ARTICLE IN PRESS

Chinese Chemical Letters xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Chinese Chemical Letters

journal homepage: www.elsevier.com/locate/cclet

Original article

Triphenylphosphine-*m*-sulfonate/carbon tetrabromide as an easily recoverable catalyst system for the efficient synthesis of xanthene and xanthenone derivatives under solvent-free conditions

Cong-De Huo^{*}, Xia-Zhen Bao, Dong-Cheng Hu, Xiao-Dong Jia, Chou-Gu Sun, Cheng Wang

Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China

ARTICLE INFO

Article history: Received 11 November 2013 Received in revised form 17 December 2013 Accepted 2 January 2014 Available online xxx

Keywords: Xanthene Xanthenone Naphthol Aldehyde

ABSTRACT

A solid complex, readily prepared from commercially available sodium triphenylphosphine-*m*-sulfonate (TPPMS) and carbon tetrabromide, can be used as an easily recoverable and reusable catalyst system for one-pot condensation of 2-naphthol with aldehydes to construct 14-aryl(alkyl)-14*H*-dibenzo[*a*,*j*]-xanthene derivatives and one-pot condensation of 2-naphthol with aldehydes and cyclic 1,3-dicarbonyl compounds to construct 12-aryl(alkyl)-8,9,10,12-tetrahydrobenzo[*a*]xanthen-11-one derivatives.

© 2014 Cong-De Huo. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

1. Introduction

Xanthenes exhibit a range of important biological activities such as anti-inflammatory, anti-viral, and anti-bacterial properties [1]. Moreover, due to their spectroscopic properties, xanthenes are used as dyes and fluorescent materials for the visualization of biomolecules [2]. Xanthenones, especially tetrahydroxanthenones, are also an important class of compounds for their distinct structural features and great potential for further transformations [3]. Therefore, the synthesis of xanthene and xanthenone derivatives is of great importance [4]. The development of green and practical methods to construct these skeletons is still highly desired.

Recently, commercially available sodium triphenylphosphine*m*-sulfonate (TPPMS) was developed as an ion-tagged reagent to mediate a facile Wittig reaction [5]. Afterwards, we demonstrated the use of the TPPMS/CBr₄ complex as a highly efficient catalyst system for the preparation of acetals from aldehydes, the tetrahydropyranylation of alcohols, and Friedel–Crafts alkylation of indoles with carbonyl compounds to produce bis(indolyl)alkane products (BIAs) (Scheme 1) [6]. These reactions utilize the TPPMS/ CBr₄ system as a solid complex, which is stable and can be stored easily. The catalyst is soluble in relatively polar organic solvents

* Corresponding author.

E-mail address: Huocongde@nwnu.edu.cn (C.-D. Huo).

but can be easily recovered from the reaction mixture by adding a non-polar solvent such as ether. Furthermore, the recovered catalyst can be reused. Multicomponent condensation reaction is a powerful tool for the construction of molecular complexity and structural diversity. Due to their use of one-pot and inherently simple experimental procedure, the development of more sustainable and greener multicomponent reactions is highly desired. As a part of our ongoing program to explore new catalytic activities for this solubility controllable TPPMS/CBr₄ complex, an efficient one-pot condensation of 2-naphthol with aldehydes to construct 14-aryl(alkyl)-14*H*-dibenzo[a_j]xanthenes derivatives and one-pot condensation of 2-naphthol with aldehydes and cyclic 1,3-dicarbonyl compounds to construct 12-aryl(alkyl)-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives is introduced in this paper (Scheme 1).

2. Experimental

2.1. Typical procedure for the synthesis of 12-aryl(alkyl)-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones

A mixture of 1,3-dicarbonyl compounds (**3**, 1.2 mmol) and TPPMS/CBr₄ complex (0.05 mmol) was heated to 100 °C; 2-naphthol (**1**, 1 mmol) and the appropriate aldehyde (**2**, 1 mmol) were then added under stirring. After the reaction was completed (as indicated by TLC), DCM (2 mL) and ether (2 mL) were added successively, and the solid TPPMS/CBr₄ complex was recovered by

1001-8417/\$ – see front matter © 2014 Cong-De Huo. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. http://dx.doi.org/10.1016/j.cclet.2014.01.023

Please cite this article in press as: C.-D. Huo, et al., Triphenylphosphine-*m*-sulfonate/carbon tetrabromide as an easily recoverable catalyst system for the efficient synthesis of xanthene and xanthenone derivatives under solvent-free conditions, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.01.023

2

C.-D. Huo et al./Chinese Chemical Letters xxx (2014) xxx-xxx

Scheme 1. Application of easily recoverable TPPMS/CBr₄ catalyst system.

filtration. The liquid filtrate was evaporated to give the corresponding products. Further purification by recrystallization or flash chromatography was required in some cases.

2.2. Typical procedure for the synthesis of 14-aryl(alkyl)-14Hdibenzo[a,j]xanthenes

A mixture of 2-naphthol (1, 2 mmol), the appropriate aldehyde (2, 1 mmol), and TPPMS/CBr₄ complex (0.1 mmol) was stirred at 110 °C. After the reaction was completed (as indicated by TLC), DCM (2 mL) and ether (2 mL) were added successively, and the solid TPPMS/CBr₄ complex was recovered by filtration. The liquid filtrate was evaporated and purified to give the corresponding products. Further purification by recrystallization or flash chromatography was required in some cases.

3. Results and discussion

Because a solvent-free protocol leads to a clean, efficient, and economical technology [7], a synthesis using solvent-free conditions was developed. The condensation reaction of 2-naphthol, benzaldehyde, and 5,5-dimethylcyclohexane-1,3-dione was first investigated under solvent-free conditions. After simple optimization of reaction conditions (TPPMS/CBr₄ 5 mol%, 100 °C), designed tetrahydroxanthenone derivative 4a was delivered with high yield (Table 1, entry 1). With the optimized conditions in hand, we then explored the generality and scope of this TPPMS/CBr₄ catalyzed transformation. The reactivity of various aldehydes was first examined as summarized in Table 1. In general, the TPPMS/CBr₄ complex was able to catalyze the reaction of both aryl and aliphatic aldehydes. Aryl aldehydes with electron-donating substituents and with electronwithdrawing substituents were all tolerant of the reaction conditions (Table 1, entries 2–10). The aldehydes with ortho or meta substituents delivered the corresponding xanthenones in high yields as well (Table 1, entries 4, 9, 10). The unprotected phenol group was tolerated in this reaction (Table 1, entry 5). The introduction of a halogen atom into this system made the methodology more useful for further transformation (Table 1, entries 6, 7). Aliphatic aldehydes also gave

good yields of the corresponding xanthenones (Table 1, entries 11-13). The use of 1,3-cyclohexanedione in place of 5,5-dimethyl-1,3cyclohexanedione also gave similar results, as shown in Table 1, entries 14-19. Encouraged by these good results, we next tested the condensation reaction of 2-naphthol with benzaldehyde to construct xanthene derivatives. After slight tuning of the reaction conditions (TPPMS/CBr₄ 10 mol%, 110 °C), the desired product **5a** was achieved with complete conversion and an excellent isolated yield (Table 2, entry 1). The generality and scope of this transformation was also investigated, as shown in Table 2.

Table 1

Synthesis of 12-aryl(alkyl)-8,9,10,12-tetrahydrobenzo[a]xanthen-11-onesa.

Entry	Aldehyde	R′	Time (min)	Product	Yield (%) ^b
1	C ₆ H ₅ CHO	Me	80	4a	84
2	4-MeC ₆ H ₄ CHO	Me	80	4b	86
3	4-MeOC ₆ H ₄ CHO	Me	40	4c	85
4	3-MeOC ₆ H ₄ CHO	Me	60	4d	82
5	4-OHC ₆ H ₄ CHO	Me	90	4e	79
6	4-ClC ₆ H ₄ CHO	Me	40	4f	85
7	4-BrC ₆ H ₄ CHO	Me	40	4g	85
8	4-NO ₂ C ₆ H ₄ CHO	Me	30	4h	90
9	3-NO ₂ C ₆ H ₄ CHO	Me	30	4i	86
10	2-NO ₂ C ₆ H ₄ CHO	Me	70	4j	83
11	$CH_3(CH_2)_3CHO$	Me	60	4k	84
12	$CH_3(CH_2)_5CHO$	Me	60	41	81
13	(CH ₃) ₂ CHCHO	Me	90	4m	78
14	C ₆ H ₅ CHO	Н	60	4n	85
15	4-MeC ₆ H ₄ CHO	Н	80	4o	84
16	4-MeOC ₆ H ₄ CHO	Н	80	4p	85
17	4-ClC ₆ H ₄ CHO	Н	40	4q	86
18	4-BrC ₆ H ₄ CHO	Н	40	4r	87
19	4-NO ₂ C ₆ H ₄ CHO	Н	30	4s	88

^a Standard reaction conditions: 1 (1.0 mmol), 2 (1.0 mmol), 3 (1.2 mmol), TPPMS/ CBr₄ (0.05 mmol), solvent-free, 100 °C.

^b Isolated yields.

Please cite this article in press as: C.-D. Huo, et al., Triphenylphosphine-m-sulfonate/carbon tetrabromide as an easily recoverable catalyst system for the efficient synthesis of xanthene and xanthenone derivatives under solvent-free conditions, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.01.023

ARTICLE IN P<u>ress</u>

C.-D. Huo et al./Chinese Chemical Letters xxx (2014) xxx-xxx

Table 2

Synthesis of 14-aryl(alkyl)-14H-dibenzo[a,j]xanthenes^a.

-				
Entry	Aldehyde	Time (min)	Product	Yield (%) ^b
1	C ₆ H ₅ CHO	30	5a	90
2	4-MeC ₆ H ₄ CHO	20	5b	92
3	4-MeOC ₆ H ₄ CHO	30	5c	90
4	3-MeOC ₆ H ₄ CHO	50	5d	89
5	4-OHC ₆ H ₄ CHO	25	5e	91
6	4-ClC ₆ H ₄ CHO	20	5f	96
7	4-BrC ₆ H ₄ CHO	20	5g	97
8	4-NO ₂ C ₆ H ₄ CHO	15	5h	95
9	3-NO ₂ C ₆ H ₄ CHO	20	5i	95
10	2-NO ₂ C ₆ H ₄ CHO	40	5j	94
11	CH ₃ (CH ₂) ₃ CHO	50	5k	88
12	CH ₃ (CH ₂) ₅ CHO	50	51	89
13	(CH ₂) ₂ CHCHO	60	5m	86

 a Standard reaction conditions: 1 (2.0 mmol), 2 (1.0 mmol), TPPMS/CBr_4 (0.05 mmol), solvent-free, 110 $^\circ\text{C}.$

^b Isolated yields.

Fig. 1. Studying reusablility of $\ensuremath{\mathsf{TPPMS/CBr}}_4$ in the synthesis of xanthenes and xanthenones.

In both of the reactions, the separation and recovery of the catalyst system was simply carried out by precipitation with DCM and ether after the reaction. The recovered catalyst could be reused without loss of catalytic activity. We demonstrated this with the reaction of 2-naphthol with benzaldehyde (Fig. 1, curve a) and the reaction of 2-naphthol with benzaldehyde and 5,5-dimethylcy-clohexane-1,3-dione (Fig. 1, curve b) using recovered TPPMS/CBr₄ system for ten cycles without distinctly diminished yield.

To evaluate the practicality of our method [8], the reaction between 2-naphthol and benzaldehyde and the reaction between 2naphthol, benzaldehyde and 5,5-dimethylcyclohexane-1,3-dione were performed on a larger scale (50 mmol) in a single batch, and no yield loss was observed (83%, 88% isolated yield respectively). That is to say, herein we present a practical and scalable synthetic entry to the xanthene and xanthenone derivatives.

4. Conclusion

In conclusion, we have demonstrated that the $TPPMS/CBr_4$ complex is a highly efficient catalyst for the preparation of

14-aryl(alkyl)-14*H*-dibenzo[*a*,*j*]xanthenes and 12-aryl(alkyl)-8,9,10,12-tetrahydrobenzo[*a*]xanthen-11-ones under solvent-free conditions. The catalyst is stable and can be stored easily. It is easily separable and can be recovered and reused without loss of catalytic activity for 10 cycles. Further applications of TPPMS/CBr₄ complex on the extension of this protocol are ongoing in our group.

Acknowledgments

We thank the National Natural Science Foundation of China (Nos. 21002080, 21262029) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20106203120003) of the Education Ministry for financially supporting this work.

References

[1] (a) A. Kumar, S. Sharma, R.A. Maurya, J. Sarkar, Diversity oriented synthesis of benzoxanthene and benzochromene libraries via one-pot, three-component reactions and their antiproliferative activity, J. Comb. Chem. 12 (2010) 20–24; (UNIVER 11 1999) 20–24;

(b) M.V. Encinas, A.M. Rufs, S.G. Bertolotti, C.M. Previtali, Xanthene dyes/amine as photoinitiators of radical polymerization: a comparative and photochemical study in aqueous medium, Polymer 50 (2009) 2762–2767;

(c) Y.Z. Zhang, H. Gorner, Photoprocesses of xanthene dyes bound to lysozyme or serum albumin, Photochem. Photobiol. 85 (2009) 677–685;

(d) F.M. Muñiz, V. Alcázar, L. Simón, et al., Daxabe—A xanthene-based fluorescent sensor for 3,5-dinitrobenzoic acid and anions, Eur. J. Org. Chem. (2009) 1009–1015; (e) M. Sibrian-Vazquez, R. Strongin, Optimising the synthesis and red-green-blue emission of a simple organic dye, Supramol. Chem. 21 (2009) 107–110.

[2] (a) N. Saki, T. Dine, E.U. Akkaya, Excimer emission and energy transfer in cofacial boradiazaindacene (BODIPY) dimers built on a xanthene scaffold, Tetrahedron 62 (2006) 2721-2725;

(b) C.G. Knight, T.E. Stephens, Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles, Biochem. J. 258 (1989) 683–687.

- (a) B. Lesch, S. Bräse, A short, atom-economical entry to tetrahydroxanthenones, Angew. Chem. Int. Ed. 43 (2004) 115–118;
 (b) Y.L. Shi, M. Shi, Reaction of salicyl N-tosylimines with 2-cyclohexenone: a facile
- (b) Y.L. Shi, M. Shi, Reaction of salicyl N-tosylimines with 2-cyclohexenone: a facile access to tetrahydroxanthenones, Synlett (2005) 2623–2626.
- [4] (a) J.J. Li, W.Y. Tang, L.M. Lu, W.K. Su, Strontium triflate catalyzed one-pot condensation of β-naphthol, aldehydes and cyclic 1,3-dicarbonyl compounds, Tetrahedron Lett. 49 (2008) 7117–7120;
 (b) B. Das, K. Laxminarayana, M. Krishnaiah, Y. Srinivas, An efficient and convenient protocol for the synthesis of novel 12-aryl- or 12-alkyl-8,9,10,12-tetrahydrobenzo[*a*]xanthen-11-one derivatives, Synlett (2007) 3107–3112;
 (c) E. Böβ, T. Hillringhaus, J. Nitsch, M. Klussmann, Lewis acid-catalysed one pot

synthesis of substituted xanthenes, Org. Biomol. Chem. 9 (2011) 1744–1748; (d) P.V. Shinde, A.H. Kategaonkar, B.B. Shingate, M.S. Shingare, Surfactant catalyzed convenient and greener synthesis of tetrahydrobenzo[a]xanthene-11-ones at ambient temperature, Beilstein, J. Org. Chem. 7 (2011) 53–58;

(e) R. Kumar, G.C. Nandi, R.K. Verma, M.S. Singh, A facile approach for the synthesis of 14-aryl- or alkyl-14H-dibenzo[a,j]xanthenes under solvent-free condition, Tetrahedron Lett. 51 (2010) 442–445.

- [5] (a) C.D. Huo, X. He, T.H. Chan, Zwitterionic phosphonium sulfonates as easily phase-separable ion-tagged Wittig reagents, J. Org. Chem. 73 (2008) 8583–8586;
 (b) C. Huo, T.H. Chan, A novel liquid-phase strategy for organic synthesis using organic ions as soluble supports, Chem. Soc. Rev. 39 (2010) 2977–3006.
- [6] (a) C. Huo, T.H. Chan, Carbon tetrabromide/sodium triphenylphosphine-m-sulfonate (TPPMS) as an efficient and easily recoverable catalyst for acetalization and tetrahydropyranylation reactions, Adv. Synth. Catal. 351 (2009) 1933–1938;
 (b) C.D. Huo, C. Sun, C. Wang, X. Jia, W. Chang, Triphenylphosphine-m-sulfonate/carbon tetrabromide as an efficient and easily recoverable catalyst system for Friedel–Crafts alkylation of indoles with carbonyl compounds or acetals, ACS Sust. Chem. Eng. 1 (2013) 549–553;

(c) C.D. Huo, C. Wang, D.C. Hu, X.A. Jia, Clean and efficient conversion of aldehydes into the corresponding nitriles using ionic supported triphenylphosphine and CBr₄, Lett. Org. Chem. 10 (2013) 442–444.

[7] (a) J. Azizian, F. Thimouri, F.M. Mohammadizadeh, Ammonium chloride catalyzed one-pot synthesis of diindolylmethanes under solvent-free conditions, Catal. Commun. 8 (2007) 1117–1121;

(b) K. Tanaka, F. Toda, Solvent-free organic synthesis, Chem. Rev. 100 (2000) 1025–1074;

(c) P. Lidstrom, J. Tierney, B. Wathey, J. Westman, Microwave assisted organic synthesis – a review, Tetrahedron 57 (2001) 9225–9283;

(d) A. Loupy, A. Petit, J. Hamelin, et al., New solvent-free organic synthesis using focused microwaves, Synthesis (1998) 1213–1234.

[8] (a) A. Mendoza, Y. Ishihara, P.S. Baran, Scalable enantioselective total synthesis of taxanes, Nat. Chem. 4 (2012) 21–25;

(b) C.D. Huo, X.L. Xu, J.Z. An, et al., Approach to construct polysubstituted 1,2dihydronaphtho[2,1-b]furans and their aerobic oxidative aromatization, J. Org. Chem. 77 (2012) 8310–8316.

Please cite this article in press as: C.-D. Huo, et al., Triphenylphosphine-*m*-sulfonate/carbon tetrabromide as an easily recoverable catalyst system for the efficient synthesis of xanthene and xanthenone derivatives under solvent-free conditions, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.01.023