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A B S T R A C T

A convenient synthesis of 6-amino-2H,4H-pyrano[2,3-F]pyrazole-5-carbonitriles has been accomplished

by one pot four-component cyclocondensation of aromatic aldehydes (1a-o) malanonitrile (2), ethyl

acetoacetate (3), and hydrazine hydrate (4) in freshly prepared deep eutectic solvent, DES (choline

chloride:urea). This protocol has afforded corresponding pyrano[2,3-F]pyrazoles in shorter reaction time

with high yields, and it avoids the use of typical toxic catalysts and solvents.

� 2015 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.

Published by Elsevier B.V. All rights reserved.
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1. Introduction

The remarkable ability of heterocyclic nuclei to serve both as
biomimetics and reactive pharmacophores has largely contributed
to their use as scaffolds in the design of therapeutically active new
compounds [1]. Polyfunctionalized pyran and their derivatives are
very important heterocyclic compounds which frequently exhibit
a variety of biological activities [2,3]. 4H-Pyran is an important and
common structural unit both in natural and synthetic heterocyclic
molecules [4,5]. The dihydropyrano[2,3-F]pyrazole represents a
fascinating template in the pharmaceutical field and is responsible
for a wide spectrum of biological activities in molecules containing
this significant unit [6]. Such compounds are exhibiting biological
activities like antimicrobial [7], anticancer [8], anti-inflammatory
[9] and inhibition of human Chk1 kinase [10] activities. Conse-
quently, there has been continuous interest in the development of
facile synthetic protocols for the construction of dihydropyr-
ano[2,3-F]pyrazoles.

A one pot four component cyclocondensations of aldehydes,
malononitrile, ethyl acetoacetate, and hydrazine hydrate was
reported for obtaining dihydropyrano[2,3-F]pyrazoles [11].
This cyclocondensation has been accelerated by incorporating
51
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various catalysts viz; per-6-amino-b-cyclodextrin [12], glycine
[13], g-alumina [14], L-proline [15], nanosized magnesium oxide
[16], Mg/Al hydrotalcite [17], N-methylmorpholine [18], hetero-
polyacids [19], sodium benzoate [20], and amberlyst A21 [21]
and obtained good to moderate yields of dihydropyrano[2,3-F]
pyrazoles. One pot three component cyclocondensations
have also been reported for dihydropyrano[2,3-F]pyrazoles, in
which,pyrazolone derived from condensation of ethyl acetoa-
cetate and hydrazine hydrate is cyclocondensed with in situ

intermediates generated from the interaction of aldehydes and
malononitrile. The latter route has also been accelerated by
various organic and inorganic bases [22]. The reported methods
still have certain inadequacies, such as long reaction time, toxic
and expensive catalysts, excess heating, and tedious work-up
procedure. Therefore, an exploration of a more general, efficient,
and greener approach is highly desirable.

Green technology actively seeks new, safer, alternative solvents
to replace common widely used organic solvents that present
inherent toxicity and high volatility, leading to evaporation of
volatile organics to the atmosphere [23]. In performing the
majority of organic transformations, solvents play a critical role
in making the reaction homogeneous and hence facilitating
molecular interactions [24]. Over the last two decades more
attention has been directed on the use of non-volatile organic
media like ionic liquids, PEGs, glycerine, water etc. for carrying
value added transformations. Ionic liquids (ILs) are quaternary
of 6-amino-2H, 4H-pyrano[2,3-F]pyrazole-5-carbonitriles in deep
/j.cclet.2015.12.005
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Table 1
Screening of reaction media for the synthesis of compound 5a.

a

Entry Solvents Yield (%)b

1 PEG-400 72

2 Dicationic ionic liquid 65

3 Ionic liquid (N-methylpyridinium tosylate) 62

4 DES (40, 60, 80, 100 8C) 78, 85, 91, 92

a Reaction conditions: All the reactions were carried at 80 8C for 20 min.
b Isolated yields, DES: choline chloride:urea.
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lts/PTCs/inorganic salts having melting points less than 100 8C. It
s been reported that most of the ILs less biodegradable, more
xic, and more expensive than hoped. Because of this, ILs are now
coming less popular as media. Recently, chemists have been
ying more attention on the use of deep eutectic solvents (DESs)
r carrying various chemical transformations safely and rapidly. A
S is generally composed of two or three cheap and safe
mponents which are capable of keeping association with each
her through hydrogen bond interactions to form a eutectic
ixture. The resulting DES is characterized by its melting point,
hich is lower than that of the individual components. Generally,
Ss are characterized by very large depression of freezing point,
d most are liquid at room temperature [25].
Choline chloride (ChCl), or 2-hydroxy-N,N,N-trimethyletha-

minium chloride, has been widely used as an organic salt to
oduce eutectic mixtures when blended with cheap and safe
drogen bond donors like urea, polyols, and carboxylic acids
6]. Urea is cheap readily available and has better self association
ith ChCl. Therefore, it is widely used in generating DES by
ending with ChCl. Novel solvent properties of ChCl:urea
ixtures have been reported by Abbott et al., who concluded
at a blend of ChCl:urea with ratio 1:2 has the best self
sociation through hydrogen bond interactions and forms
propriate eutectic mixture [25c]. Such DESs are attracting
searchers as they exhibit similar physicochemical properties to
aditional ionic liquids, and are thus found to be more
vantageous in organic syntheses. DESs are lower in cost, more
odegradable, and less toxic than the traditional ionic liquids and
erefore are replacing the traditional ionic liquids while carrying
lue added organic transformations viz. Knoevenagel condensa-
n [27], Diels–Alder reactions [28], Fischer indole annulations

9], Perkin reaction [30], selective acylation of primary hydroxyl
oups in cellulose [31], fluorination of acetophenone [32],
omination of substituted 1-aminoanthra-9,10-quinone, and
nzylation of phenols [33].
Considering the advantages of these deep eutectic solvents and

 continuation of our efforts to develop environmentally benign
otocols for various chemical transformations [34], here an
tempt has been made to develop a modified protocol by
timizing the reaction conditions for carrying the cycloconden-
tion of aromatic aldehydes, malanonitrile, ethyl acetoacetate,
d hydrazine hydrate in DES for obtaining polyfunctional
ranopyrazoles in a cost effective and rapid way.

 Experimental

All the chemicals used were of laboratory grade. Melting
ints of all the synthesized compounds were determined in
en capillary tubes and are uncorrected. 1H NMR spectra were
corded with a Bruker Avance 400 spectrometer operating at
0 MHz using DMSO-d6 solvent and tetramethylsilane (TMS)

 the internal standard and chemical shift in d ppm. 13C
R spectra were recorded on Bruker Avance 300 MHz on

ol. Mass spectra were recorded on a Sciex, Model; API
00 LCMS/MS Instrument. The purity of each compound was
ecked by TLC using silica-gel, 60F254 aluminum sheets as
sorbent, and visualization was accomplished by iodine/
traviolet light.

1. Synthesis of deep eutectic solvent

A mixture of choline chloride (70 mmol) and urea (140 mmol)
. in the ratio of 1:2 was heated at 80 8C with stirring for 30 min.
e resulting eutectic solvent was then allowed to cool to room

mperature and was used for the synthesis of pyranopyrazoles
a-o) without further purification.
Please cite this article in press as: M.R. Bhosle, et al., A facile synthesis
eutectic solvent, Chin. Chem. Lett. (2015), http://dx.doi.org/10.1016
2.2. Synthesis of 6-amino-1,4-dihydro-4-(4-methoxyphenyl)-3-

methyl-pyrano[2,3-F]pyrazole-5-carbonitrile (5a)

A mixture of 4-methoxy benzaldehyde (1a) (3 mmol), mal-
ononitrile (2) (3 mmol), hydrazine hydrate (3) (3 mmol), and ethyl
acetoacetate (4) (3 mmol) was added in DES (5 mL) and then the
reaction mass was stirred at 80 8C. Progress of the reaction was
monitored by TLC (ethyl acetate:n-hexane 1:9). After 20 min of
stirring, the reaction mixture was cooled to room temperature.
Then, it was extracted using ethylacetate. The ethyl acetate phase
was separated from undissolved DES and the organic layer was
separated, dried, filtered, and concentrated in vacuo. The crude
solid residue that remained was then crystallized from ethanol.

Similarly, the other compounds (5b-o) of the series were
prepared. The melting points and the yields of the derivatives are
recorded in Table 2.

6-Amino-1,4-dihydro-4-(4-methoxyphenyl)-3-methyl-pyr-
ano[2,3-F]pyrazole-5-carbonitrile (5a): IR (KBr, y cm�1): 3425 (N–H
stretching), 3128 (Ar–H stretching), 2928 (C–H stretching), 2200 (CN
stretching), 1597 (C55N stretching), 1153 and 1203 (C–O–C
stretching); 1H NMR (400 MHz, DMSO-d6): d 1.81 (s, 3H, –CH3),
3.78 (s, 3H, –OCH3), 4.45 (s, 1H, –CH–), 6.81 (s, 2H, –NH2), 6.87 (d, 2H,
J = 8.0 Hz), 7.23 (d, 2H, J = 8.0 Hz) and 12.08 (s, 1H, –NH). 13C NMR
(75 MHz, DMSO-d6):d 8.82, 34.74, 53.77, 57.75, 94.70, 96.54, 112.46,
119.71, 127.38, 134.69, 134.85, 153.85, 157.02 and 159.50; MS (ESI):
m/z: 283.2 [M+]; Elemental analysis: Calcd. for C15H14N4O2: C, 63.82;
H, 5.00; N, 19.85; found C, 63.37; H, 5.67; and N, 19.65

6-Amino-1,4-dihydro-4-(4-phenyl)-3-methyl-pyrano[2,3-
F]pyrazole-5-carbonitrile (5b): IR (KBr, y cm�1): 3427 (N–H
stretching), 3119 (Ar–H stretching), 2934 (C–H stretching), 2200
(CN stretching), 1595 (C55N stretching), 1149 and 1211 (C–O–C
stretching); 1H NMR (400 MHz, DMSO-d6): d 1.76 (s, 3H, –CH3),
4.51 (s, 1H, –CH–), 6.79 (s, 2H, –NH2), 6.99–7.76 (m, 5H, Ar–H) and
12.04 (s, 1H, –NH); 13C NMR (75 MHz, DMSO-d6): d 8.85, 34.69,
57.67, 94.69, 96.48, 112.57, 119.69, 127.35, 134.73, 134.79, 153.84,
157.23 and 159.45; MS (ESI): m/z: 253 [M+]; Elemental analysis:
Calcd. for C14H12N4O: C, 66.65; H, 4.79; N, 22.21; found C, 66.67; H,
4.75; and N, 22.21

2.3. Recycling of DES, choline chloride:urea

A mixture of 4-methoxy benzaldehyde (1a 3 mmol), malononi-
trile (2 3 mmol), hydrazine hydrate (3 3 mmol), and ethyl
acetoacetate (4 3 mmol) was added in DES (5 mL), and then the
reaction mass was stirred at 80 8C. Progress of the reaction was
monitored by TLC (ethyl acetate:n-hexane 1:9). After 20 min of
stirring, reaction mixture was cooled to room temperature. Then it
was extracted using ethylacetate. Thus obtained undissolved DES
was further extracted with ethyl acetate (10 mL), and the
undissolved viscous liquid was separated and recycled for reuse
for future cycles.

3. Results and discussion

An efficient protocol has been developed for pyranopyrazoles
(5a-o) by one pot cyclocondensation of aromatic aldehydes (1a-o),
 of 6-amino-2H, 4H-pyrano[2,3-F]pyrazole-5-carbonitriles in deep
/j.cclet.2015.12.005
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Scheme 1. Schematic presentation of synthesis of DES based on choline chloride

and urea.

Scheme 2. 6-Amino-4-(4-substituted phenyl)-3-methyl-1,4-dihydropyrano[2,3-

c]pyrazole-5-carbonitriles (5a-o).

Table 2
Physical data of 6-amino-4-(4-substituted phenyl)-3-methyl-1,4-dihydropyr-

ano[2,3-F]pyrazole-5-carbonitriles (5a-o).a

Compound R Yield (%)b Mpc (8C)

5a 4-OCH3-Ph 91 209–211

5b -Ph 92 243–244

5c 4-Cl-Ph 89 230–232

5d 4-CH3-Ph 91 174–175

5e 4-F-Ph 87 171–172

5f 3-Br-Ph 81 223–224

5g 4-NO2-Ph 85 254–256

5h 4-OH-Ph 90 221–223

5i 2-Cl-Ph 79 244–245

5j 3-NO2-Ph 87 190–192

5k 3,4-(OMe)2-Ph 84 189–190

5l 4-OH-3-OMe-Ph 82 235–237

5m 2-furyl 69 240–242

5n 2-thiophenyl 72 224–224

5o 4-pyridyl 71 214–216

a Reaction conditions: aldehydes (1a-o) (3 mmol), malononitrile (2) (3 mmol),

hydrazine hydrate (3) (3 mmol) and ethyl acetoacetate (4) (3 mmol) in DES (5 mL)

was stirred at 80 8C for 20 min.
b Isolated Yields.
c Melting points are in good agreement with those reported in the literature [35].
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malononitrile (2), ethyl acetoacetate (3), and hydrazine hydrate (4)
in freshly prepared deep eutectic solvent choline chloride:urea
(Scheme 1) at 80 8C (Scheme 2).

To examine the choice of solvents, an investigation was
initiated in to the optimization of four component one pot
condensation of 4-methoxy benzaldehyde (1a), malononitrile (2),
hydrazine hydrate (3), and ethyl acetoacetate (4) to afford
pyranopyrazole (5a) as a model reaction. Initially, the reaction
was run in the absence of a catalyst and a solvent by varying
temperature (30–100 8C). It was observed that after prolonged
heating, the cyclocondensation did not run satisfactorily. Consid-
ering the significance of green chemistry efforts were directed
towards the use of green reaction media. Hence, the above model
reaction was performed separately in various green solvents, like
Scheme 3. Plausible mechanism for the s

Please cite this article in press as: M.R. Bhosle, et al., A facile synthesis 

eutectic solvent, Chin. Chem. Lett. (2015), http://dx.doi.org/10.1016
PEG-400. Ionic liquids at 80 8C gave the desired pyranopyrazole
with moderate to better yields (Table 1, entries 1–3). Considering
the above results and the importance of DES, model reaction was
then carried out in DES, derived from a mixture with 1:2
composition of choline chloride:urea, and 91% yield of the
pyranopyrazole (5a) was obtained.

In preliminary studies, the model reaction was performed by
condensing 2-(4-methoxybenzylidene) malononitrile (obtained by
Knoevenagel condensation of 4-methoxy benzaldehyde and
malononitrile) and pyrazolin-5-one (prepared by condensation
of hydrazine hydrate and ethyl acetoacetate) in DES at 80 8C and
the expected product 5a was obtained with 82% yield. After
obtaining these results, one pot four component reaction of 1a,
malononitrile (2), hydrazine hydrate (3), and ethyl acetoacetate (4)
ynthesis of pyranopyrazoles (5a-o).

of 6-amino-2H, 4H-pyrano[2,3-F]pyrazole-5-carbonitriles in deep
/j.cclet.2015.12.005
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as carried out at 80 8C. It successfully yielded 5a with high yields
ithout the need of prior isolation of the intermediates. From these
sults, it was confirmed that DES promotes the formation of the
termediates and their successive condensation to the desired
le product 5a.
During the study, the model reaction was performed using DES

 a reaction medium at different temperatures. Model reaction in
S at 80 8C was found to proceed with excellent yield (91%) of 5a

 20 min (Table 1). It was also noted that under similar reaction
nditions there was no condensation at room temperature. As
mperature increased (40, 60, 80, 100 8C) the yield of the product
so increased (78%, 85%, 91%, 92%). There was no significant
ange in the product yield when reaction was kept above 80 8C.
The recyclability/reuse of the DES has also been confirmed for

e model reaction and it was noticed that even after three
ccessive cycles, DES was found to effectively as medium and
talyst. The details of recovery and reuse of DES is given in the
perimental section.
The generality of this protocol was tested using various

dehydes with electron donating and withdrawing groups in
der to determine the scope of the DES as medium and catalyst. A
riety of aldehydes (1a-o) have been found to undergo
clocondensation smoothly to offer the respective pyranopyr-
oles (5a-o) in good to excellent yields at 80 8C within 20 min
able 2).

The rate acceleration of this one pot four component
clocondensation leading to pyranopyrazoles is attributed to
e unique use of DES as a medium, as it has the capacity to
ssolve various organic/inorganic solutes readily. This might be
sponsible for maintaining high concentrations of the reactants in
e beginning of the reaction and during its progression. High to
turated solutions of the reactants in the reaction mass would be
sponsible for rate acceleration of the cyclocondensation.

Stronger hydrogen-bonding capabilities of DES might enhance
e electrophilic character of carbonyl carbons of the reactants, viz;
dehydes and intermediate. It might also be increasing the rate of
 situ formation of carbanion from malononitrile. A plausible
echanism, supporting the role of the DES in rate enhancement is
esented in Scheme 3.

 Conclusion

We have been able to introduce a facile and environmentally
iendly approach for the synthesis of biologically active
bstituted pyranopyrazoles via one pot cyclocondensation of
rious aromatic aldehydes, ethyl acetoacetate, hydrazine hy-
ate, and malononitrile in a safe to use deep eutectic solvent,
oline chloride:urea. High yields, easy work-up, cost effective-
ss, and the reusability of the medium are the key advantages of
is approach. Therefore, DES is found to have wide scope for
pidly making value added organics via multicomponent
clocondensations.
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