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A B S T R A C T   

The one- and two-dimensional 15N, 13C and 1H NMR spectra of benzenediazonium chloride coupling product 
with 4-R-naphthalene-1-ols (R = NO2 (1), Br (2), Cl (3), H (4), OCH3 (5)) were measured and analysed. It was 
found that the reaction products exist predominantly in hydrazone forms. Contrary to previously published in-
fluence of substituents in diazonium salts, where more electron acceptor types of substituents cause increase 
contents of hydrazo forms, the situation in compounds 1–5 is completely opposite. Moreover, hydrazone content 
in 4-nitro-2-[(E)-(4-nitro-phenyl)diazenyl]naphtalen-1-ol (6) combining substitution both in position 4 of passive 
component and position 4 of active component (i. e. diazonium salt) is higher compared with that in 4-nitro-2- 
[(E)-(phenyl)diazenyl]naphtalen-1-ol (1).   

1. Introduction 

Since discovery of azo-hydrazo tautomerism by Zincke and Bind-
ewald in 1884 [1], many attempts to quantify the content of both forms 
have been performed [2–39 and reference cited therein] using mainly 
VIS [2–4,5,6,7,8,9,10,11,12], IR [2–4,9] and NMR spectroscopies 
[13–16,17–20,21,22,23,9,24,12,25–27,28,29], x-ray data [20,30,31,12, 
28] and later also theoretical calculations 9,30–39. In nearly all cases, 
the influence of substituents on azo/hydrazo tautomeric equilibria has 
been studied for compound being substituted in so called active com-
ponents (i.e. in diazonium salts) since a wide variety of substituted an-
ilines is very easily available. The common conclusion is that electron 
accepting substituents in substituted benzenediazonium salts, typically 
nitro group, increase hydrazone form content in resulting azo dyes 
compared with benzenediazonium salts substituted by electron donating 
substituents [6,32,10,29], e. g. methoxy or amino groups. 

The aim of this paper is to characterize azo/hydrazone forms content 
in compounds having substituents in so called passive component, in 4- 
substituted naphthalene-1-ols, using very detailed one- and two- 
dimensional 15N, 13C and 1H NMR spectra applications (Scheme 1). 

2. Experimental 

2.1. Synthesis 

Starting 4-substituted-naphthtalene-1-ols were commercial products 
bought from Sigma-Aldrich company. 

4-Nitro-2-[(E)-phenyldiazenyl]naphtalene-1-ol (1) [24], 4-bro-
mo-2-[(E)- phenyldiazenyl]naphtalen-1-ol (2) [40], 4-chloro-2-[(E)- 
phenyldiazenyl]naphtalen-1-ol (3) [40], and 4-methox-
y-2-[(E)-phenyldiazenyl]naphtalen-1-ol (5) [41] were prepared by 
coupling benzendiazonium chloride in water medium and 4-nitro-2-[(-
E)-(4-nitro-phenyl)diazenyl]naphtalen-1-ol (6) [42] was prepared by 
coupling 4-nitrobenzendiazonium chloride, also in water medium. 
During coupling benzenediazonium chloride with naphthtalen-1-ol in 
water [43], 4-[(E)-phenyldiazenyl]naphthalen-1-ol is the main reaction 
product and 2-[(E)-phenyldiazenyl]naphtalen-1-ol (4) is only a 
by-product its content being usually less than 2%. K. Bredereck [44] 
proposed to perform the coupling reaction in a dichloromethane/water 
mixture, 2-[(E)- phenyldiazenyl]naphtalen-1-ol (4) being extracted into 
dichloromethane and giving 24% yield after column chromatography. 

Melting points as well as yields of prepared compounds were in 
accordance with literature data and uniformity of compounds was 
checked by 1H NMR spectroscopy. 
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2.2. NMR spectroscopy 

The 1H, 13C and 15N NMR spectra were recorded on a Bruker Avance 
III HD 400 spectrometer operating at 400.13 MHz for 1H, 100.62 MHz 
for 13C and at 40.56 MHz for 15N and using liquid nitrogen-cooled 5-mm 
Prodigy cryo probe (Bruker) at 300 K. The samples were dissolved in 
deuteriochloroform. The 1H and 13C chemical shifts were referenced to 
internal TMS (δ = 0.00). The 15N chemical shifts were referred to the 
signal of external nitromethane placed in a co-axial capillary (δ = 0.0). 
All 2D experiments (gradient-selected (gs)-COSY, gs-NOESY, gs-HMQC, 
gs-HSQC, gs-HSQC-TOCSY, gs-HMBC) and 1D 1H–15N gs-HSQC were 
performed using manufacturer’s software (TOPSPIN 3.5) [45–47]. 

3. Results and discussions 

Azo-hydrazo tautomerism is a typical feature of azo dyes containing 
hydroxy group in an appropriate position(s). In most cases, the influence 
of substituents on azo/hydrazo tautomeric equilibria has been studied 
for compound being substituted in so called active components (i.e. in 
diazonium salts) since a wide variety of substituted anilines is very easily 
available. 

In this paper, we study one- and two-dimensional 15N, 13C and 1H 
NMR spectra in compounds 1–5 (Scheme 1) prepared by coupling of 
benzenediazonium chloride with 4-substituted naphthalen-1-ol. The 
substituents were chosen in such a manner so that we could cover non- 
substituted naphthalen-1-ol, one strongly electron accepting substituent 
(NO2), two halogenes and one very electron donating substituent 
(OCH3). 

The one- and two-dimensional 15N, 13C and 1H NMR spectra of 
compounds 1–5 were measured and very thoroughly analysed. 2D 
gradient-selected (gs)-COSY, gs-NOESY, gs-HMQC, gs-HSQC, gs-HSQC- 
TOCSY and gs-HMBC) and 1D 1H–15N gs-HSQC were performed. The 
obtained results are collected in Table 1. 

Lin et al. [24] performed 1H and 13C NMR study of a set of ten 1-[(E)- 
(3- or 4-subst. phenyl)diazenyl]naphtalen-2-ol in several solvents. 
Azo/hydrazone forms content estimation is based on changes of 13C 
chemical shifts of carbon C(2) = O/C(2)-OH. We cannot use this 
approach since 13C chemical shifts of carbon C(1) = O/C(1)-OH in 
compounds 1–5 are strongly influenced by substituent chemical shifts 
(SCS) effect of substituents R from position 4 (SCS for nitro group is 
+6.8 ppm, for bromine − 0.2 ppm, while SCS for methoxy group is – 7.6 
ppm) [48]. After “a correction” of experimental 13C chemical shifts for 
C-1, we can obtain the following monotonously increasing values of C 
(1) = O/C(1)-OH 165.0, 173.2, 174.2 and 184.6 ppm for compounds 1, 
2 and 4, 5. On the other hand, we could use 13C chemical shifts of carbon 
C(2′) or C(4′) of phenyl group present in all compounds 1–5, however, 
the differences are rather small (Table 1). 

Much greater changes in 1J(15Nα, 1H) exp coupling constants and 15N 
chemical shifts of Nα and Nb for compounds 1–5 are collected in Table 2. 
Hydrazone form content was calculated using equation (1) using 1J 
(15Nα, 1H) H = 96.5 Hz as proposed by Bekárek et al. [15,16] measured 

for 5-methyl-2-phenyl-4-(2-phenylhydrazono)-2,4-dihydro-3H-pyrazo-
l-3-one in deuteriochloroform. 

%Hydrazone=
[ 1J

(
15Nα,

1H
)
exp

/ 1J
( (

15Nα,
1H

)

H

)]
*100 (1) 

The results are shown in Table 2 differing from 63.5% for 1–91.2% 
for 5. 

Analogously, 15N chemical shifts of Nα and Nβ were used for hydra-
zone form content calculation [13,14,18] using Equation (2) 

%Hydrazone=
[
δ
( 15Nα/β

)
exp−

( 15Nα/β
)
H
]/[
 δ
( 15Nα/β

)
A− δ

( 15Nα/β
)

H
]
*100
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The 15N chemical shifts of Nα and Nβ are again shown in Table 2 to 
demonstrate their changes and to calculate hydrazone forms contents. 
Weighted average values of hydrazone form content was calculated 
using all three results being subsequently used for determination of 
equilibrium constants K = [hydrazo form]/[azo form]. 

The calculated (average) hydrazo form contents differ considerable 
for compounds 1–5 being strongly substituent dependent. Previously 
published influence of substituents in diazonium salts showed that more 
electron acceptor types of substituents cause increase of hydrazo forms 
[6,32,10,29]. Lin et al. presented [24] an approximate correlation of K 
= [hydrazo form]/[azo form] on σ+ Hammett constants. A part of it is 
presented in Fig. 1 having positive slope contrary to our data having 
negative slope of a curve. The correlation is not too precise, however, the 
opposite trends are clearly visible. 

Hydrazone form content in compound 1, having nitro group in po-
sition 4 of naphthalene, was ca 64% (Table 2). According to literature 
data mentioned above [6,32,10,29], an electron accepting group in 
position 4 of diazonium salt should increase hydrazone form content. To 
test this expectation also in our series of compounds, we prepared 
compound 6:

The solubility of compound 6 in deuteriochloroform is very low, 
however, we succeeded in measuring 1J(15N, 1H) exp and δ(15Nα) by long 
term accumulation of NMR spectra. 

The value of 1J(15N, 1H) exp coupling constant in compound 6 
increased to 82.4 Hz compared with 63.5 Hz in compound 1 (Table 2) 
clearly proving the above-mentioned expectation that hydrazone form 
content should increase considerably. The calculated hydrazone form 
content is 85.4%. The experimental 15N chemical shift of δ(15Nα) is 
− 154.6 ppm (contrary to − 108.9 ppm in compound 1), and calculated 

Scheme 1. R = NO2 (1), Br (2), Cl (3), H (4), OCH3 (5).  
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hydrazone form content in compound 6 using this value is 81.6%. Both 
experimental and calculated data are agreement with a common 
expectation. 

4. Conclusion 

Very detailed analysis of data obtained from one- and two- 
dimensional 15N, 13C and 1H NMR spectra allowed to characterize un-
doubtedly benzenediazonium chloride coupling products with 4-R- 
naphthalene-1-ols (R = NO2 (1), Br (2), Cl (3), H (4), OCH3 (5)). The 
1J(15N, 1H) exp coupling constants and both δ(15Nα) and δ(15Nβ) values 
allowed us to prove that the reaction products exist predominantly in 
hydrazone forms and correspond to (2Z)-4-R-2-[2-(phenyl)hydrazinyli-
dene]naphthalen-1(2H)-ones 1–5. Contrary to previously published in-
fluence of substituents in diazonium salts, more electron acceptor type 
of substituents cause an increase of azo forms. Hydrazone content in 
dinitro derivative (2Z)-4-nitro-2-[2-(4-nitrophenyl)hydrazinylidene] 
naphthalen-1(2H)-one 6 is higher compared with that in mono nitro 
(2Z)-4-nitro-2-[2-(phenyl)hydrazinylidene]naphthalen-1(2H)-one 1 
indicating the fact that substitution of active component by nitro group 
in position 4 increases hydrazone form content also in our model system. 
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15N Chemical shifts (ppm) and 1J(15Nα, 1H) exp coupling constants (Hz, ± 0.3 
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naphtalene-1-ols 1–5 ((presented by triangles (this paper)). 

Z. Neuerová and A. Lyčka                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0143-7208(21)00017-6/sref1
http://refhub.elsevier.com/S0143-7208(21)00017-6/sref2
http://refhub.elsevier.com/S0143-7208(21)00017-6/sref2
https://doi.org/10.1016/0143-7208(82)80010-7
https://doi.org/10.1016/0143-7208(82)80010-7
http://refhub.elsevier.com/S0143-7208(21)00017-6/sref4
http://refhub.elsevier.com/S0143-7208(21)00017-6/sref4
http://refhub.elsevier.com/S0143-7208(21)00017-6/sref4


Dyes and Pigments 188 (2021) 109149

4

[5] Reeves RL, Kaiser RS. Selective solvation of hydrophobic ions in structured 
solvents. Azo-hydrazone tautomerism of azo dyes in aqueous organic solvents. 
J Org Chem 1970;35:3670–5. https://doi.org/10.1021/jo00836a017. 

[6] Haessner R, Mustroph H, Borsdorf R. Study on the UV-VIS spectral behavior of azo 
dyes 8. Quantitative study on tautomerically substituted 1-phenylazo-2-naphthol 
by means of UV-VIS spectroscopy. Dyes Pigments 1985;6:271–91. https://doi.org/ 
10.1016/0143-7208(85)87004-2. 

[7] Antonov resolution of overlapping UV-visible absorption bands: quantitative 
analysis of tautomeric equilibria L. Stoyanov S. Anal. Chim. Acta 1995;314: 
225–32. https://doi.org/10.1016/0003-2670(95)00281-4. 
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[16] Bekárek V, Dobáš J, Socha J, Vetešník P. Večeřa M Reactivity of organic azo- 
compounds.10. NMR study on azo-hydrazone tautomeric equilibrium in hydroxy 
azo-compounds. Collect Czech Chem Commun 1970;35:1406. https://doi.org/ 
10.1135/cccc19701406. 
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