DOI: 10.1002/aoc.6386

RESEARCH ARTICLE

Revised: 5 July 2021

Nanoalkalinecellulose immobilized on magnetic nanoparticles as a green catalyst for the synthesis of tetrahydrodipyrazolopyridines and mechanistic insights under base catalysis

²Department of Biomedical Engineering, Meybod University, Meybod, Iran

Fatemeh Tamaddon, Department of Chemistry, Yazd University, Yazd

Email: ftamaddon@yazd.ac.ir

Yazd University Research Council

Funding information

¹Department of Chemistry, Yazd

University, Yazd, Iran

Correspondence

89195-741, Iran.

Fatemeh Tamaddon¹ | Ehsan Ahmadi-AhmadAbadi¹ | Hossein Kargar²

Abstract

The cotton-derived nanoalkalinecellulose (NAC) flocculated on the Fe₃O₄nanoparticles was analytically characterized as Fe₃O₄@NAC. With the 1:5.7 weight ratio for organic:inorganic and the base-capacity equal to 7.5 mmol HO⁻/g, the Fe₃O₄@NAC represented a catalytic advantage in the roomtemperature *pseudo*-multicomponent one-pot synthesis of tetrahydrodipyrazolopyridines (THDPPs) in water. Mechanistic monitoring supported no requisite to acid/base catalyst in the first phase for rapid formation of intermediate 3-methylpyrazolone (A) by Knorr reaction of the ethylacetoacetate with hydrazine hydrate in water at room temperature. Alternatively, Fe₃O₄@NAC showed catalytic roles in the further reaction phases in synthesis of THDPPs from the A. Excellent base capacity, hydrogen-bonding performance, and stability due to no significant activity loss and leaching after five reaction cycles are advantages of this organometallic catalyst.

KEYWORDS

3-methylpyrazolone, Fe₃O₄@nanoalkalinecellulose, magnetic base catalyst, tetrahydrodipyrazolopyridines

1 **INTRODUCTION**

Functionalized magnetic nanoparticles (FMNs) by biopolymers are advanced nano-biomaterials^[1-5] with cooperative synergistic effects to resolve either agglomeration issues of MNs or separation problems of biopolymers.^[6–8] Microcellulose (MC) and nanocellulose (NC) are among the best biopolymers applied for improving the dispersion of magnetite (Fe₃O₄) and maghemite-based FMNs.^[9-11] $Fe_3O_4^{[12-14]}$ performances Despite the of and

MC/NC,^[15-18] linking of them in FMNs needs higher energy than hydrogen bonding and thermal stability than cellulose at 70°C.^[2,19] Consequently, higher stable and negatively charged micro-/nano-alkaline celluloses (MAC/NAC) are superior to native MC/NC due to their strong electrostatic interactions with FMNs. Recently, we have developed anionic carbohydrate polymers including MAC/NAC,^[20] anionic cellulose,^[21] alkaline starch,^[22] and anionic NC^[23] with some filtration/centrifugation solve for recycling. То these disputes. issues

This work is fully related to the PhD dissertation of Ehsan Ahmadi-AhmadAbadi. The authors are also not employed by a nonacademic government agency that has a primary function other than research and/or education and thus are not submitting this manuscript as an official representative or on behalf of the government. The authors and reviewers do not have any conflict of interest as per the COPE Guidelines.

immobilization of anionic-NAC on the $nanoFe_3O_4$ by flocculation is anticipated to give a new magnetically recoverable base and organic–inorganic hybrid catalyst.

Tetra-hydrodipyrazolopyridines (THDPPs) are attractive fused heterocyclic compounds because of their electroluminescence properties in polymer systems^[24] and the pharmaceutical role of the pyrazolopyridine in zaleplon, indiplon, etazolate, and cartazolate drugs.^[25] Although the first synthesis of THDPPs is a Hantzsch^[26]type pseudo-multicomponent reaction (p-MCR) directed by Zhao et al.,^[27] a recently modified acid-catalyzed p-MCR of hydrazine, ethyl acetoacetate, ammonium acetate, and aldehyde (2:2:1:1) has been developed for the synthesis of THDPPs.^[28–31] We have also settled synthesis of THDPPs in water using new DESs or nonhygroscopic nitrogen sources,^[31-33] although all acid-catalyzed protocols emphasized the 3-methylpyrazolone (A) as the reaction intermediate. However, no detail is available for the less hazardous heterogeneous base-catalyzed synthesis of THDPPs. Herein, for the first time, the magnetic base catalyst Fe₃O₄@NAC was prepared by the immobilization of cotton-derived NAC on Fe₃O₄-MNPs, and the catalytic activity of this novel core-shell catalyst investigated in the very rapid p-MC synthesis of THDPPs in water at room temperature. After some mechanistic insights for this base-catalysis synthesis, the intermediate A was rapidly prepared and balanced in a very fast Fe₃O₄@NACcatalyzed p-MCR for the THDPPs synthesis. The excellent stability of this heterogeneous, organic-inorganic hybrid, reusable, and magnetic base catalyst was confirmed by different techniques to support its catalytic performance.

2 | MATERIALS AND METHODS

2.1 | General

All chemicals were purchased from Merck and Sigma without further purification. All yields refer to isolated products, which were characterized by spectral data. The Fourier transform infrared (FT-IR) spectra were recorded on a Bruker spectrophotometer as KBr disks. Melting points were determined by a Buchi B-540 apparatus. Melting points were determined by a Buchi B-540 apparatus. The vibrating sample magnetometry (VSM) of magnetic materials was monitored by the Lake Shore Cryotronics 7404 at 298 K. Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images performed with MIRA3TESCAN-XMU. The X-ray diffraction (XRD) and thermal gravimetric analysis (TGA) were recorded with PHILIPS PW1730 and TGA-TA Q600, respectively. The leaching test for iron ions was evaluated by inductively coupled plasma mass spectrometry (ICP-MS) analysis (PerkinElmer, 9000). The nuclear magnetic resonance (NMR) spectra were recorded in $CDCl_3$ or $DMSO-d_6$ on Bruker Avance NMR 400 MHz.

2.2 | Preparation of nanoFe₃O₄

To the FeCl₃.6H₂O (6.75 g) and FeCl₂.4H₂O (2.5 g) dissolved in distilled water (100 mL), NH₄OH was added drop-wise within 1 h until pH 12, and the mixture was stirred for 1 h at 40°C. After completion, the nanoFe₃O₄ was washed with water, separated by an external magnet, and dried at 50°C in an oven.

2.3 | Preparation of NAC solution from cotton

Prewashed cotton (1.75 g) was added to a mixture of urea (4.0 g), sodium hydroxide (4.0 g), and thiourea (2.3 g) in distilled water (40 mL); the resulting suspension maintained at cold thermal shock (-12° C) for 6 h^[21]; and the final mixture stirred vigorously at room temperature to obtain NAC solution.

2.4 | Immobilization of NAC on Fe_3O_4 as Fe_3O_4 @NAC core-shell

To the dispersed mixture of nanoFe₃O₄ (1.75 g) in the above NAC solution, ammonium sulfate (2.86 g) was added as a flocculating agent, and the suspension was stirred vigorously for 6 h at 50°C. Then water and acetone were added and decanted until removing free NaOH and urea from the magnetically separated Fe₃O₄@NAC that dried at 50°C.

2.5 | Base capacity of Fe_3O_4 @NAC

The dispersed Fe_3O_4 @NAC (0.1 g) in distilled water (20 mL) was titrated with standard HCl (0.22 M) using the indicator bromtimol-blue to reach the end point.

2.6 | Synthesis and characterization of3-methylpyrazolone (A)

A mixture of hydrazine hydrate (2.0 mmol) and ethyl acetoacetate (2.0 mmol) in water (1.0 mL) was stirred at room temperature for 5 min without or with the

catalyst Fe₃O₄@NAC (12 mg). In the latter case, the catalyst was collected by a magnet, and the precipitated product in water was rapidly filtered, washed, with water/hexane, and dried to yield 97% A as a white solid with mp = $222-224^{\circ}C$,^[34] which then identified by its FT-IR spectrum.

2.7 | General method for the Fe₃O₄@NAC-catalyzed synthesis of THDPPs

For the *p*-MC synthesis of THDPPs from hydrazine hydrate, Fe₃O₄@NAC (12 mg) was added to the mixture of aldehyde (1.0 mmol), hydrazine hydrate (2.0 mmol), ethyl acetoacetate (2.0 mmol), and anhydrous NH₄OAc (1.0 mmol) in water (0.5 mL) and stirred at room temperature for \sim 5–15 min until the product precipitation. Then, water was added, the catalyst was collected by a magnet, and the pure THDPP product was filtered.

For the *p*-MC synthesis of THDPPs from the intermediate **A**, the mixture of Fe_3O_4 @NAC (12 mg), aldehyde (1.0 mmol), the as-prepared **A** (2.0 mmol), and anhydrous NH₄OAc (1.0 mmol) in water (0.5 mL) was stirred at room temperature for ~5–15 min. Then, hot ethanol (4 mL) was added, the catalyst was collected by a magnet, and the pure THDPP was isolated after the addition of cold water and filtration.

2.8 | Representative characterization data for the selected products

Although spectroscopic spectra (FT-IR, ¹H NMR, and ¹³C NMR) for all final products (THDPP1–9) are presented in Figures S1–S24), the characteristic data for the selected products are designated below.

2.8.1 | 3,5-Dimethyl-4-(phenyl)-1,4,7,8-tetrahydrodipyrazolo[3,4-b, 4',3'-e] pyridine (THDPP1)

Yield: 97%; white solid, mp = 240–242°C. FT-IR (KBr): 3410 (NH stretching), 2983, 2922 (CH stretching), 1605 (C=N stretching), 1497, 1448 (CH bending), 1368 (Methyl-CH bending) cm⁻¹. ¹H NMR (400 MHz, DMSO d_6): $\delta = 2.04$ (s, 6H, 2 CH₃), 4.79 (s, 1 H, CH), 7.10–7.20 (3 H, ortho and para H_s), 7.20–7.25 (2 H, meta H_s), 11.34 (s, 3 H, 3 NH) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 12.1$, 38.2, 104.8, 127.1, 128.7, 128.9, 141.0, 143.7, 145.5 ppm (Figures S1–S3). 2.8.2 | 3,5-Dimethyl-4-(4-*N*,*N*-methylphenyl)-1,4,7,8-tetrahydrodipyrazolo[3,4-b, 4',3'-e] pyridine (THDPP2)

Yield: 97%; yellow-orange solid, mp = $250-252^{\circ}$ C. FT-IR (KBr): 3514, 3168 (NH stretching), 2942 (CH stretching), 1608 (C=N stretching), 1520 (C=C aromatic), 1139 (C-N stretching) cm⁻¹. ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 2.26$ (s, 6H, 2 CH₃), 2.91 (s, 6H, 2 CH₃ [para]), 4.9 (s, 1 H, CH), 6.75 (d, *J* = 8 Hz, 2H, H_{arom}), 7.3 (d, *J* = 8 Hz, 2H, H_{arom}), 4.07 (s, 1H, NH) 11.54 (s, 2H, 2 NH) ppm (Figures S4–S6).

2.8.3 | 3,5-Dimethyl-4-(4-methyl-phenyl)-1,4,7,8-tetrahydrodipyrazolo[3,4-b, 4',3'-e] pyridine (THDPP3)

Yield: 94%; white solid, mp = 244–246 °C. FT-IR (KBr): 3170 (NH stretching), 2920 (CH stretching), 1610 (C=N stretching), 1520 (C=C aromatic), 1139 (C-N stretching) cm⁻¹. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.1 (s, 6H, 2 CH₃), 2.20 (s, 3 H, CH₃ [para]), 4.78 (s, 1 H, CH), 6.99–7.00 (m, 4H, H_{arom}), 11.25 (s, 3 H, 3 NH) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 10.85, 20.98, 32.85, 104.85, 127.82, 128.83, 134.70, 140.20, 140.75, 161.50 ppm (Figures S7–S9).

2.8.4 | 3,5-Dimethyl-4-(4-hydroxy-phenyl)-1,4,7,8-*tetra*-hydrodipyrazolo[3,4-b, 4',3'-e] pyridine (THDPP7)

Yield: 93%; white solid, mp = 267–269 °C. FT-IR (KBr): 3234 (overlapped NH and OH stretching), 2,935 (CH stretching), 1600 (C=N stretching), cm⁻¹. ¹H NMR (400 MHz, DMSO- d_6): δ = 2.05 (s, 6H, 2 CH₃), 4.68 (s, 1 H, CH), 6.57 (d, J = 8 Hz, 2 H, H_{arom}), 6.89 (d, J = 8 Hz, 2 H, H_{arom}), 9.15 (s, OH), 11.52 (s, 3 H, 3 NH) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ = 10.35, 31.76, 104.51, 114.45, 128.25, 133.36, 139.75, 155.05, 161.05 ppm (Figures S17–S19).

2.8.5 | 3,5-Dimethyl-4-(4-nitro-phenyl)-1,4,7,8-*tetra*-hydrodipyrazolo[3,4-b, 4',3'-e] pyridine (THDPP8)

Yield: 96%; cream solid, mp = $333-335^{\circ}$ C. FT-IR (KBr): 3250 (NH stretching), 2985 (CH stretching), 1605 (C=N stretching), 1489 (asymmetrical stretching NO₂ overlapped with the C=C aromatic), 1352 (NO₂ symmetrical stretching), 753 (out of plane bending C-H, para-

substituted) cm⁻¹. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 2.1$ (s, 6 H, 2 CH₃), 4.95 (s, 1H, CH), 7.35 (d, J = 8 Hz, 2 H, H_{arom}), 8.1 (d, J = 8 Hz, 2 H, H_{arom}), 11.20 (s, 3H, 3 NH) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 10.70$, 33.40, 103.60, 123.40, 129.20, 140.20, 146.1, 152.25, 161.35 ppm (Figures S20–S22).

2.9 | Metal leaching, recycling, and reusing of the catalyst

Owing to the insolubility of catalyst in water, it was separated by a magnet after the model reaction completion for synthesis of THDDP1, washed with acetone, dried at 50° C, and reused in further reaction runs. The leaching test for entering the Fe⁺²/Fe⁺³ to reaction mixture was evaluated for the fresh and reused filtrate solutions of Fe₃O₄@NAC after fourth cycle by ICP-mass analysis.

3 | RESULTS AND DISCUSSION

3.1 | Preparation of Fe₃O₄@NAC

Initially, NAC suspension was prepared by urea/thiourea/NaOH treatment of the cotton-derived MC and additional freezing shock at -12° C.^[21–23] Further coagulation of NAC on the prepared Fe₃O₄ nanoparticles led to the Fe₃O₄@NAC, although salting-out effect by ammonium sulfate and alkali washing provided maximum uniformity of flocculated NAC-shell and basicity preservation of core–shell (Scheme 1).

3.2 | Characterization results of Fe₃O₄@NAC

The structure of the Fe₃O₄@NAC was identified by base capacity, FT-IR, XRD, FESEM, TEM, VSM, TGA, and Brunauer–Emmett–Teller (BET) analyses. According to the consumed standard HCl in the acid–base titration, the base capacity of the Fe₃O₄@NAC was determined as 7.5 mmol HO⁻/g, which is significantly higher than either neutral Fe₃O₄ or NC. This high basicity matches with the created alkoxide groups by alkalizing of some aggregate hydrogen-bonded NAC-OHs in the outer shell of Fe₃O₄@NAC.

3.2.1 | Fourier transform infrared spectra

The overlaid FT-IR spectra of the nanoFe $_3O_4$, NAC, and Fe $_3O_4$ @NAC show the broad absorption bands at

SCHEME 1 Preparation of magnetic base catalyst Fe₃O₄@NAC

~2800–3600 and 585 cm⁻¹ related to the surface OHs and Fe/O vibration modes in the spectrum of nanoFe₃O₄. The weak and broad absorption bands for O–H stretching at 2500–3600 cm⁻¹ besides to C–H stretching, CH₂ bending, and C–O stretching modes at 2890, 1424, and 1018 cm⁻¹ in the spectrum of NAC confirmed its structure. In the FT-IR spectrum of Fe₃O₄@NAC, shifted broad absorption bands to 3400–3600, 2922, 1455, and 1021 cm⁻¹ attribute to the coating of Fe₃O₄ nanoparticles by NAC (Figure 1).

3.2.2 | X-ray diffraction

In the overlaid XRD patterns for the Fe₃O₄ and Fe₃O₄@NAC, the six sharp characteristic peaks at $2\theta = 30.81^{\circ}$, 36.04° , 43.78° , 54.00° , 54.10° , and 63.28° , correspond to (220), (311), (400), (511), (422), and (440) planes, are compatible with the standard Fe₃O₄-phase (JCPDS card no. 39-1346). Repeating these planes as slightly broader peaks in the Fe₃O₄@NAC phase reveals conserving the Fe₃O₄-crystalline phase in this core-shell (Figure 2). Such low phase transformation with the appearance of new broad peaks at $2\theta = 20-25^{\circ}$ in XRD pattern of Fe₃O₄@NAC due to crystalline cellulose

FIGURE 1 The Fourier transform infrared (FT-IR) spectra of nanoFe₃O₄, nanoalkalinecellulose (NAC), and Fe₃O₄@NAC

FIGURE 2 X-ray diffraction (XRD) patterns of nanoFe₃O₄ and Fe₃O₄@NAC

showed tiny immobilization of NAC on the Fe₃O₄, which is further confirmed by TEM and TGA analyses.

3.2.3 | Field scanning electron microcopy

The comparative FESEM images of Fe_3O_4 and Fe_3O_4 @NAC (Figure 3) show different surface morphologies and size distribution for the spherical agglomerated Fe_3O_4 nanoparticles from 22–36 nm to slightly larger dispersed Fe_3O_4 @NAC nanospheres with 25- to 38-nm

diameter. This slight enlargement is due to a thin layer immobilization of NAC on $nanoFe_3O_4$ -particles in Fe_3O_4 @NAC that improved the nanoparticles agglomeration and surface roughness (Figure 3, right).

3.2.4 | TEM and histogram of Fe₃O₄@NAC nanoparticles

While the TEM of Fe_3O_4 @NAC (Figure 4, left) shows the well-defined coating of the Fe_3O_4 nanospheres by NAC,

FIGURE 3 Field-emission scanning electron microscopy (FESEM) images of nanoFe₃O₄ and nanoFe₃O₄@NAC

FIGURE 4 Transmission electron microscopy (TEM) image (left) and histogram of Fe₃O₄@NAC nanoparticles (right)

the histogram of the size distribution versus the particle size, detected by MIRA3TESCAN software in FESEM and TEM analyses, showed an average size of 20–35 nm for these core–shell nanoparticles (Figure 4, right).

3.2.5 | VSM, TGA, and BET analyses of Fe_3O_4 @NAC

VSM curves of bare and NAC-coated nanoFe₃O₄ show a decrease in magnetization saturation (M_s) from 69.2 to 35.2 emu g⁻¹ (Figure 5, left). Such decrease in M_s is another evidence for Fe₃O₄ coating by a nonmagnetic

layer of NAC in the super-paramagnetic core-shell of Fe₃O₄@NAC. Besides, the three times higher M_s , remanence (M_R), and coercivity (H_C) of the Fe₃O₄@NAC (35.2 emu g⁻¹, 1.86 emu g⁻¹, and 66.23 Oe) than a previously prepared MC composite^[14] approve the proficiencies of the nanosizing and surface charge of NAC in these improved FMNs. Fe₃O₄@NAC is an anionic coreshell with the excellent magnetic response to an external magnet.

Comparing the thermal behaviors of the Fe₃O₄@NAC and Fe₃O₄ by TGA in air shows respective 2% and 19% weight losses at <500°C and defines 17% NAC sorption on Fe₃O₄ equal to 1:5.7 weight ratio for the anionic

Comparative vibrating sample magnetometries (VSMs) (left) and thermal gravimetric analyses (TGAs) of Fe₃O₄ and FIGURE 5 Fe₃O₄@NAC (right)

SCHEME 2 The typical *pseudo*-multicomponent reaction (*p*-MCR) for THDPP1 synthesis

organic shell versus the inorganic magnetic core. The break-in weight loss at \sim 300°C for Fe₃O₄@NAC is attributed to the NAC-glucose-unit decomposition (Figure 5, right).

Based on the BET analysis, the specific surface area, total pore volume, and mean pore diameter for nanoFe₃O₄ dramatically decreased from 90.90 m² g⁻¹, $0.3 \text{ cm}^3 \text{ g}^{-1}$, and 13.37 nm to 14.1 m² g⁻¹, 0.030 cm³ g⁻¹, and 9.96 nm in nanoFe₃O₄@NAC. The 14 times higher

FIGURE 6 Optimization of catalyst and catalyst-loading for THDPP1 synthesis

8 of 14 WILEY Organometallic

and 6.5 times lower surface area of this core–shell than cotton $(1.01 \text{ m}^2 \text{ g}^{-1})$ and nanoFe₃O₄ describes Fe₃O₄ pores filling by a uniform thin layer of NAC shell in Fe₃O₄@NAC and surface improving than cotton.

3.3 | Catalytic valuation of Fe_3O_4 @NAC in the MC synthesis of THDPPs

Firstly, the catalytic efficiencies of the Fe₃O₄@NAC, free Fe₃O₄, and NAC (each 0.15 g) were compared in the typical synthesis THDPP1 by *p*-MCR of benzaldehyde, NH₄OAc, hydrazine hydrate, and ethyl acetoacetate (1:1:2:2 molar ratio) in water at room temperature (Scheme 2, Figure 6, left). With a higher superiority in yield at 10 min, THDPP1 was precipitated in 97% yield

using very low loading of Fe_3O_4 @NAC (12 mg) (Figure 6, right).

Comparing the reaction yield and time for NAC and Fe₃O₄@NAC reveals that basicity is not the only factor for catalytic activity. Thus, the proficiency of this magnetically separable base catalyst is attributed to its multifunctionality and hybrid organic-inorganic nanostructure that forms a nanoporous magnetic gel in water by a hydrogen-bonded network in swelling. These properties provide multiactive sites, high diffusion power, uniformity, and well dispersion of catalyst in the aqueous medium of reaction to activate the reactants in nanopores of catalyst and directing the reaction energy path to the rapid yielding of product. The 33% decrease in the THDPP1 yield for a similar reaction in EtOH supports this interpretation (Figure 7, left). Evaluation of the

FIGURE 7 Solvent effect (left) and reaction time for the Fe_3O_4 @NAC-catalyzed THDPP1 synthesis by the room temperature reaction of benzaldehyde, NH₄OAc, hydrazine hydrate, and ethyl acetoacetate (1:1:2:2) in water

TABLE 1 Comparative performances of the Fe_3O_4 @NAC with the previous methods for the synthesis of THDPP1 by *p*-MCR in Scheme 2

Entry	Reaction conditions	Time (min.)	Yield (%)	Ref.
1	Choline chloride/urea, 110°C	30	92	Vanegas et al. ^[35]
2	Ultrasonic, H ₂ O, 50°C	120	95	Shabalala et al. ^[36]
3	Pseudopolymeric nanoparticles, EtOH, r.t.	30	90	Dashteh et al. ^[37]
4	Reflux, EtOH	300	72	Dabiri et al. ^[28]
5	Fe ₃ O ₄ @KCC-1-nPr-NH ₂ , ethanol, reflux	30	92	Azizi et al. ^[14]
6	Co4ChDES, H ₂ O, 60°C	15	94	Tamaddon and Khorram ^[31]
7	Fe ₃ O ₄ @NAC, H ₂ O, r.t.	10	97	This work

Abbreviation: p-MCR, pseudo-multicomponent reaction.

reaction's time impact on the THDPP1 yield using the optimized catalyst loading (12-mg Fe_3O_4 @NAC) revealed that the optimum reaction time is 10 min (Figure 7, right).

To weigh the performance of this magnetically separable base catalyst in MC synthesis of THDPP1, our results were compared with the previously reported corresponding works (Table 1) and base catalysts in water (Figure 8).

As performance results show, the organic–inorganic hybrid catalyst Fe_3O_4 @NAC with advantages of simple handling and easy separation at mild conditions enhances the reaction yield and rate more efficiently than the cited previous protocols in Table 1. Besides, superiority of this magnetic base catalyst and procedure are higher than the reported homogeneous base catalysts for the same MC synthesis of THDPP1 in water^[28,33,38] (Figure 8).

3.4 | Proposed reaction mechanism

To probe the mechanism and detailing the base-catalyzed rapid synthesis of THDPP1 using Fe_3O_4 @NAC, several control experiments were performed. The comparative typical *p*-MC synthesis of THDPP1 at room temperature in the absence and presence of Fe_3O_4 @NAC in water yielded only 10% and 60% THDPP1 after 10 and 60 min using no catalyst. Due to the isolation of THDPP1 in 97% yield after 10 min using only 12-mg Fe_3O_4 @NAC, it has a

catalytic role in this one-pot p-MCR. However, the previous acid-catalyzed mechanisms for the THDPPs synthesis^[29,30] proposed formation of intermediate 3-methylpyrazolone (A) by Knorr pyrazole formation in the first reaction step.^[39] To clear the catalytic role of Fe₃O₄@NAC in the reaction of ethyl acetoacetate and hydrazine hydrate, the product, yield, and time were compared in this phase by a classical method,^[34] a deepeutectic catalyst at 110°C,^[35] p-TsOH,^[29] Fe₃O₄@NAC, and catalyst-free conditions in water. While the isolated product in each case was identified by FT-IR and melting point, none of the probable intermediates B-F were detected (Scheme 3).

SCHEME 3 Possible intermediates in the reaction of hydrazine with ethyl acetoacetate

FIGURE 8 Performance of the Fe₃O₄@NAC for the synthesis of THDPP1

FIGURE 9 The Fourier transform infrared (FT-IR) (KBr) spectrum of 3-methylpyrazolone A

SCHEME 4 Proposed mechanism for Fe_3O_4 @NAC-catalyzed synthesis of THDPP1 from A

Besides, the analytical evidence confirmed the superiorities of both the catalyst-free and Fe₃O₄@NACcatalyzed reaction in water by isolation of 97% yield of intermediate A after 5 min. These results surprised us for no significant role of any catalyst in the formation of A in the first period of one-pot synthesis of THDPP1. With melting point 222–224°C, FT-IR spectrum of 3-methylpyrazolone represented vibrational absorption modes at 3416 (NH stretching), 2889 (CH stretching), 1615 (overlapped-hydrogen-bonded amide-C=O stretching and C=N stretching), 1553 (NH bending), 1162 (C–N stretching), and 1015 (C–O stretching) cm⁻¹ (Figure 9).

To evaluate the catalytic role of Fe_3O_4 @NAC in the further steps, a different *p*-MCR was performed with the **A**, NH₄OAc, and benzaldehyde (2:1:1) in water without or with the optimal catalyst Fe_3O_4 @NAC (12 mg) at room temperature. The 46% lower yield of THDPP1 after 60 min for a reaction run without catalyst versus 97% yield after 5 min for the Fe_3O_4 @NAC-catalyzed experiment describes the requirement of catalyst in further reaction steps. Although we could not separate the highly active transients and unstable intermediates formed in further reaction steps, the following roles are proposed for the catalyst Fe_3O_4 @NAC in the reaction mechanism (Scheme 4).

3.5 | Metal leaching, hot filtration, and recycling experiments

The ICP analysis conducted to test for leaching and entering the iron ions to the reaction mixture for the filtrate solution of fresh Fe_3O_4 @NAC detected no trace of Fe^{+2}/Fe^{+3} in filtrate and confirmed no passing of them through the NAC-shell membrane during the filtration step.

For reusability test, after completion of the Fe₃O₄@NAC-catalyzed synthesis of THDPP1 from A in 10-mmol scale, hot ethanol was added. and nanocatalyst was collected by a magnet, washed with acetone, dried at 80°C, and reused in further four consecutive cycles. The only 4% decrease in yield at the constant time (5 min) after the fifth reaction run reveals a little catalytic activity loss (Figure 10). An analogous ICP analysis was performed for the filtrate solution of the reused Fe₃O₄@NAC after the fourth run to check the possible leaching of iron ions from the recycled catalyst. Once again no detection of iron showed no passing of Fe⁺²/Fe⁺³ from the cellulosicshell during reusing processes.

To check the heterogeneity of catalyst and leaching of NAC, a hot filtration test^[40] was done for the Fe₃O₄@NAC-catalyzed typical *p*-MC synthesis of THDPP1 from the **A** by its separation with a magnet after 50% reaction progress (2 min) and keeping the mixture without the catalyst under similar conditions. No progress of the reaction showed heterogeneously

FIGURE 10 Reusability of the Fe $_3O_4$ @NAC for the synthesis of THDPP1 from A

proceeding, while repeating a comparable hot filtration test for the reused catalyst after the fourth reaction run gave identical results for the fresh catalyst. Based on the BET analysis for the recovered Fe₃O₄@NAC after the fourth run, the specific surface, total pore volume, and mean pore diameter were 14.08 m² g⁻¹, 0.029 cm³ g⁻¹, and 9.97 nm and in agreements with the fresh catalyst amounts (14.10 m² g⁻¹, 0.030 cm³ g⁻¹, and 9.96 nm, respectively). To find the more reliable results for stability of Fe₃O₄@NAC, the FT-IR, XRD, FESEM, and TEM techniques were employed to analyze the recovered catalyst Fe₃O₄@NAC after the fourth run (Figure 11).

As results from the ICP, hot filtration test, BET, TEM, FT-IR, FESEM, and XRD analyses for the recovered immobilized NAC on Fe_3O_4 display, Fe_3O_4 @NAC is a highly stable organometallic base catalyst.

The versatility of the heterogeneous and magnetic base catalyst Fe_3O_4 @NAC was then demonstrated in the base-catalysis synthesis of the THDPPs from the intermediate **A**, an aldehyde, and NH₄OAc in water at room temperature (Table 2).

As results demonstrate, in general, a range of aldehydes could undergo rapid reactions with A and NH₄OAc to give the THDPPs in high yields.

FIGURE 11 The transmission electron microscopy (TEM) (a), Fourier transform infrared (FT-IR) (b), field-emission scanning electron microscopy (FESEM) (c), and X-ray diffraction (XRD) (d) analyses for the recovered Fe_3O_4 @NAC after the fourth run

$R \xrightarrow{N-NH} Fe_3O_4@NAC (12 mg) \xrightarrow{R} H \xrightarrow{N} N$ $H_2O, r.t. \xrightarrow{H} H \xrightarrow{N} H$ $H_2O = H_2O, r.t.$ $H_2O = H_2O, r.t.$ $H_2O = H_2O, r.t.$ $H_2O = H_2O, r.t.$									
Entry	R	Product	Time (min)	Yield (%)	Melting point (°C) found (reported) ^[31,36]				
1	C_6H_5	THDDP1	5	97	240-242 (239-241)				
2	$4-Me_2NC_6H_4$	THDDP2	7	97	241-243 (242-244)				
3	4-MeC ₆ H ₄	THDDP3	8	94	245-247 (244-246)				
4	$4-BrC_6H_4$	THDDP4	15	88	163–165 (165–167)				
5	$4-ClC_6H_4$	THDDP5	10	96	252-254 (254-256)				
6	$2\text{-}ClC_6H_4$	THDDP6	10	91	221-223 (220-220)				
7	$4-\text{HOC}_6\text{H}_4$	THDDP7	12	93	265-267 (265-267)				
8	$4-O_2NC_6H_4$	THDDP8	7	96	235–237 (333–335)				
9	$3-O_2NC_6H_4$	THDDP9	10	95	285–287 (285–286)				

4 | CONCLUSIONS

The eco-biocompatible core-shell Fe₃O₄@nanoalka linecellulose (NAC) was prepared by coagulation of cotton-derived NAC on the co-precipitated nanoFe₃O₄ alkaline medium. The nanoFe₃O₄@NAC at nanoparticles in the range of 25-38 nm are slightly larger than Fe₃O₄, whereas the XRD pattern of Fe₃O₄@NAC shows similar crystallinity by Fe₃O₄. With a base capacity equal to 7.5-mmol HO⁻/g, the VSM of Fe₃O₄@NAC displays magnetization saturation 35.2 emu/g. This thermally stable magnetic base catalyzes both of the water-based synthesis of THDPPs from hydrazine hydrate or 3-methylpyrazolone intermediate A by room temperature *p*-MCRs. While results suggest no need of catalyst in formation of the intermediate A as the first phase synthesis of THDPPs, Fe₃O₄@NAC has a clear catalytic performance in synthesis of THDPPs from the A. By this hybrid base catalyst, synthesis of THDPPs was achieved in the water at mild conditions with the advantages of high yielding at short reaction times, efficiency in low loading, and easy reusing of catalyst. Due to the stability of Fe₃O₄@NAC in leaching and hot filtration tests, it is a good candidate in water treatment and delivery of cationic biomaterials to targeted positions.

ACKNOWLEDGMENT

The authors gratefully acknowledge partial support of this work by the Yazd University Research Council. This work is fully related to the PhD dessertation of Ehsan Ahmadi-AhmadAbadi from the Department of Chemistry of Yazd University under supervision of Prof. Fatemeh Tamaddon and advising of Dr. Hossein Kargar.

CONFLICT OF INTEREST

All authors declare that they have no known conflict of interest, competing financial interests, or personal relationship that could have appeared to influence the work reported in this paper.

AUTHOR CONTRIBUTIONS

Fatemeh Tamaddon: Conceptualization; project administration; supervision; validation. **Ehsan Ahmadi-AhmadAbadi:** Formal analysis; investigation; methodology; software; validation; visualization. **Hossein Kargar:** Formal analysis; validation; visualization.

DATA AVAILABILITY STATEMENT

The additional data that support the findings of this paper are available in the supplementary material file of this article.

ORCID

Fatemeh Tamaddon ^b https://orcid.org/0000-0002-6686-8094

Ehsan Ahmadi-AhmadAbadi Dhttps://orcid.org/0000-0001-7057-8201

Hossein Kargar D https://orcid.org/0000-0003-2319-0663

REFERENCES

- A. Gennari, A. J. Führ, G. Volpato, C. F. V. de Soza, *Carbohydr. Polym.* 2020, 1, 246.
- [2] A. Nasiri, F. Tamaddon, M. H. Mosslemin, M. Amiri Gharaghani, A. Asadipour, *Environ. Health Eng. Manag.* 2019, 6, 41.
- [3] S. Sabaqian, F. Nemati, M. M. Heravi, H. T. Nahzomi, Appl. Organomet. Chem. 2017, 1, 31.
- [4] M. H. Beyki, M. Bayat, F. Shemirani, *Bioresour. Technol.* 2016, 218, 326.
- [5] X. An, D. Cheng, L. Dai, B. Wang, H. J. Ocampo, J. Nasrallah, X. Jia, J. Zou, Y. Long, Y. Ni, *Appl. Catal. B: Environ.* 2017, 206, 53.
- [6] J. Wei, Z. Yang, Y. Sun, C. Wang, G. Fan, G. Kang, R. Zhang, X. Dong, Y. Li, J. Mater. Sci. Mater. Med. 2019, 54, 6709.
- [7] T. Lindström, A. Naderi, A. Wiberg, J. Korea TAPPI. 2015, 47, 5.
- [8] L. R. Marcelo, J. Santos de Gois, A. Araujo da Silva, D. Vargas Cesar, *Environ. Chem. Lett.* 2020, 18, 1.
- [9] M. Islam, L. Chen, J. Sisler, K. Tam, J. Mater. Chem. B 2018, 6, 864.
- [10] K. Jedvert, T. Heinze, J. Polym. Eng. 2017, 37, 845.
- [11] N. Mahfoudhi, S. Boufi, Cellulose 2017, 24, 1171.
- [12] M. A. Ashraf, Z. Liu, C. Li, D. Zhang, Appl. Organomet. Chem. 2020, 34, 6133.
- [13] B. Gumina, F. Mauriello, R. Pietropaolo, S. Galvagno, C. Espro, *Mol. Catal.* **2018**, 446, 152.
- [14] S. Azizi, J. Soleymani, M. Hasanzadeh, Appl. Organomet. Chem. 2020, 34, 5440.
- [15] I. A. Sacui, R. C. Nieuwendaal, D. J. Burnett, S. J. Stranick, M. Jorfi, C. Weder, E. J. Foster, R. T. Olsson, J. W. Gilman, ACS Appl. Mater. Interfaces 2014, 6, 6127.
- [16] S. Shojaei, Z. Ghasemi, A. Shahrisa, Appl. Organomet. Chem. 2017, 31, 3788.
- [17] J. Baruah, C. Chaliha, E. Kalita, B. K. Nath, R. A. Field, P. Deb, Int. J. Biol. Macromol. 2020, 164, 53.
- [18] P. A. Penttilä, A. Várnai, M. Fernández, I. Kontro, V. Liljeström, P. Lindner, M. Siika-aho, L. Viikari, R. Serimaa, *Cellulose* 2013, 20, 1031.
- [19] A. Maleki, A. A. Jafari, S. Yousefi, Carbohydr. Polym. 2017, 175, 409.
- [20] F. Tamaddon, S. Hosseinzadeh, Cellulose 2018, 25, 5277.
- [21] F. Tamaddon, D. Arab, E. Ahmadi-AhmadAbadi, *Carbohydr. Polym.* 2020, 229, 115471.
- [22] F. Tamaddon, M. T. Kazemi-Varnamkhasti, Curr Catal. 2017, 6, 57.
- [23] F. Tamaddon, D. Arab, Int. J. Biol. Macromol. 2019, 134, 1.
- [24] Y. T. Tao, C. H. Chuen, C. W. Ko, J. W. Peng, Chem. Mater. 2002, 14, 4256.
- [25] U. H. Manjunatha, S. Vinayak, J. A. Zambriski, A. T. Chao, T. Sy, C. G. Noble, G. M. C. Bonamy, R. R. Kondreddi, B. Zou, P. Gedeck, C. F. Brooks, G. T. Herbert, A. Sateriale, J. Tandel, S.

Noh, S. B. Lakshminarayana, S. H. Lim, L. B. Goodman, C. Bodenreider, G. Feng, L. Zhang, F. Blasco, J. Wagner, F. J. Leong, B. Striepen, T. T. Diagana, *Nature* **2017**, *546*, 376.

- [26] A. Hantzsch, Ber. Dtsch. Chem. Ges. 1881, 14, 1637.
- [27] K. Zhao, M. Lei, L. Ma, L. Hu, Monatsh. Chem. 2011, 142, 1169.
- [28] M. Dabiri, P. Salehi, M. Koohshari, Z. Hajizadeh, D. I. MaGeec, ARKIVOC 2014, 4, 204.
- [29] S. K. Salama, A. F. Darweesh, I. A. Abdelhamid, A. H. Elwahy, *Polycyclic Aromat. Compd.* **2019**, *39*, 1.
- [30] S. M. Sadeghzadeh, RSC Adv. 2016, 6, 75973.
- [31] F. Tamaddon, A. Khorram, J. Mol. Liq. 2020, 304, 112722.
- [32] F. Tamaddon, D. Arab, RSC Adv. 19(9), 41893.
- [33] F. Tamaddon, A. Khorram, Synlett 2020, 31, 691.
- [34] A. I. Vogel, B. S. Furniss, A. J. Hannaford, P. W. Smith, A. R. Tatchell, *Longman Scientific & Technical*, New York 1989.
- [35] S. Vanegas, D. Rodriguez, C. Ochoa-Puentes, *ChemistrySelect* 2019, 4, 1.
- [36] N. G. Shabalala, R. Pagadala, S. B. Jonnalagadda, Ultrason. Sonochem. 2015, 27, 423.

- [37] M. Dashteh, M. Yarie, M. A. Zolfigol, A. Khazaei, S. Makhdoomi, Appl. Organomet. Chem. 2021, 35, e6222.
- [38] J. Safaei-Ghomi, H. Shahbazi-Alavi, R. Sadeghzadeh, A. Ziarati, *Res. Chem. Intermed.* **2016**, *42*, 8143.
- [39] L. Knorr, Ber. Dtsch. Chem. Ges. 1883, 16, 2597.
- [40] H. Lempers, R. Sheldon, J. Catal. 1998, 175, 62.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: F. Tamaddon,

E. Ahmadi-AhmadAbadi, H. Kargar, *Appl* Organomet Chem **2021**, e6386. <u>https://doi.org/10.</u> 1002/aoc.6386