4-(dimethylamino)benz-

⁽²¹⁾ Synthesized by procedure of Crabbee, P.; Fillion, D. A.; Lucke, J. J. Chem. Soc., Chem. Commun. 1979, 859.

aldehyde, 100-10-7; 3,4,5-trimethoxy- α -1,2-propadienylbenzenemethanol, 127034-56-4; 4-bromo-N,N-dimethylaniline, 586-77-6; 3,4,5-trimethoxyacetophenone, 1136-86-3; 2,5-dimethoxyacetophenone, 1201-38-3; 2,4,6-trimethoxyacetophenone, 832-58-6; 4-acetamidobenzadlehyde, 122-85-0; 2-methoxyacetophenone, 579-74-8; 3,4-dimethoxyacetophenone, 1131-62-0; 2,4-dimethoxyacetophenone, 829-20-9; 4-hydroxy-3,5-dimethoxyacetophenone, 2478-38-8; 2,3,4-trimethoxypropiophenone, 18060-58-7; 3,4,5-trimethoxypropiophenone, 5658-50-4; 2,5-dimethoxypropiophenone, 5803-30-5; 1-(2,3,4-trimethoxyphenyl)-1-butanone, 108401-78-1; 4-pyridinecarboxaldehyde, 872-85-5; 2-thiophenecarboxaldehyde, 98-03-3; trimethoxybenzaldehyde, 86-81-7; 4-(dimethylamino)-2-methylbenzaldehyde, 1199-59-3; 2-furancarboxaldehyde, 98-01-1; benzophenone, 119-61-9.

Analogues of Growth Hormone-Releasing Factor (1-29) Amide Containing the Reduced Peptide Bond Isostere in the N-Terminal Region¹

Simon J. Hocart,* William A. Murphy, and David H. Coy

Peptide Research Laboratories, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112. Received November 20, 1989

Previous peptide structure-activity investigations employing the ψ [CH₂NH] peptide bond isostere have produced antagonists when inserted into various sequences. These include bombesin, in which the incorporation of Leu¹³ ψ [CH₂NH]Leu¹⁴ produced a potent antagonist, and tetragastrin, with which Boc-Trp-Leu ψ [CH₂NH]Asp-Phe-NH₂ is an antagonist. In this study, we chose to investigate the effect of this isostere on growth hormone-releasing factor (1-29) amide. Analogues were prepared by solid-phase synthesis and the isosteres incorporated by racemization-free reductive alkylation with a preformed protected amino acid aldehyde in the presence of NaBH₃CN. The aldehydes were prepared by the reduction of the protected *N*,*O*-dimethyl hydroxamates with LiAlH₄ at 0 °C. The purified analogues were assayed in a 4-day primary culture of male rat anterior pituitary cells for growth hormone (GH) release. Potential antagonists were retested in the presence of GRF(1-29)NH₂. The following results were obtained: At position 5–6, a very weak agonist was produced with $\ll 0.01\%$ activity. Incorporation of the isostere in positions 1-2, 2-3, and 6-7 gave weak agonists with $\sim 0.1\%$ activity. Agonists with 0.39% and 1.6% activity were produced by incorporation at 10–11 and 3–4, respectively. The analogue [Ser⁹ ψ [CH₂NH]Tyr¹⁰]GRF(1-29)NH₂ was found to be an antagonist in the 10 μ M range vs 1 nM GRF and had no agonist activity at doses as high as 0.1 mM.

Growth hormone-releasing factor (GRF), a 44-residue peptide, was isolated from a pancreatic tumor occurring in an acromegalic patient.²³ The structural characterization of GRF has resulted in numerous basic and clinical studies into this peptide's role in the control of GH secretion and its ultimate effects on growth itself. Structure-activity studies have shown that the full sequence is not required for activity and that the shortened sequence $GRF(1-29)NH_2$ is fully potent,³ greatly simplifying the synthesis of analogues for further structure-activity studies. The data accumulated thus far indicate that GRF may be of value in certain clinical disorders, including childhood GH deficiency, as well as in agricultural applications pertaining to milk and meat production. In common with a number of other peptide hormones, the plasma half-life of GRF is of the order of minutes.⁴ This presents a major problem in the development of potent long-acting therapeutic or agricultural agents. The most common approach to increasing the potency and duration of action of analogues has been the incorporation of unusual or D-amino acid residues in various regions of the hormone.⁵⁻⁹ A less common strategy in the elaboration

- (2) Guillemin, R.; Brazeau, P.; Bohlem, P.; Esch, F.; Ling, N.; Wehrenberg, W. Science 1982, 218, 585.
- Rivier, J.; Spiess, J.; Thorner, M.; Vale, W. Nature 1982, 300, 276.
- (4) Froman, L. A.; Downs, T. R.; Williams, T. C.; Heimer, E. P.; Pan, Y-C. E.; Felix, A. M. J. Clin. Invest. 1986, 78, 906.
 (5) Longe V. A. M. J. Clin. Invest. 1986, 78, 906.
- (5) Lance, V. A.; Murphy, W. A.; Sueiras-Diaz, J. A.; Coy, D. H. Biochem. Biophys. Res. Commun. 1984, 119, 265.

of structure-activity relationships is the modification of the peptide backbone by the incorporation of various peptide bond isosteres including ψ [CH₂NH], ψ [CH₂S], and ψ [CH₂CH₂].¹⁰ Previously, the incorporation of these isosteres required the custom synthesis of modified dipeptide units with the concomitant risk of racemization of the non-urethane-protected carboxyl terminus during activation. We have developed a racemization-free, solid-phase method for the generation of the ψ [CH₂NH] isostere in situ,^{11,12} which greatly facilitates the investigation of the role of the backbone in peptide activity. The method involves the reductive alkylation of the deprotected, resin-bound peptide with a protected amino acid aldehyde in the presence of NaBH₃CN. Structure-activity investigations with the ψ [CH₂NH] peptide bond isostere have produced antagonists when inserted into various peptides. These include bombesin, in which the incorporation of Leu¹³ ψ [CH₂NH]Leu¹⁴ produced an antagonist,¹³ and tetragastrin, in which Boc-Trp-Leu ψ [CH₂NH]Asp-

- (6) Coy, D. H.; Murphy, W. A.; Lance, V. A.; Heiman, M. L. Peptides 1986, 8 (suppl. 1), 49.
- (7) Coy, D. H.; Murphy, W. A.; Lance, V. A.; Heiman, M. L. J. Med. Chem. 1987, 30, 219.
- (8) Tou, J. S.; Kaempfe, L. A.; Vineyard, B. D.; Buonomo, F. B.; Della-Fera, M. A.; Baile, C. A. Biochem. Biophys. Res. Commun. 1986, 139, 763.
- (9) Rivier, J.; Rivier, C.; Galyean, R.; Yamamoto, G.; Vale, W. In Vasoactive Intestinal Peptide and Related Peptides; Sain, S. I., Mutt, V. Eds.; New York Academy of Science: New York, 1988; p 44.
- (10) Tourwé, D. Janssen Chim. Acta 1985, 3, 3.
- (11) Sasaki, Y.; Coy, D. H. Peptides 1987, 8, 119.
- (12) Sasaki, Y.; Murphy, W. A.; Heiman, M. L.; Lance, V. A.; Coy, D. H. J. Med. Chem. 1987, 30, 1162.
- (13) Coy, D. H.; Heinz-Erian, P.; Jiang, N-Y.; Sasaki, Y.; Taylor, J.; Moreau, J-P.; Wolfrey, W. T.; Gardner, J.; Jensen, R. J. Biol. Chem. 1986, 283, 5056.

⁽¹⁾ Abbreviations used in this paper for amino acids, protecting groups, and peptides follow the recommendations of the IU-PAC-IUB Commission on Biochemical Nomenclature and Symbols as described in *Eur. J. Biochem.* 1972, 27, 201 and *J. Biol. Chem.* 1975, 250, 3215. ψ [CH₂NH], peptide bond replaced by a CH₂NH bond.