

Pergamon

0031-9422(95)00398-3

CYANOGENIC AND NON-CYANOGENIC GLYCOSIDES FROM MANIHOT ESCULENTA

HUNSA PRAWAT, CHULABHORN MAHIDOL, SOMSAK RUCHIRAWAT, UMA PRAWAT,* PITTAYA TUNTIWACHWUT-TIKUL,†‡ UNCHAREE TOOPTAKONG,† WALTOR C. TAYLOR,§ CHAVENG PAKAWATCHAI,¶ BRIAN W. SKELTON|| and Allen H. White||

Department of Chemistry and Chulabhorn Research Centre, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Chulabhorn Research Institute, Vipavadee Highway, Thailand; *Department of Chemistry, Phuket Teachers College, Phuket 83000, Thailand; †Department of Chemistry, Faculty of Science, Silpakorn University, Nakorn Pathom 73000, Thailand; \$Department of Organic Chemistry, The University of Sydney, New South Wales 2006, Australia; ¶Department of Chemistry, Prince of Songkla University, Hat Yai, Thailand; ¶Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands, Western Australia 6009, Australia

(Received in revised form 4 April 1995)

Key Word Index—Manihot esculenta; Euphorbiaceae; cassava; roots; leaves; cyanogenic glycosides; non-cyanogenic glycosides; flavonoids.

Abstract—In addition to lotaustralin and linamarin, a novel cyanogenic glycoside, $2-((6-O-(\beta-D-apiofuranosyl)-\beta-D-glucopyranosyl)oxy)-2-methylbutanenitrile, two novel non-cyanogenic glycosides, (2S)-((6-O-(\beta-D-apiofuranosyl)-\beta-D-glucopyranosyl)oxy)butane and <math>2-((6-O-(\beta-D-apiofuranosyl)-\beta-D-glucopyranosyl)oxy)propane, and a simple non-cyanogenic glycoside, ethyl <math>\beta$ -D-glucopyranoside, were isolated from an ethanolic extract of the fresh root cortex of *Manihot esculenta*. From a methanolic extract of the fresh leaves of this species lotaustralin and linamarin, and two flavonoid glycosides, kaempferol-3-O-rutinoside and quercetin-3-O-rutinoside were isolated.

INTRODUCTION

Cassava, Manihot esculenta, is a major source of dietary energy for human and domestic animals in many tropical countries [1]. Chemical investigation of the root cortex of this plant has led to the isolation of four new glycosides, 2-((6-O-(β -D-apiofuranosyl)- β -D-glucopyranosyl)oxy)-2-methylbutanenitrile (1), (2S)-((6-O-(β -D-apiofuranosyl)- β -D-glucopyranosyl)oxy)butane (2), 2-((6-O-(β -D-apiofuranosyl)- β -D-glucopyranosyl)oxy)propane (3), ethyl β -D-glucopyranoside (4) and two known cyanogenic glycosides, lotaustralin (5) and linamarin (6). Together with compounds 5 and 6, two known flavonoid glycosides, kaempferol-3-O-rutinoside (7) and quercetin-3-O-rutinoside (8) were isolated from the fresh leaves of the plants. X-ray crystallographic structures of the acetate derivatives of 2 and 4 have been determined.

RESULTS AND DISCUSSION

The concentrated ethanol extract of fresh cassava root cortex was separated into two layers by addition of CH_2Cl_2 -MeOH-H₂O (6:4:1). Column chromatography of the material in the upper layer on silica gel gave lotaustralin (5), linamarin (6), ethyl glucoside (4), a mixture of *iso*butyl cyanogenic glycoside (1), and *iso*butyl glycoside (2), and *iso*propyl glycoside (3).

Acetylation of the mixture of 1 and 2 gave a mixture of acetate derivatives, 1a and 2a, which was separated by column chromatography on silica gel. Deacetylation of 2a with methanolic K_2CO_3 gave the isobutyl glycoside 2. CI mass spectrometry (NH₃) of 2 showed a pseudomolecular ion peak at m/z 386 (C₁₅H₂₈O₁₀ + NH_4)⁺ which was in good agreement with 15 carbon signals in the ¹³C NMR spectrum. A fragmentation peak at m/z 312 (C₁₁H₁₉O₉ + NH₃)⁺ corresponded to loss of an isobutoxyl group (C_4H_0O). The ¹H NMR spectrum of 2 exhibited signals from two anomeric protons as two doublets at $\delta 4.32$ (J = 7.5 Hz) and $\delta 5.02$ (J = 1.5 Hz) which were assigned to those of β -D-glucose and β -Dapiose, respectively. The aglycone isobutoxyl group was indicated by the signals of two methyl groups appearing as a doublet at $\delta 1.24$ (J = 6.2 Hz) and a triplet at $\delta 0.93$ (J = 7.0 Hz); a methine proton resonated at $\delta 3.72$ (sextet, J = 7.0 Hz) and two methylene protons gave rise to two quintets at $\delta 1.47 (J = 7.0 \text{ Hz})$ and 1.62 (J = 7.0 Hz). The ¹³CNMR spectrum of 2 exhibited signals for two anomeric carbons (δ 104.0 and 111.6). The peak at δ 70.3

[‡]Author to whom correspondence should be addressed.

Table 1. ¹³C NMR spectral data for compounds 2-6 (D₂O, DSS as internal standard)

Carbon	2	3	4	5	6
Aglycone	;				
1	22.54	23.57*	_	25.79	28.39*
2	72.38	75.52	68.48	78.28*	73.95
3	30.88	24.92*	16.79	35.54	29.09*
4	11.31			10.40	
CN		—		123.63	123.57
Glucose					
1′	104.01	102.88	104.20	101.14	100.98
2′	77.14*	75.52	75.47	75.36	74.87
3′	81.37*	78.23*	78.23	78.61*	78.12*
4′	72.38	72.16	72.05	72.10	71.56
5′	78.39*	77.04*	78.23	78.12*	77.63*
6′	70.26	70.10	63.22	63.17	62.79
Apiose					
1″	111.55	111.38	_		
2″	79.15*	78.93*	_	_	_
3″	81.86	81.70	_	_	_
4″	76.12	75.95		_	
5″	66.20	66.04			

*Assignments may be interchanged between the carbons in the same column.

(t), which showed a significant glycosidation shift, is indicative of the linkage of the terminal apiose to the glucosyl moiety at C-6.

Acetylation of 2, in the usual manner, provided the hexaacetate 2a. The ¹HNMR spectrum of 2a showed

two anomeric proton signals at $\delta 4.54$ (d, J = 8.0 Hz) and 5.05 (br s), which were assigned to those of β -D-glucose and β -D-apiose, respectively. Through selective single frequency proton-decoupling experiments, assignments for all individual sugar signals were made. The occurrence upfield of the resonances of the H-6'a and H-6'b ($\delta 3.61$ and 3.67) (no acetylation shift) indicated that the glycosidic linkage was at C-6 of glucose. Furthermore, selective irradiation of the apiose anomeric proton (H1") gave NOE enhancements of the signals from H-6'a (3.5%) and H-6'b (2%), as well as of the signal from H-2" (3.5%). Based on this evidence, the structure 2 was deduced.

The acetate derivative 2a was obtained as colourless needles which were suitable for X-ray crystallographic analysis. The single crystal X-ray analysis confirmed the structure 2a and indicated the (S)-configuration at C-2; an ORTEP projection of the structure is shown in Fig. 1. The structure of 2 is therefore $(2S)-((6-O-(\beta-D-apio$ $furanosyl)-\beta-D-glucopyranosyl)oxy)butane.$

The ¹H NMR spectrum of the acetate derivative **1a** was similar to that of **2a** except that the chemical shifts of C-2-CH₃, (H-3)₂, and (H-4)₃ were shifted downfield by 0.35, 0.4, and 0.18 ppm, respectively, compared with **2a**. This may due to the presence of the nitrile group on C-2 in **1a**. Furthermore, C-2-CH₃ resonated as a singlet and the (H-3)₂ resonance was less complex.

The ¹³C NMR spectrum of 3 was similar to that of 2 except for the presence of one carbon less than that of 2 (δ 20-30 region). The two anomeric carbon signals appeared at $\delta 102.9$ and 111.4 which were ascribed to those of β -D-glucose and β -D-apiose, respectively. The CI mass spectrum of 3 exhibited a pseudomolecular ion peak at m/z 372 [M + NH₄]⁺; the EI mass spectrum of 3 showed peaks at m/z 295 [M - 59]⁺, 221 [M - 133]⁺ and 133 $[M - 59 - 162]^+$, corresponding to losses of isopropoxyl, pentose and isopropoxyl, and hexose groups, respectively. Acetylation of 3 by the standard procedure gave the hexaacetate 3a. The two anomeric proton signals appeared at $\delta 4.54$ (d, J = 7.5 Hz) and 5.05 (br s). The aglycone isopropoxyl group was indicated by the signals of two methyl groups appearing as two doublets at $\delta 1.13$ (J = 6.0 Hz) and 1.21 (J = 6.0 Hz) and the septet signal of a methine proton at δ 3.91. A double quantum-filtered ¹H-¹H 2D correlation spectrum (DQFCOSY) provided assignments of all individual sugar signals. These were confirmed by selective single frequency proton-decoupling experiments. In addition, NOE enhancements were observed between the CH₃ signal at $\delta 1.13$ and H1' ($\delta 4.54$) (2.6%), between H2 (δ 3.90) and H1' (5.5%), and between (H6')₂ and H1" (6%). Therefore, the glycoside 3 was characterized as 2-((6-O-(β -D-apiofuranosyl)- β -D-glucopyranosyl)oxy)propane.

The ¹³C NMR spectrum of 4 showed eight carbon signals. An anomeric carbon signal appeared at $\delta 104.2$. The sugar moiety of 4 was identified as β -D-glucose. The CI mass spectrum of 4 showed a pseudomolecular ion peak at m/z 226 [M + NH₄]⁺ together with a fragment ion at m/z 180 [(M + NH₃) - 45]⁺ corresponding to a loss

Fig. 1. Single molecules of compounds 2a and 4a. Thermal ellipsoids (2090) are shown for non-hydrogen atoms; hydrogen atoms have an arbitrary radius of 0.1 Å. Crystallographic skeletal numbering is shown.

of an ethoxyl group. The ¹H NMR spectrum exhibited the signals of a methyl group at $\delta 1.25$ (t, J = 6.5 Hz) and two methylene protons at $\delta 3.63$ (dq, J = 9.0, 6.5 Hz) and 3.96 (dq, J = 9.0, 6.5 Hz) corresponding to the presence of an ethoxyl group in 4. Acetylation of 4 provided the tetraacetate 4a. The ¹H NMR of 4a showed signals for an anomeric proton at $\delta 4.51$ (d, J = 7.0 Hz), a methyl group at $\delta 1.20$ (t, J = 6.5 Hz) and one methylene group at $\delta 3.58$ (dq, J = 9.0, 6.5 Hz) and 3.91 (dq, J = 9.0, 6.5 Hz) corresponding to an ethoxyl group. By selective single frequency proton-decoupling experiments, assignments of all individual protons of the glucose moiety were confirmed. Therefore, the glycoside 4 was identified as ethyl β -D-glucopyranoside. A single crystal X-ray analysis of 4a confirmed the structure. An ORTEP projection of 4a is shown in Fig. 1. As ethanol was used as the solvent for the extraction, it is probable that 4 is an artefact.

Lotaustralin 5 and linamarin 6 were identified by comparison their spectral data with data reported proviously [2-5]. Acetylation of 5 and 6 by standard procedures gave the acetate derivatives 5a [2, 3] and 6a [2-5] respectively.

The methanol extract of the fresh leaves M. esculanta gave lotaustralin 5, linamarin 6, nicotiflorin 7 and rutin 8. Acetylation of 7 and 8 by standard procedures gave the acetate derivatives, 7a and 8a, respectively. The flavonoid glycosides 7 and 8 were identified by comparison of their spectral data with data reported previously [6–8].

EXPERIMENTAL

Unless otherwise stated, analyses were carried out by the Scientific and Technological Research Equipment Center, Chulalongkorn University, Bangkok, Thailand. Mps: uncorr. UV: MeOH. ¹H NMR: CDCl₃, 400 MHz; decoupling experiments: CDCl₃ + C₆D₆. Optical rotations: CHCl₃, Me₂CO and H₂O. TLC: precoated PF254 plates (Merck). CC: silica gel 70–230 mesh (Merck). Compounds were identified by comparison of ¹H NMR, IR and mmp.

Extraction and isolation. Fresh cassava root cortex (2.5 kg) was ground in boiling 95% EtOH in a Waring blender. The filtrate was evaporated to give a darkbrown solid (100 g) which was extracted with CH₂Cl₂-MeOH-H₂O (6:4:1). Additional H₂O was added as necessary to produce two layers. The upper layer was evaporated to give a brown solid (25 g). The brown solid was chromatographed on a column of silica gel (1.7 kg) and was eluted with a gradient of CH₂Cl₂-MeOH-H₂O (lower phase) (20:3:1 (3 l), 10:3:1 (4 l), 7:3:1 (7 l),6.5:3.5:1 (7 l)). Successive frs were combined on the basis of their behaviour on TLC and evaporated to give compounds 5 and 6, as solids (0.13 and 2.36 g, respectively), compound 4 as a slightly yellow semi-solid (0.89 g), a mixt. of compounds 2 and 1, as a slightly yellow semi-solid (0.33 g), and compound 3, as a slightly yellow solid (4.28 g).

Fresh leaves (6 kg) were ground in boiling MeOH in a blender. After filtration, the extract was evaporated to dryness and the residue washed with several portions of hexane to remove chlorophylls and other hexane-sol. compounds. The brown residue was evaporated to give a dark brown solid (222 g) which was then extracted with CH₂Cl₂-MeOH-H₂O (6:4:1). Additional H₂O was added as necessary to separate the layers. The upper layer was evaporated to give a brown solid (80 g) which was chromatographed on a column of silica gel (1.8 kg) and eluted with a gradient of CH₂Cl₂-MeOH-H₂O (lower phase) 20:3:1 (20 l), 10:3:1 (9 l), 7:3:1 (13 l). At this stage, TLC of the eluent showed the presence of four compounds, lotaustralin 5, linamarin 6, nicotiflorin 7 and rutin 8. Removal of solvent gave a yellow-brown solid (24 g) which was rechromatographed on a column of silica gel (1.65 kg). The column was eluted with a gradient of CH₂Cl₂-MeOH-H₂O (lower phase) (10:3:1 (300 ml), 7:3:1 (3.4 l)). Successive frs were combined on the basis of their behaviour on TLC and evaporated to give a mixt. of 5 and 6 as a slightly yellow solid (6.2 g), compound 7 as a yellow solid (0.5 g) and compound 8 as a yellow solid (0.1 g).

2-((6-O-(β -D-Apiofuranosyl)- β -D-glucopyranosyl)oxy)-2-methylbutanenitrile (1) and (2S)-((6-O-(β -D-apiofuranosyl)- β -D-glucopyranosyl)oxy)butane (2). Attempts to separate the mixt. of 1 and 2 were unsuccessful. ¹H NMR indicated that compound 2 was the major component.

Acetylation of 1 and 2. The mixt. of compounds 1 and 2 (263 mg) was acetylated with Ac_2O (2 ml) in pyridine (3 ml) at room temp. for 2 days to give a mixt. of acetate

derivatives 1a and 2a which was recrystallized from EtoAc-hexane as colourless granules. This mixt. was separated on a column of silica gel with EtOAc-hexane (3.5:6.5) to give the respective acetate derivatives 1a (12 mg) and 2a (248 mg). Compound 1a was recrystallized from EtOAc-hexane as a colourless needle, mp 175–176.5°. $[\alpha]_D^{25} - 38.2^\circ$ (c 0.26, CHCl₃). v_{max} CHCl₃ cm⁻¹: 3000, 2975, 2240, 1750, 1415, 1365, 1220, 1050. ¹H NMR: $\delta 1.05$ (3H, t, J = 7.5 Hz, H-4), 1.54 (3H, s, CH₃), 1.87 (2H, m, H-3), 2.0, 2.02, 2.05, 2.053 2.08, 2.12 (3H each, all s, 6 × OAc), 3.55 (1H, m, H-5'), 3.72 (2H, m, H-6'a and H-6'b), 4.15 (1H, d, J = 9.0 Hz, H-4"a), 4.23 (1H, d, J = 9.0 Hz, H-4"b), 4.53 (1H, d, J = 12.5 Hz, H-5"a) 4.79 (1H, d, J = 12.5 Hz, H-5"b), 4.83 (1H, d, J = 8.0 Hz, H-1'), 4.96 (1H, t, J = 9.5 Hz, H-4'), 4.98 (1H, dd, J = 9.5, 8.0 Hz, H-2', 5.03 (1H, br s, H-1''), 5.25 (1H, t, t)J = 9.5 Hz, H-3'), 5.36 (1H, br s, H-2"). Compound 2a was recrystallized from EtOAc-hexane as colourless needles, mp 143-144°. Found: C, 52.4; H, 6.5. C₂₇H₄₀O₁₆ requires C, 52.3; H, 6.5%. $[\alpha]_D^{25} - 63.2^\circ$ (c 0.07, Me₂CO). *v*_{max} cm⁻¹: 2950, 1745, 1400, 1360, 1230, 1020. ¹H NMR: $\delta 0.87$ (3H, t, J = 7.5 Hz, H-4), 1.19 (3H, d, J = 7.5 Hz, H-1), 1.44 (1H, m, H-3a), 1.49 (1H, m, H-3b), 1.99, 2.022, 2.024, 2.03, 2.08, 2.11 (3H each, all s, $6 \times OAc$), 3.61 (3H, overlapping, H-5', H-6'a and H-2), 3.67 (1H, m, H-6'b), 4.14 (1H, d, J = 11.0 Hz, H-4''a), 4.22 (1H, d, J = 11.0 Hz,H-4"b), 4.54 (1H, d, J = 8.0 Hz, H-1'), 4.55 (1H, d, J = 12.5 Hz, H-5"a), 4.77 (1H, d, J = 12.5 Hz, H-5"b), 4.91 (1H, t, J = 9.5 Hz, H-4'), 4.93 (1H, dd, J = 9.5, 8.0 Hz, H-2'), 5.05 (1H, br s, H-1"), 5.19 (1H, t, J = 9.5 Hz, H-3'), 5.34 (1H, br s, H-2"). CI MS m/z (rel. int.): 638 $[M + NH_4]^+$ (100), 596 $[(M + H) - 25]^+$ (1), 259 $[M - 361]^+$ (1). EI MS m/z (rel. int.): 361 $[M - 259]^+$ (0.5), 259 $[M - 361]^+$ (43), 73 $[M - 547]^+$ (4), 43 $[M - 577]^+$ (100).

Deacetylation of compound 2a. A soln of compound 2a (160 mg) in a satd soln of K₂CO₃ in dry MeOH (3 ml) was heated under reflux for 1.5 hr. The reaction mixt. was cooled, dild with H₂O and evaporated. The aq. soln was extracted with n-BuOH satd with H₂O. Removal of solvent gave a solid residue which was purified by CC using silica gel with 5% MeOH in CH₂Cl₂ as eluent, to give compound 2 as a colourless solid (72 mg), mp 114-116°. Found: C, 47.9; H, 8.1. C₁₅H₂₈O₁₀.1/2 H₂O requires C, 47.7; H, 7.8%. $[\alpha]_D^{25} - 64.9^\circ$ (c 0.09, H₂O). v_{max} cm⁻¹: 3300 (br), 2870, 1050. ¹H NMR: δ 0.93 (3H, t, J = 7.0 Hz, H-4), 1.24 (3H, d, J = 6.2 Hz, H-1), 1.47 (1H, quintet, J = 7.0 Hz, H-3a), 1.62 (1H, quintet, J = 7.0 Hz, H-3b), 3.30 (1H, t, J = 7.5 Hz, H-4'), 3.41-3.44 (3H, overlapping)H-2', H-3' and OH), 3.63 (4H, overlapping, H-5', H-6'a, H-2" and OH), 3.72 (1H, sextet, J = 7.0 Hz, H-2), 3.82-3.93 (4H, overlapping, H-4"a, H-4"b, H-5"a and H-5"b), 3.96 (1H, dd, J = 11.0, 1.5 Hz, H-6b), 4.25 (1H, br)s, OH), 4.32 (1H, d, J = 7.5 Hz, H-1'), 4.36 (2H, br s, $2 \times OH$), 4.67 (1H, br s, OH), 5.02 (1H, d, J = 1.5 Hz, H-1"). CI MS m/z (rel. int.): 386 [M + NH₄]⁺ (100), 312 $[(M + NH_3) - 73]^+$ (1). EI MS m/z (rel. int.): 295 $[M - 73]^+$ (1), 163 $[(M + H) - 206]^+$ (10), 73 $[M - 295]^+$ (75), 57 $[M - 331]^+$ (100).

2-[[6-O-(β-D-Apiofuranosyl)-β-D-glucopyranosyl]oxy]propane (3). Compound 3 was purified by CC using silica gel and CH₂Cl₂-MeOH-H₂O (6.5:3.5:1, lower layer) as eluent, to give a colourless solid (4.28 g), mp 119-120°. Found: C, 46.2; H, 7.6. C₁₄H₂₆O₁₀.1/2 H₂O requires C, 46.3; H, 7.5%. $[\alpha]_D^{25} - 82.7^\circ$ (c 0.59, H₂O). v_{max} cm⁻¹: 3400 (br), 2975, 2925, 2870, 1460, 1370, 1050. ¹H NMR: δ 1.20 (3H, d, J = 5.6 Hz, CH₃), 1.25 (3H, d, J = 5.6 Hz, CH₃), 4.31 (1H, d, J = 7.5 Hz, H-1'), 5.01 (1H, d, J = 1.8 Hz, H-1"). CI MS m/z (rel. int.): 372 [M + NH₄]⁺ (100), 312 [M - 60]⁺ (1), 116 [M - 238]⁺ (1). EI MS m/z (rel. int.): 295 [M - 59]⁺ (1%), 221 [M - 133]⁺ (2), 133 [M - 221]⁺ (65), 43 [M - 311]⁺ (100).

Acetylation of compound (3). Compound 3 (100 mg) was acetylated with $Ac_2O(1 \text{ ml})$ and pyridine (2 ml) at room temp. for 35 hr to give the hexaacetate 3a (142 mg) which was recrystallized from EtOAc-hexane as a colourless needle, mp 142-143°. Found: C, 51.5; H, 6.3. $C_{26}H_{38}O_{16}$ requires C, 51.5; H, 6.3%. $[\alpha]_{D}^{25} - 58.2^{\circ}$ (c 0.41, acetone). v_{max} cm⁻¹: 3013, 2975, 2875, 1745, 1380, 1235, 1040. ¹H NMR: δ 1.13 (3H, d, J = 6.0 Hz, CH₃), 1.21 (3H, d, J = 6.0 Hz, CH₃), 1.995, 2.023, 2.029, 2.033, 2.08, 2.11 (3H each, all s, $6 \times OAc$), 3.64 (3H, m, H-6'a, H-6'b, H-5'), 3.91 (1H, septet, J = 6.0 Hz, H-2), 4.15 (1H, d, J = 9.0 Hz, H-4''a, 4.22 (1 H, d, J = 9.0 Hz, H-4''b),4.54 (1H, d, J = 7.5 Hz, H-1'), 4.56 (1H, d, J = 11.0 Hz, H-5"a), 4.76 (1H, d, J = 11.0 Hz, H-5"b), 4.91 (1H, dd, J = 8.5 Hz, 7.5 Hz, H-2'), 4.91 (1H, t, J = 8.5 Hz, H-4'), 5.05 (1H, br s, H-1"), 5.19 (1H, t, J = 8.5 Hz, H-3'), 5.28 (1H, br s, H-2"). CI MS m/z (rel. int.): 624 [M + NH₄]⁺ (100), 259 $[M - 347]^+$ (1). EI MS m/z (rel. int.): 331 $[M - 275]^+$ (10), 275 $[M - 331]^+$ (40), 259 $[M - 347]^+$ (20), 43 $[M - 563]^+$ (100).

Partial hydrolysis of compound (3). A soln of compound 3 (201 mg) in 1% H_2SO_4 in 50% aq. EtOH (5 ml) was heated at 60–68° for 6 hr. The aq. soln was neutralized with Na₂CO₃, filtered and evaporated to give a crude residue which was chromatographed on a column of silica gel using CH₂Cl₂-MeOH-H₂O (20:3:1, 15:3:1 and 10:3:1, lower layer) as eluents to give *iso*propyl β -D-glucopyranoside 9 (79 mg). $[\alpha]_D^{25} - 41.1^\circ$ (c 0.11, H₂O), ν_{max}^{Nujol} cm⁻¹: 3400 (br), 2860, 1460, 1380, 1160, 1120, 1045, 1305.

Acetylation of compound 9. Compound 9 (45 mg) was acetylated with Ac₂O (0.5 ml) and pyridine (1 ml) at room temp. for 2 hr to give the acetate derivative 9a (80 mg) which was recrystallized from hexane as colourless needles, mp 138–140°. Found: C, 52.5; H, 6.8. $C_{17}H_{26}O_{10}$ requires C, 52.3; H, 6.7%. $[\alpha]_D^{25} - 26.4^{\circ}$ (c 0.28, CHCl₃). $\nu_{max}^{CHCl_3}$ cm⁻¹: 3015, 2975, 2850, 1750, 1385, 1235, 1040. ¹H NMR: δ 1.14 (3H, d, J = 5.6 Hz, CH₃), 1.23 (3H, d, J = 5.6 Hz, CH₃), 2.0, 2.01, 2.03, 2.08 (3H each, all s, 4×OAc), 3.68 (1H, ddd, J = 9.3, 5.0, 2.5 Hz, H-5'), 3.92 (1H, septet, J = 5.6 Hz, H-2), 4.13 (1H, dd, J = 11.5, 2.5 Hz, H-6'a), 4.25 (1H, dd, J = 11.5, 5.0 Hz, H-6'b), 4.55 (1H, d, J = 7.5 Hz, H-1'), 4.94 (1H, dd, J = 9.3, 7.5 Hz, H-2'), 5.07 (1H, t, J = 9.3 Hz, H-4'), 5.21 (1H, t, J = 9.3 Hz, H-3'). *Ethyl-β-D-glucopyranoside* (4). Compound 4 was purified by CC using silica gel with 3% MeOH in CH₂Cl₂, to give a colourless semi-solid. $[\alpha]_D^{25} - 30.9^{\circ}$ (c 0.32, H₂O) [lit. [8] $[\alpha]_D - 36.7^{\circ}$]. ν_{max}^{neat} cm⁻¹: 3400 (*br*), 2875, 2825, 1060. ¹H NMR: $\delta 1.25$ (3H, *t*, *J* = 6.5 Hz, H-2), 3.23 - 3.28 (2H, overlapping, H-5' and OH), 3.43-3.46 (2H, overlapping, H-2' and H-3'), 3.56 (1H, *t*, *J* = 6.0 Hz, H-4'), 3.63 (1H, *dq*, *J* = 9.0, 6.5 Hz, H-1a), 3.79 (1H, *m*, H-6'a), 3.84 (1H, *m*, H-6'b), 3.96 (1H, *dq*, *J* = 9.0, 6.5 Hz, H-1b), 4.31 (1H, *d*, *J* = 7.0 Hz, H-1'), 4.21, 4.53, 4.58 (1H each, all *d*, *J* = 3.0, 2.0, 3.0 Hz, 3 × OH). CI MS *m/z* (rel. int.): 226 [M + NH₄]⁺ (100), 208 [M]⁺ (3), 180 [(M + NH₃) - 45]⁺ (33), 163 [M - 45]⁺ (4).

Acetylation of compound (4). A soln of compound 4 (40 mg) in pyridine (1.5 ml) and $Ac_2O(1 ml)$ was stirred at room temp under N_2 for 3.5 hr. After work-up, the acetate derivative 4a was obtained as a colourless solid (65 mg). Acetate 4a was purified on a column of silica gel using 1% MeOH in CH₂Cl₂ to give a colourless solid which was recrystallized from EtOAc-hexane as a colourless rhombic crystals, mp 106-107° (lit. [8] colourless needles, mp 106.8°). (Found: C, 51.5; H, 6.4. C₁₆H₂₄O₁₀ requires C, 51.1; H, 6.4%). $[\alpha]_D^{25} - 23.6^\circ (c \ 0.11, Me_2CO)$ (lit. [8] $[\alpha]_{\rm D}$ - 22.7°). $v_{\rm max}$ cm⁻¹: 3000, 2975, 2875, 1750, 1435, 1380, 1245, 1035. ¹H NMR: δ 1.20 (3H, t, J = 6.5 Hz, H-2), 2.01, 2.02, 2.05, 2.09 (3H, each, all s, $4 \times OAc$), 3.58 (1H, dq, J = 9.0, 6.5 Hz, H-1a), 3.69 (1H, ddd, J = 9.0, 4.0, 2.0 Hz, H-5'), 3.91 (1H, dq, J = 9.0,6.5 Hz, H-1b), 4.14 (1H, dd, J = 11.0, 2.0 Hz, H-6'a), 4.27 (1H, dd, J = 11.0, 4.0 Hz, H-6'b), 4.51 (1H, d, J = 7.0 Hz,H-1'), 4.98 (1H, dd, J = 9.0, 7.0 Hz, H-2'), 5.09 (1H, t, J = 9.0 Hz, H-4'), 5.20 (1H, t, J = 9.0 Hz, H-3'). CI MS m/z (rel. int.): 394 $[M + NH_4]^+$ (100), 352 $[(M + 1) - 25]^+$ (1). Spectral data (IR, ¹H NMR) of ethyl β -D-glucopyranoside and its acetate have not been reported previously.

(R)-2-(β -D-Glucopyranosyloxy)-2-methylbutanenitrile (lotaustralin) (5). Compound 5 (127 mg) was purified by CC using silica gel (12.7 g) and CH₂Cl₂-MeOH-H₂O (10:3:1 and 7:3:1, lower phase) as eluent, to give a colourless solid which was recrystallized from EtOAchexane as colourless granules, mp 125-126° (lit. [2] 123.5-124.5°). [α]_D²⁵ - 17.4° (c0.22, H₂O) (lit. [2] - 19.15°) (c 1.0). IR, ¹H NMR and MS data consistent with structure.

Acetylation of compound (5). A mixt. of compound 5 (20 mg), dry pyridine (0.5 ml) and Ac₂O (1.5 ml) was stirred at room temp for 1 hr. After work-up, the acetate derivative 5a was obtained as a colourless solid (33 mg) which was recrystallized from EtOAc-hexane as colourless needles, mp 118–119° (lit. [2] 116–116.5°). Found: C, 53.2; H, 6.4; N, 3.2. Calc. for $C_{19}H_{27}NO_{10}$: C, 53.1; H, 6.3; N, 3.3%. $[\alpha]_D^{25} - 9.6°$ (c 0.5, Me₂CO) (lit. [3] - 2.88° (c 2.08, CHCl₃)). IR, ¹H NMR and MS data consistent with the structure.

2-(β -D-Glucopyranosyloxy)-2-methylpropanenitrile (linamarin) (6). Compound 6 (2.37 g) was purified by CC using silica gel (236 g) and CH₂Cl₂-MeOH-H₂O (7:3:1, lower phase) to give compound 6 as a colourless solid which was recrystallized from EtOAc-hexane as colourless granules, mp 146–148° (lit. [2, 4, 5] 140–141°, 143–144°, 139–141°). $[\alpha]_D^{25} - 22.2° (c 0.35, H_2O)$ [lit. [4] - 28.5° (c 0.39)]. IR, ¹H NMR and MS data identical to those of an authentic sample.

Acetylation of compound (6). Compound 6 (100 mg) was acetylated with Ac₂O and pyridine to give the tetraacetate 6a (158 mg) which was recrystallized from EtOAc-hexane as colourless needles, mp 142-143° (lit. [2, 4, 5] 140-141°, 140-141°, 138-139°). $[\alpha]_D^{D5} - 11.2^\circ$ (c 0.2, Me₂CO) (lit. [5] - 10.55°). IR, ¹H NMR and MS data identical to those of an authentic sample.

Kaempferol-3-O-rutinoside (nicotiflorin) (7). Compound 7 (2.3 g) was purified by CC using silica gel (160 g) and CH₂Cl₂-MeOH-H₂O (7:3:1, lower phase) as eluent to give 7 as a yellow solid, which was recrystallized from MeOH to give compound 7 as yellow granules, mp 178-183° (lit. [6] 185-190°). $[\alpha]_D^{D_5} - 4.9°$ (c 0.4, MeOH). IR, UV, ¹H NMR and MS data consistent with the structure.

Acetylation of compound (7). A soln of compound 7 (20 mg) in pyridine (0.5 ml), 4-dimethylaminopyridine (0.3 g) and Ac₂O (1.5 ml) was stirred at room temp. overnight. After work-up, the acetate derivative 7a was obtained as a solid (31 mg), mp 110°. $[\alpha]_D^{25} - 60.2^\circ$ (c 2.23, CHCl₃). IR and ¹H NMR data consistent with the structure.

Acid hydrolysis of compound (7). A soln of the glycoside 7 (67 mg) in 1% H_2SO_4 in 50% aq. EtOH (4 ml) was refluxed for 8 hr. After removal of EtOH, the residue was partitioned between H_2O -*n*-BuOH. The *n*-BuOH layer was evaporated to give the crude flavonoid as a yellow residue (90 mg). This was separated on a column of silica gel (10 g) which was eluted with CH_2Cl_2 -MeOH- H_2O (20:3:1, lower layer) to give kaempferol 10 as a yellow solid (25 mg). Recrystallization from MeOH yielded yellow granules, mp 268° (lit. [9] 276-278°). IR, ¹H NMR and MS data consistent with the structure.

Acetylation of kaempferol (10). A soln of kaempferol 10 (10 mg) in pyridine (0.5 ml), 4-dimethylaminopyridine (0.3 g) and Ac_2O (1 ml) was stirred at room temp overnight. After work-up, the acetate derivative 10a was obtained as a brown solid (15 mg), mp 100° resolidifies, remelts at 173–174° (dec.). [lit. [6] 120° resolidifies, remelts at 178–180° (dec.)]. IR, ¹H NMR and MS data consistent with the structure.

Quercetin-3-O-rutinoside (rutin) (8). Compound 8 was purified by CC using silica gel and CH₂Cl₂-MeOH-H₂O (6.5:3.5:1, lower phase) as eluent to give a yellow solid, which was recrystallized from MeOH as yellow granules, mp 192-194° (lit. [10] 214-215° dec.). $[\alpha]_D^{25}$ + 5.8° (c 0.27, EtOH) (lit. [10] + 13.82°). IR, UV, ¹H NMR and MS data consistent with the structure.

Acetylation of compound (8). A soln of compound 8 (10 mg), pyridine (0.5 ml), 4-dimethylaminopyridine (0.3 g) and Ac₂O (1.5 ml) was stirred at room temp for 2 hr. After work-up, the decaacetate 8a was obtained as a brown solid (15.3 mg). $[\alpha]_D^{25} - 53.5^{\circ}$ (c 0.43, CHCl₃). IR and ¹H NMR consistent with the structure.

Acid hydrolysis of compound (8). Compound 8 (47 mg) in 5% HCl in 50% aq. EtOH (1.5 ml) was refluxed for

2 hr. After the removal of EtOH, the residue was partitioned between H_2O -*n*-BuOH. The *n*-BuOH layer was evaporated to give the crude flavonoid fr. as a yellow residue (120 mg). This was separated on a silica gel column (10 g) which was eluted with CH_2Cl_2 -MeOH- H_2O (20:3:1, lower phase) to give quercetin 11, after recrystallization from MeOH, as yellow granules, mp > 300° (lit. [7] 313-314°). IR and ¹H NMR identical with those of an authentic sample.

Structural determination of compounds (2a and 4a). Unique room temp (~ 295 K) diffractometer data sets were measured (monochromatic MoK, radiation, $\lambda = 0.7107_3$ Å) yielding N independent reflections, N₀ $(I > 3\sigma(I))$ being considered 'observed' and used in the full matrix least squares refinements without absorption correction after solution of each structure by direct methods. Anisotropic thermal parameters were refined for C, O; (x, y, z, U_{iso}) H were included constrained at estimated values. Conventional residuals R, R_w on |F| at convergence are quoted, statistical reflection weights derivatives of $\sigma^2(I) = \sigma^2(I_{\text{diff}}) + 0.0004\sigma^4(I_{\text{diff}})$ being used. Neutral atom complex scattering factors were employed, chirality being assumed from the chemistry. Computation used the XTAL 2.2 program system implemented in Ref. [11]. Pertinent results are given in the Figs and deposited material (atom coordinates and thermal parameters, molecular non-hydrogen geometries, structure factor amplitudes). Specific details are as follows. 2a: $C_{27}H_{40}O_{16}$, $M_r = 620.6$. Orthorhombic, space group $P2_12_12_1$ (D_2^4 , No. 19), a = 7.582 (2), b = 11.963 (3), c = 36.120 (8) Å, V = 3253 (1) Å³. D_c (Z = 4) = 1.27 g cm⁻³; F (000) = 1320. $\mu_{M_s} = 1.1$ cm⁻¹; specimen: $0.42 \times 0.27 \times 0.25$ mm. $2\theta_{\text{max}} = 45^{\circ}$; N = 2466, $N_0 = 1500$; $R = 0.076, R_{\rm W} = 0.083.$

Abnormal features/variations in procedure. Data were weak and diffuse and limited in scope with consequent adverse precision. In view of the long c axis and wide line width, data was measured by an ω -scan procedure; even so, a number of reflections were obviously affected adversely by profile overlap problems and were deleted from the refinement. **4a**: C₁₆H₂₄O₁₀. $M_r = 376.4$. Orthorhombic, space group P2₁2₁2₁ (D_2^4 , No. 19), a = 17.131 (8), b = 15.740 (7), c = 7.282 (3) Å, V = 1963(1) Å³. D_c (Z = 4) = 1.27 g cm⁻³; F(000) = 800. $\mu_{M_o} =$ 1.1 cm⁻¹; specimen: cuboid, ~ 0.2 mm. $2\theta_{max} = 50^\circ$; N = 2015, $N_0 = 969$; R = 0.063, $R_W = 0.035$.

Abnormal features/variations in procedure. Again, weak and limited data were limiting factors on the precision of the determination. The 'observed' reflection threshold was set at $I > 2\sigma(I)$.

Acknowledgements—This work was partially supported by USAID/PSTC (grant no. 936-5542-G-00-6028-00, principal investigator: Prof. Montri Chulavatnatol). We thank the Network for the Chemistry of Biologically Important Natural Products, an activity of the International Development Programme of Australian Universities and Colleges, and the Australian Research Grants Committee for support.

REFERENCES

- Smith, R. E., Osothsilp, C., Bicho, P., Gregory, K. F. (1986) Biotechnol. Lett. 8, 31.
- 2. Seiger, D. S. (1975) Phytochemistry 14, 9.
- Bissett, F. H., Clapp, R. C., Coburn, R. A., Ettlinger, M. G. and Long, L. Jr. (1969) *Phytochemistry* 8, 2235.
- Clapp, R. C., Bissitt, F. H., Coburn, R. A. and Long, L. Jr. (1966) *Phytochemistry* 5, 1323.
- 5. Malik, K. B. (1978) Indian J. Chem. 16B, 76.
- Geiger, H. and Beckman, S. (1965) Z. Naturforsch 20b, 1139; Chem. Abstr. 64, 11554a (1966).

- 7. Schindler, H. and Herb, M. (1955) Arch. Pharmacol. 288, 372.
- 8. Ferguson, J. H. (1932) J. Am. Chem. Soc. 54, 4086.
- 9. Pollock, J. R. A. and Stevens, R. (eds) (1965) Dictionary of Organic Compounds (Vol. 4), p. 1981.
- Buckingham, J. and Donaghy, S. M. (eds) (1982) Dictionary of Organic Compounds (Vol. 5), p. 4942. Chapman and Hall, New York.
- 11. Hall, S. R. and Stewart, J. M. (eds) (1986) *The XTAL* 2.2 User's Manual. Universities of Western Australia and Maryland.