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ABSTRACT: Recent studies indicate that LRS may act as a leucine sensor for the mTORC1 pathway, potentially providing an 

alternative strategy to overcome rapamycin-resistance in cancer treatments. In this study, we developed leucyladenylate sulfamate 

derivatives as LRS-targeted mTORC1 inhibitors. Compound 18 selectively inhibited LRS-mediated mTORC1 activation and exert-

ed specific cytotoxicity against colon cancer cells with a hyperactive mTORC1, suggesting that compound 18 may offer a novel 

treatment option for human colorectal cancer. 

■ INTRODUCTION 

Mammalian target of rapamycin (mTOR) is a multi-domain 

kinase that plays a central role in the regulation of cell growth, 

proliferation, metabolism and autophagy. mTOR consists of 

two structurally and functionally distinct protein complexes, 

mTOR complex 1 (mTORC1) and mTOR complex 2 

(mTORC2).
1
 In particular, mTORC1 regulates protein synthe-

sis by phosphorylating the two major substrates, S6 kinase 1 

(S6K1) and the translational regulators eukaryotic translation 

initiation factor 4E (elF4E)-binding protein 1 (4E-BP1), both 

of which are known to play crucial roles in cell proliferation 

and tumorigenesis.
2-4

 Therefore, much research effort has fo-

cused on the development of compounds that suppress the 

kinase activity of mTORC1 and act as anti-cancer agents.
5-7

 

The most studied compounds are rapamycin and its derivatives 

that directly bind near the mTOR kinase domain by forming a 

complex with the FK506-binding protein 12 (FKBP12); 

temsirolimus and everolimus have been approved by the FDA 

for the treatment of advanced renal cell carcinoma,
8, 9

 and 

ridaforolimus showed a promising outcome in a recent clinical 

trial for advanced soft tissue and bone sarcoma.
10, 11

 Unfortu-

nately, the efficacy of these rapamycin analogs for the treat-

ment of various cancer patients has been generally disappoint-

ing, mainly because these agents are cytostatic and only par-

tially inhibit mTORC1 activity.
7, 12

 Although rapamycin is a 

highly specific allosteric inhibitor of mTORC1, the mTORC1 

pathway involves multiple regulatory mechanisms and com-

plex feedback loops that have not yet been fully understood, 

thus resulting in an incomplete inhibition of kinase activity. 

Therefore, small molecules targeting other possible regulators 

may offer an alternative strategy for the suppression of 

mTORC1 activity, and have the potential to overcome ra-

pamycin-resistance in cancer treatment. 

mTORC1 activity is regulated by various environmental sig-

nals, such as the levels of nutrients, energy, and oxygen. Alt-

hough the complete mechanism of how mTORC1 senses these 

signals still remains a mystery, the proteinogenic amino acid 

leucine is considered to be the master controller in amino acid-

dependent mTORC1 signaling.
13, 14

 More importantly, several 

recent studies have reported that leucyl-tRNA synthetase 

(LRS) may act as an intracellular leucine sensor by directly 

binding to RagD GTPase, one of the key mediators of the 

amino acid-dependent mTORC1 pathway.
15, 16

 LRS is a mem-

ber of the class I aminoacyl-tRNA synthetase (ARSs) family 

that catalyzes the ATP-dependent ligation of amino acids to 

cognate transfer RNA (tRNA) in protein biosynthesis. Because 

of their pivotal role in cell survival, ARSs have been effective 

targets for antibiotics to overcome bacterial resistance,
17-20

 and 

also have been studied as anti-cancer agents.
21-23

 In addition to 

its traditional role, LRS appears to participate in mTORC1 

activation by acting as a GTPase-activating protein (GAP) for 

Rag GTPase in a leucine-dependent manner. Moreover, the 

leucine-induced activation of mTORC1 can be inhibited by 

leucine analogues, such as leucinol, without affecting the leu-

cine charging ability of LRS, suggesting that LRS-targeted 

inhibitors can suppress mTORC1 activity.
15, 24, 25

 

Previously, we have demonstrated that a leucine analog, (S)-

4-isobutyloxazolidin-2-one, selectively inhibited downstream 

phosphorylation of mTORC1 by blocking the leucine-sensing 

ability of LRS.
26

 Furthermore, this analog exhibited cytotoxi-

city against rapamycin-resistant colon cancer cells without 

affecting the catalytic activity of LRS, indicating that LRS has 

the potential to serve as a novel therapeutic target. In a contin-
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uing effort to develop LRS-targeted mTORC1 inhibitors, we 

designed a new series of compounds based on the structure of 

aminoacyl adenylate 1, an enzymatic reaction intermediate of 

ARSs (Figure 1). Aminoacyl adenylates have been extensive-

ly studied as a lead compound for ARS inhibitors.
27, 28

 Specifi-

cally, replacing the hydrolytically unstable acylphosphate 

group with its isosteres, such as acylsulfamate, resulted in 

chemically stable and potent inhibitors with IC50 values in the 

submicromolar to low micromolar range versus the corre-

sponding ARSs.
29-31

 Based on these previous findings, we 

synthesized a library of leucyladenylate sulfamates by modify-

ing adenine (group 1), ribose (group 2) and leucine moieties 

(group 3) and evaluated their biological activity. When we 

tested these compounds by using immunoblots, we found that 

group 1 compounds with a lipophilic R2 group generally 

showed good activity against mTORC1, while R2 = I deriva-

tives were most active. On the other hand, any modifications 

in the ribose moiety (group 2) lead to the loss of activity. 

Among the group 3 compounds, replacement of the α-amino 

group of leucine (R1) with a hydroxyl group significantly en-

hanced inhibitory activity against mTORC1, while introduc-

tion of an additional hydroxyl group also resulted in good in-

hibitory effect. Among the more than 70 compounds that we 

tested, herein we report three representative compounds de-

scribed in Figure 1. Each of these three compounds contains 

distinct structural features that are required for either LRS 

inhibition or LRS-mediated mTORC1 suppression. In this 

paper, we describe their syntheses, and inhibitory effects on 

the mTORC1 pathway together with their leucylation activity. 

We also evaluated cancer cell-specific cytotoxicity of these 

analogs in various types of cancer cells. 

Figure 1. Amionacyl adenylate 1 and leucyladenylate sulfamates  

■ RESULTS AND DISCUSSION 

Chemistry. Synthesis of leucyladenylate sulfamate 6 began 

with commercially available 2’,3’-isopropylidene adenosine 3 

as shown in Scheme 1. Compound 3 was reacted with sul-

famoyl chloride prepared in a quantitative yield from 

chlorosulfonyl isocyanate according to previously described 

procedures.
32

 Sulfamoylated adenosine 4 was then coupled 

with N-Boc-leucine to give the leucine adduct 5, which was 

subsequently hydrolyzed to leucyladenylate sulfamate 6. 

Synthesis of a syn-diol analog of leucyladenylate sulfamate 

12 was carried out as illustrated in Scheme 2. 5’-O-

Monomethoxytritylation (MMT) of compound 7 followed by 

acetylation of adenosine provided the fully protected adeno-

sine 8. Selective removal of MMT group and subsequent sul-

famoylation produced the sulfamate intermediate 10. (2S,3R)-

dihydroxy-4-methylpentanoic acid (DMPA) protected by O-

diacetyl was prepared from 4-methyl-2-pentenoic acid in 4 

steps by Sharpless asymmetric dihydroxylation, and its con-

figuration was confirmed by following previously described 

procedures.
33

 Amide coupling between compound 10 and the 

protected chiral acid produced compound 11, four acetyl 

groups of which were then removed in the presence of sodium 

methoxide to yield the final compound 12.  

Scheme 1. Synthesis of compound 6
a
 

 

 aReagents & conditions: (a) i) NaH, THF, ii) NH2SO2Cl, THF; 

(b) N-Boc leucine, DCC, DMAP, CH2Cl2; (c) 80% aq. TFA. 

Scheme 2. Synthesis of compound 12
 a
 
 

 aReagents & conditions: (a) MMTCl, pyridine, DMF; (b) Ac2O, 

NEt3, DMAP, CH3CN; (c) 80% aq. AcOH; (d) i) NaH, THF, ii) 

NH2SO2Cl, THF; (e) chiral acid, DCC, DMAP, CH2Cl2; (f) Na-

OMe in MeOH. 

Scheme 3. Synthesis of compound 18 
a
  

 aReagents & conditions: (a) Ac2O, NEt3, DMAP, CH3CN; (b) 

POCl3, Et4NCl, PhNMe2, CH3CN; c) isoamyl nitrite, I2, CuI, 

CH2I2, THF; (d) 7M NH3 in MeOH; (e-j) the same conditions as 

(a-f) in scheme 2 

Synthesis of a hydroxyl surrogate of leucyladenylate sulfa-

mate 18 is shown in Scheme 3. 2-Iodoadenosine (14) was 

synthesized from guanosine (13) in 4 steps according to previ-
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ously described procedures.
34

 Compound 14 was converted to 

the corresponding 5’-O-sulfamoylated intermediate 16 by fol-

lowing the route described in Scheme 2. (2S)-

hydroxyisocaproic acid (HICA, L-leucic acid) protected by O-

acetyl was prepared by acetylation of commercially available 

L-leucic acid. A peptide coupling reaction between compound 

16 and O-acetyl-L-leucic acid followed by deprotection of the 

acetyl group provided the final compound 18. 

Biological Activity. Because LRS catalyzes leucylation re-

action with its cognate tRNA during protein synthesis, we first 

assessed the inhibitory effects of compounds 6, 12 and 18 on 

the catalytic activity of LRS by performing aminoleucylation 

assays to determine the IC50 values. Given that the previously 

reported acylsulfamate adenylates were found to be potent 

inhibitors of the corresponding ARSs, these compounds would 

be likely to exhibit inhibitory effects of LRS. As shown in 

Figure 2, compound 6 proved to be a potent inhibitor of LRS 

with an IC50 value of 22.34 nM. However, compounds 12 and 

18 inhibited LRS to a much lesser extent, showing 3- and 15-

fold higher IC50 values (70.04 nM and 337.1 nM, respectively) 

than compound 6. Replacement of the α-amino group of leu-

cine side chain with a hydroxyl group (12), and the introduc-

tion of a 2-iodo group to adenine (18) weakened the overall 

binding affinity toward the LRS active site. Moreover, consid-

ering fold-changes between compounds, we conclude that 

modification of the adenine moiety has a higher impact on the 

catalytic activity than the modification of the leucyl side chain. 

 

Figure 2. Inhibitory activities of compounds 6, 12 and 18 for 

catalytic leucylation.  

Next, we determined the effects of compounds 6, 12, and 18 

on leucine-induced mTORC1 activation using the immunob-

lotting method. In our previous study, pretreatment of leucinol 

analogs blocked leucine-induced phosphorylation of S6K, an 

mTORC1 substrate, by directly interacting with LRS
26

; be-

cause the newly designed compounds have additional adeno-

sine moieties, we would expect to observe stronger inhibitory 

effects for S6K phosphorylation. We pretreated HEK293 cells 

with each compound at different concentrations as well as 

with rapamycin as a control at 100 nM, and then activated 

mTORC1 by treating the cells with leucine for 10 min. As 

shown in Figure 3, pretreatment of rapamycin blocked phos-

phorylation of S6K, whereas pretreatment of compound 6 did 

not affect S6K phosphorylation at all (Figure 3A). Notably, 

compounds 12 and 18 showed a dose-dependent inhibition of 

mTORC1 in HEK293 cells (Figure 3B, 3C) while compound 

18 appeared to be more potent than compound 12. Interesting-

ly, these three sulfamates inhibited leucine-induced mTORC1 

activation in the order of 18 > 12 > 6, in contrast to the order 

of their inhibitory effects for the catalytic reaction (6 > 12 > 

18). This apparently opposite trend suggests that LRS-

mediated mTORC1 activation is independent of the leucyla-

tion activity of LRS on its cognate tRNA, which is again in 

agreement with previously reported observations.
15, 26

 More 

interestingly, the side chain modifications of an α-hydroxyl 

group in the leucyl side chain and a 2-iodo group in the ade-

nine, both of which adversely affected the catalytic activity of 

LRS, resulted in favorable effects for the mTORC1 inhibition  

 

Figure 3. Dose-dependent inhibition of leucine-induced mTORC1 

activation of compounds 6, 12 and 18 in HEK293 cells 

To further investigate the mechanisms of these sulfamates in 

LRS-mediated mTORC1 activation, we performed in vitro 

mTORC1 kinase assays using purified mTOR. As demonstrat-

ed in Figure 4, compounds 12 and 18 both did not inhibit the 

kinase activity of the purified mTOR at 200 µM, suggesting 

that these compounds are highly selective toward LRS, and 

did not act as an ATP-competitive inhibitor of the mTOR 

complex. We believe that these two sulfamates, 12 and 18, 

inhibited the mTORC1 activity by selectively blocking the 

LRS-mediated mTORC1 activation pathway, rather than di-

rectly interacting with mTOR. 

 

Figure 4. Effects of compounds 12 and 18 on the kinase activity 

of the purified mTOR. 

Finally, to examine the anti-cancer activity of leucyladenyl-

ate sulfamates, we performed the sulforhodamine B (SRB) 

colorimetric assays for cytotoxicity.
35

 We treated compounds 

6, 12, and 18 with six different types of cancer cell lines to-

gether with etoposide as a positive control. To determine can-

cer cell selectivity, we also treated all four compounds with 

normal human lung epithelial cells (MRC-5), with the meas-

ured IC50 values shown in Table 1. Compound 6, the most 
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Table 1. Relative cell growth inhibition of compounds 6, 12 and 18 for various cancer cell types and normal cells. 
a
 

IC
50

 (µM) A549 HCT116 K562 MDA-MB-231 SK-HEP-1 SNU638 MRC5 

6 0.59 0.24 0.4 0.73 0.54 0.84 5.9 

12 1.64 1.44 2.22 7.01 6.81 8.98 >50 

18 1.75 0.54 1.06 12.6 5.63 5.7 >50 

Etoposide 0.24 1.25 1.79 7.35 0.25 0.56 12.7 

aA549: lung cancer cells, MDA-MB-231: breast cancer cells, SK-Hep-1: liver cancer cells, SNU638: stomach cancer cells, HCT116: co-

lon cancer cells, K562: leukemia cells, MRC5: lung normal epithelial cell 

potent LRS inhibitor, exhibited the greatest cytotoxicity that 

was even greater than that of etoposide in all types of cells, 

except A549 and SNU638. Given that LRS plays a crucial role 

in protein synthesis, it is not surprising that compound 6 is 

highly cytotoxic in both cancer cells and normal cells. In con-

trast, compounds 12 and 18 showed selective cytotoxicity 

against cancer cells. Specifically, compound 18 showed potent 

cytotoxicity against colon cancer cells (HCT116) and leuke-

mia cells (K562) while exhibiting much less cytotoxicity 

against normal cells compared with compound 6 and etopo-

side. This result is particularly promising because several re-

cent studies have reported that hyperactive mTORC1 is one of 

the distinctive features in human colorectal cancer.
36, 37

 sug-

gesting that compound 18 exerted colon cancer specific cyto-

toxicity by selective inhibition of mTORC1. 

■ CONCLUSION 

In this study, we developed leucyladenylate sulfamate deriv-

atives that directly interact with LRS to inhibit the mTORC1 

pathway. Compound 6 inhibited the catalytic activity of LRS 

but did not affect the leucine-induced mTORC1 activation, 

whereas compound 18 inhibited mTORC1 activation, while it 

also inhibited the catalytic activity of LRS to a much lesser 

degree compared to compounds 6 and 12. Furthermore, both 

compounds 12 and 18 did not affect the kinase activity of the 

purified mTOR, indicating that the mTORC1-specific activity 

of these compounds arose from blocking the leucine-sensing 

ability of LRS rather than from interacting with mTOR direct-

ly. Cytotoxicity screening in various types of cancer cells and 

normal cells revealed that compound 6 showed the greatest 

cytotoxicity, probably due to a non-specific inhibition of LRS. 

Compounds 12 and 18 demonstrated cytotoxicity against all 

types of cancer cells but not against normal cells. Most nota-

bly, compound 18 exerted highly specific cytotoxicity against 

colon cancer cells that are known to have hyperactive 

mTORC1. We believe that compound 18 may serve as a use-

ful tool to study the role of LRS in the mTORC1 pathway but 

may also offer a novel treatment option for human colorectal 

cancer. 

■ EXPERIMENTAL SECTION 

General Methods. All chemical reagents were commercially 

available. Melting points were determined on a Büchi Melting Point 

B-540 apparatus and are uncorrected. Silica gel column chromatog-

raphy was performed on silica gel 60, 230-400 mesh, Merck. Nuclear 

magnetic resonance (
1
H-NMR and 

13
C-NMR) spectra were recorded 

on JEOL JNM-LA 300 [300 MHz (
1
H), 75 MHz (

13
C)] and Bruker 

Avance 400 MHz FT-NMR [400 MHz (
1
H), 100 MHz(

13
C)] spec-

trometers. Chemical shifts are reported in ppm units with Me4Si as a 

reference standard. Mass spectra were recorded on a VG Trio-2 GC-

MS and 6460 Triple Quad LC/MS. All final compounds were purified 

to >95% purity, as determined by high-performance liquid chroma-

tography (HPLC). HPLC was performed on an Agilent 1120 Compact 

LC (G4288A) instrument using an Agilent Eclipse Plus C18 column 

(4.6 x 250 mm, 5 µm) and a Daicel Chiralcel OD-H column (4.6 x 

250 mm, 5 µm). 

((3aR,4R,6R,6aR)-6-(6-amino-9H-purin-9-yl)-2,2-dimethyltetra-

hydrofuro[3,4-d][1,3]dioxol-4-yl)methyl sulfamate (4). Compound 4 

was prepared by following the reported procedure.
32

 Yield 69%, white 

solid; 
1
H-NMR (300MHz, CD3OD) δ 8.27 (s, 1H, CH), 8.22 (s, 1H, 

CH), 6.24 (d, 1H, CH, J = 2.55 Hz), 5.42 (dd, 1H, CH, J = 6.24 Hz, 

2.58 Hz), 5.13 (dd, 1H, CH, J = 6.21 Hz, 2.73 Hz), 4.51 (m, 1H, CH), 

4.32 (dd, 1H, CH, J = 10.62 Hz, 4.59 Hz), 4.24 (dd, 1H, CH, J = 

10.62 Hz, 5.31 Hz), 1.60 (s, 3H, CH3), 1.39 (s, 3H, CH3) 

 ((3aR,4R,6R,6aR)-6-(6-amino-9H-purin-9-yl)-2,2-dimethyltetra 

hydrofuro[3,4-d][1,3]dioxol-4-yl)methyl ((tert-butoxy carbonyl)-L-

leucyl)sulfamate (5). To a solution of compound 4 (0.54 mmol) in 

anhydrous MC (25 mL) was added N-Boc leucine (0.81 mmol) and 

DMAP (0.01 mmol) at 0
o
C. 1M DCC in MC (0.81 mmol) was added 

dropwise, stirred for 2 h at room temperature. The solution was fil-

tered on celite pad, washed with EtOAc (20 mL), and then concen-

trated. The filtrate was purified by column chromatography over silica 

gel (EtOAc:MeOH=10:1) to give the compound 5 (0.46 mmol). Yield 

85%, white solid; 
1
H-NMR (300MHz, CD3OD) δ 8.47 (s, 1H, CH), 

8.21 (s, 1H, CH), 6.22 (d, 1H, CH, J = 3.30 Hz), 5.33 (dd, 1H, CH, J 

= 5.88 Hz, 3.48 Hz), 5.10 (d, 1H, CH, J = 5.67 Hz), 4.53 (m, 1H, 

CH), 4.23 (d, 2H, CH2, J = 3.48 Hz), 4.06 (m, 1H, CH), 1.69 (m, 1H, 

CH), 1.60 (s, 3H, CH3), 1.52 (m, 2H, CH2), 1.43 (s, 9H, CH3), 1.40 (s, 

3H, CH3), 0.93 (dd, 6H, CH3, J = 6.60 Hz, 2.76 Hz) 

 ((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetra 

hydrofuran-2-yl)methyl (L-leucyl) sulfamate trifluoroacetate salt (6). 

The compound 5 (0.38 mmol) was dissolved in 80% aquous TFA 

(2mL) and stirred for 2 h at room temperature. The reaction mixture 

was evaporated and washed with EtOAc (20 mL). Aqueous layer was 

concentrated under reduced pressure to give crude pale yellow solid. 

The solid was purified by ion-exchange resin (HP20SS) to give the 

compound 6 (0.16 mmol). Yield 42%, white solid; 
1
H-NMR 

(500MHz, CD3OD) δ 8.49 (s, 1H, CH), 8.20 (s, 1H, CH), 6.07 (d, 1H, 

CH, J = 5.30 Hz), 4.62 (t, 1H, CH, J = 5.10 Hz), 4.39-4.29 (m, 4H, , 2 

CH, CH2), 3.61 (dd, 1H, CH, J = 8.50 Hz, 4.85 Hz), 1.78 (m, 2H, 

CH2), 1.57 (m, 1H, CH), 0.95 (dd, 6H, CH3, J = 15.95 Hz, 6.00 Hz); 

HRMS-FAB m/z [M+H]
+
 C16H25N7O7SH

+
 calcd 460.1536, Found: 

460.4898. 

 (2R,3R,4R,5R)-2-(6-amino-9H-purin-9-yl)-5-(((4-methoxyphenyl) 

diphenylmethoxy)methyl)tetrahydrofuran-3,4-diyl diacetate (8). 5’-O-

Monomethoxytrityl (MMT) protected adenosine (2.27 mmol) was 

prepared by following the reported procedure.
38

 To a solution of 5’-O-

MMT protected adenosine (2.05 mmol) in acetonitrile (50 mL) at 0
o
C 

was added DMAP (0.21 mmol), TEA (6.15 mmol) and acetic 

anhydride (6.15 mmol). The mixture was stirred for 4hr at room tem-

perature. Aqueous portion was extracted with EtOAc (50 mL). The 

organic phase was dried over MgSO4 and concentrated, which was 

purified by column chromatography (EtOAc:MeOH = 40:1, v/v) to 

give compound 8 (1.6 mmol). Yield 78%, white solid; 
1
H-NMR 

(300MHz, CDCl3) δ 8.01 (S, 1H, CH), 7.90 (S, 1H, CH), 7.42 (m, 4H, 

Ar), 7.32 (m, 4H, Ar), 7.25 (m, 4H, Ar), 6.18 (m, 4H, Ar), 6.26 (d, 

1H, CH, J =  6.6 Hz), 6.07 (t, 1H, CH, J = 5.3 Hz), 5.67 (dd, 1H, CH, 
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J = 5.1 Hz, 3.1 Hz), 4.31 (m, 1H, CH), 3.78 (S, 3H, CH3), 3.46 (m, 

1H, CH), 2.10 (S, 3H, CH3), 2.05 (s, 3H, CH3) 

 (2R,3R,4R,5R)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl) 

tetrahydrofuran-3,4-diyl diacetate (9). 80% aquous AcOH (100 mL) 

was slowly added to compound 8 (1.52 mmol) and the reaction 

mixture was stirred for 12 h at room temperature. The mixture was 

evaporated, neutralized with NaHCO3 and extrated with EtOAc (150 

mL x 2). Organic layer was combined, dried over MgSO4 and evapo-

rated. The residue was purified by column chromatography 

(EtOAc:MeOH = 20:1, v/v) to give compound 9 (0.97 mmol). Yield 

64%, white solid; 
1
H-NMR (300MHz, CDCl3) δ 8.32 (s, 1H, CH), 

7.85 (S, 1H, CH), 6.26 (S, 2H, NH2), 6.03 (d, 2H, CH2, J = 2.0 Hz), 

5.70 (m, 1H, CH), 4.37 (s, 1H, CH), 3.99 (dd, 1H, CH, J = 13.0 Hz, 

1.4 Hz), 3.86 (d, 1H, CH, J = 12.3 Hz), 2.18 (s, 3H, CH3), 2.02 (s, 

3H, CH3) 

 (2R,3R,4R,5R)-2-(6-amino-9H-purin-9-yl)-5-((sulfamoyloxy) 

methyl)tetrahydrofuran-3,4-diyl diacetate (10). Compound 10 was 

prepared by following the procedure described for compound 4. Yield 

93%, white solid; 
1
H-NMR (300MHz, CDCl3) δ 8.34 (s, 1H, CH), 

8.00 (s, 1H, CH), 6.16 (d, 1H, CH, J = 6.1 Hz), 5.91 (t, 1H, CH, J = 

5.9 Hz), 5.72 (m, 1H, CH), 2.16 (s, 3H, CH3), 2.07 (s, 3H, CH3) 

(2R,3R,4R,5R)-2-(6-amino-9H-purin-9-yl)-5-(((N-((2S,3R)-2,3-

diacetoxy-4-methylpentanoyl)sulfamoyl)oxy)methyl)tetrahydrofuran-

3,4-diyl diacetate (11). Compound 11 was prepared by following the 

procedure described for compound 5. Yield 79%, white solid; 
1
H-

NMR (300MHz, CD3OD) δ 8.47 (s, 1H, CH), 8.34 (s, 1H, CH), 6.29 

(d, 1H, CH, J = 5.3 Hz), 5.85 (t, 1H, CH, J = 5.49 Hz), 5.68 (dd, 1H, 

CH, J = 5.67 Hz, 4.0 Hz), 5.14 (dd, 1H, CH, J = 8.8 Hz, 2.7 Hz), 5.07 

(d, 1H, CH, J = 2.7 Hz), 4.52 (m, 2H, CH, NH), 3.68 (s, 1H, CH), 

2.14 (s, 3H, CH3), 2.03 (s, 3H, CH3), 2.01 (s, 3H, CH3), 2.04 (m, 1H, 

CH), 0.94 (d, 3H, CH3, J = 2.5 Hz), 0.91 (d, 3H, CH3, J = 2.4 Hz)  

((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetra 

hydrofuran-2-yl)methyl ((2S,3R)-2,3-dihydroxy-4-methylpentanoyl) 

sulfamate (12). Compound 11 (0.056 mmol) was dissolved in 0.02 M 

sodium methoxide solution in methanol (3 mL) and stirred for 2 h at 

room temperature. DOWEX 50WX8 hydrogen form resin (10 mg) 

was added in portions, filtered and concentrated to afford compound 

12 (0.03 mmol). Yield 56%, white solid; 
1
H-NMR (600MHz, CD-

3OD) δ 8.52 (s, 1H, CH), 8.18 (s, 1H, CH), 6.08 (d, 1H, CH, J = 2.8 

Hz), 4.64 (t, 1H, CH, J = 2.5 Hz), 4.40 (m, 1H, CH), 4.31 (m, 3H, 

CH), 4.05 (d, 1H, CH, J = 1.0 Hz), 3.51 (dd, 1H, CH, J = 4.4 Hz, 1.0 

Hz), 1.86 (m, 1H, CH), 1.01 (d, 3H, CH3, J = 3.2 Hz), 0.94 (d, 3H, 

CH3, J = 3.2 Hz); HRMS-ESI m/z [M+H]
+
 C16H24N6O9SH

+
 calcd 

477.1325, Found: 477.1395. 

(2R,3R,4S,5R)-2-(6-amino-2-iodo-9H-purin-9-yl)-5-(hydroxyl me-

thyl)tetrahydrofuran-3,4-diol (14). Compound 14 was prepared by 

following the reported procedure.
34 

Yield 11% in 4 steps, yellow 

solid; 
1
H-NMR (300MHz, CD3OD) δ 8.20 (s, 1H, CH), 5.89 (d, 1H, 

CH, J = 6.03 Hz), 4.66 (t, 1H, CH, J = 5.31 Hz), 4.30 (dd, 1H, CH, J 

= 5.10 Hz, 3.09 Hz), 4.15-4.12 (m, 1H, CH), 3.88 (dd, 1H, CH, J = 

12.45 Hz, 2.73 Hz), 3.74 (dd, 1H, CH, J = 12.45 Hz, 2.94 Hz), 2.18 

(s, 3H, CH3), 2.14 (s, 3H, CH3), 2.11 (s, 3H, CH3) 

(2R,3R,4R,5R)-2-(6-amino-2-iodo-9H-purin-9-yl)-5-(hydroxy 

methyl)tetrahydrofuran-3,4-diyl diacetate (15). Compound 15 was 

prepared by following the procedure described for compounds 8 and 

9. Yield 67% in 3 steps, colorless oil; 
1
H-NMR (300MHz, CDCl3) δ 

7.77 (s, 1H, CH), 6.47 (br, 1H, OH), 5.97 (d, 1H, CH, J = 7.68 Hz), 

5.91 (m, 1H, CH), 5.67 (dd, 1H, CH, J = 5.13 Hz, 1.29 Hz), 4.36 (d, 

1H, CH, J = 1.08 Hz), 4.51 (dd, 1H, CH, J = 13.02 Hz, 1.47 Hz), 3.88 

(d, 1H, CH, J = 11.73 Hz), 2.17 (s, 3H, CH3), 2.11 (s, 3H, CH3) 

(2R,3R,4R,5R)-2-(6-amino-2-iodo-9H-purin-9-yl)-5-((sulfamoyl 

oxy)methyl)tetrahydrofuran-3,4-diyl diacetate (16). Compound 16 

was prepared by following the procedure described for compound 10. 

Yield 86%, white solid; 
1
H-NMR (300MHz, CDCl3) δ 7.93 (s, 1H, 

CH), 6.14 (d, 1H, CH, J = 5.49 Hz), 5.84 (br, 2H, NH2), 5.78 (t, 1H, 

CH, J = 5.31 Hz), 5.71 (t, 1H, CH, J = 4.02 Hz), 4.53 (d, 2H, CH2, J = 

3.48 Hz), 4.47 (m, 1H, CH), 2.16 (s, 3H, CH3), 2.09 (s, 3H, CH3) 

(2R,3R,4R,5R)-2-(((N-((S)-2-acetoxy-4-methylpentanoyl)sulfam-

oyl)oxy)methyl)-5-(6-amino-2-iodo-9H-purin-9-yl)tetrahydrofuran-

3,4-diyl diacetate (17). Compound 17 (0.03 mmol) was prepared by 

following the procedure described for compound 11. Yield 81%, 

white solid; 
1
H-NMR (300MHz, CDCl3) δ 8.31 (s, 1H, CH), 6.28 (d, 

1H, CH, J = 6.69 Hz), 5.75 (m, 1H, CH), 5.54 (m, 1H, CH), 4.70 (m, 

1H, CH), 4.42-4.34 (m, 2H, CH2), 2.14 (s, 3H, CH3), 1.98 (s, 6H, 

CH3), 1.64 (m, 2H, CH2), 1.50 (m, 1H. CH), 0.79(dd, 6H, CH3, J = 

13.17 Hz, 6.60 Hz) 

((2R,3S,4R,5R)-5-(6-amino-2-iodo-9H-purin-9-yl)-3,4-dihydroxy 

tetrahydrofuran-2-yl)methyl ((S)-2-hydroxy-4-methylpentanoyl) 

sulfamate (18). Compound 18 was prepared by following the 

procedure described for compound 12. Yield 67%, white solid; 
1
H-

NMR (500MHz, CD3OD) δ 8.26 (s, 1H, CH), 5.98 (d, 1H, CH, J = 

4.90 Hz), 4.55 (t, 1H, CH, J = 4.85 Hz), 4.50 (dd, 1H, CH, J = 11.20 

Hz, 2.80 Hz), 4.44 (dd, 1H, CH, J = 11.2 Hz, 3.40 Hz), 4.36 (t, 1H, 

CH, J = 4.70 Hz), 4.28 (q, 1H, CH, J = 3.60 Hz), 4.03 (t, 1H, CH, J = 

6.30 Hz), 1.83-1.79 (m, 1H, CH), 1.52-1.47 (m, 2H, CH2), 0.90 (dd, 

6H, CH3, J = 6.60 Hz, 2.25 Hz); HRMS-ESI m/z [M+H]
+
 

C16H23IN6O8SH
+
 calcd 587.0343, Found 587.0410. 
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