ORIGINAL RESEARCH

Solvent-free, one-pot synthesis and biological evaluation of some new dipyrazolo [3,4-b:4',3'-e] pyranylquinolones and their precursors

Narsidas J. Parmar · Bhavesh R. Pansuriya · Bhagyashri D. Parmar · Hitesh A. Barad

Received: 7 January 2013/Accepted: 2 May 2013 © Springer Science+Business Media New York 2013

Abstract One-pot synthesis of 24 new compounds, belonging to three families; dipyrazolo[3,4-b:4',3'-e]pyranylquinolones 7a-h and its precursors (pyrazolonylidene) methylquinolones 5a-h and 4,4'-[(quinolinyl)methylene]bispyrazols 6a-h, 8 from each, has been achieved in the presence of catalyst tetrabutylammonium hydrogen sulfate (TBA-HS) in solvent-free conditions. In addition to assuring chromatography-free product isolation, this method had also allowed the reaction to proceed in a regio-selective manner provided the temperature and amount of pyrazolone are varied. At 100 °C, while 1:1 mixture of aldehyde 3 and pyrazolone 4 underwent Knoevenagel condensation, same reactants taken in ratio of 1:2 mainly domino/Knoevenagel-Michael reaction. At 120 °C, however, the domino/Knoevenagel-Michael-adducts converted into cyclized product, highlighting a new domino/Knoevenagel-Michael-cyclization synthetic sequence. The structure of all heterocycles has been confirmed by mass, IR and NMR spectral data. Based on 2D NMR NOESY experiment, it was also confirmed that the formation of only 'Z' configuration of Knoevenagel alkene took place in the transformation. All are good antitubercular agents as they were found to be active against M. tuberculosis H37RV, in addition to being found active against three Grampositive (Streptococcus pneumoniae, Clostridium tetani, Bacillus subtilis) and three Gram-negative (Salmonella typhi, Vibrio cholerae, Escherichia coli) bacteria, respectively.

Electronic supplementary material The online version of this article (doi:10.1007/s00044-013-0608-2) contains supplementary material, which is available to authorized users.

N. J. Parmar $(\boxtimes) \cdot B$. R. Pansuriya $\cdot B$. D. Parmar $\cdot H$. A. Barad

Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Dist. Anand 388120, Gujarat, India e-mail: njpchemdeptspu@yahoo.co.in

Keywords Knoevenagel–Michael · Tetrabutyl ammonium hydrogen sulfate · 3-Methyl-1-phenyl-5-pyrazolone · Bis-Pyrazole · *N*-Allyl quinolone

Introduction

Pyrazolone is a subunit of many biologically active compounds (McDonald et al., 2006; El-Nagdi et al., 1987). Drugs incorporating this unit have been a continuous source of known anti-anxiety (DeWald et al., 1977), antiinflammatory, antipyretic, analgesic (El-Hawash Soad et al., 2006), anti-depressant (Bailey et al., 1985), anticonvulsant (Abdel-Aziz et al., 2009) and hypnotic agents (Sugiura et al., 1977). For example, 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) have remarkable anti-inflammatory, antipyretic (Behr et al., 1967), gastric secretion stimulatory (Rosiere et al., 1951), antibacterial (Mahajan et al., 1991), and antifilarial activities (Chauhan et al., 1993). Several fungicides (Singh and Singh, 1991), pesticides (Londershausen, 1996), insecticides (Lube, 1970), dyestuffs (Garnovskii et al., 2004), and chelating and extracting reagents used for different metal ions are potential candidates (Parmar and Teraiya, 2009; Parmar et al., 2010, 2011a). Tendency of bis-pyrazole to coordinate many metal ions via its 5-ol oxygen has played significant role in metal extraction studies (Parmar and Teraiya, 2009; Parmar et al., 2010).

Condensed pyrazoles, on the other hand, are equally significant (Baraldi *et al.*, 2012; Verheijen *et al.*, 2009). Many pyrano[2,3-*c*]pyrazoles are known in this group (EL-Nagdi *et al.*, 1990; Kuo *et al.*, 1984). In recent past, fused azoles have also emerged as intensive research topic (EL-Nagdi *et al.*, 1990; Kuo *et al.*, 1984; Koyama and Umezawa,

1965; Elmoghayar *et al.*, 1984; Anderson and Jones, 1984). Finally, bis-pyrazolopyrans and their analogues have revealed an excellent activity against pest des petits ruminant virus (PPRV) (Sujatha *et al.*, 2009), a useful biological application.

Knoevenagel adducts arylidenepyrazolones formed in the first step transform into bis-pyrazoles via Michael addition reaction (Singh and Singh, 1984; Singh and Singh, 1991; Londershausen, 1996). Conventionally, their syntheses take a longer reaction time in refluxing water or other refluxing solvents like ethanol or benzene, in addition to affording moderate yields. Product isolation step is also tedious part of conventional methods (Gunasekaran et al., 2011; Tale et al., 2011; Yao et al., 2007). One-pot Knoevenagel-Michael addition of aldehyde with 2 equivalents of 3H-pyrazol-3-ones in tandem is another approach (Sujatha et al., 2009; Pavlov et al., 1998; Buzykin and Lonshchakova, 1971; Wang et al., 2005; Elinson et al., 2008; Niknam et al., 2010). In piperidine, however, yields were in the 15-30 % range (Singh and Singh, 1984). Improved protocols seemed to be in water or ethanol in the presence of electrolyte NaBr (Elinson et al., 2008), surfactant sodium dodecyl sulfate (SDS) (5 mol %) (Wang et al., 2005), Lewis acid ceric ammonium nitrate (CAN) (Sujatha *et al.*, 2009) or $[Cu(3,4-tmtppa)](MeSO_4)_4$ (Sobhani et al., 2009) and recyclable catalyst silica-bonded S-sulfonic acid (SBSSA) (Niknam et al., 2010). Other method utilized acetic acid and ETBA (Shi et al., 2005). Li et al. (1995, 1997).utilized a solid-state for the synthesis of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) Bai et al. (2004) reported catalyst-free microwave irradiation. As Brønsted acid, ionic liquid 1-methylimidazolium hydrogen sulfate [HMIM]HSO₄ though promotes reaction it takes a longer reaction time (Zang et al., 2011). In spite of vast literature reports, however, no tetrabutylammonium hydrogen sulfate (TBA-HS) has been tried and explored in the strategy. Moreover, several aldehydes (Sujatha et al., 2009; Pavlov et al., 1998; Buzykin and Lonshchakova, 1971; Wang et al., 2005; Elinson et al., 2008; Niknam et al., 2010; Ballini et al., 2003; Macquarrie et al., 2003) have been tried, but no insoluble quinoline-3-carbaldehydes. Insoluble aldehyde is thus limitation of reported protocols along with other issues like yields, reaction time, high temperature and tedious workup procedure (Sujatha et al., 2009; Pavlov et al., 1998; Buzykin and Lonshchakova, 1971; Wang et al., 2005; Elinson et al., 2008; Niknam et al., 2010; Li et al., 1995, 1997; Shi et al., 2005; Sobhani et al., 2009; Niknam et al., 2010). Use of solid catalysts environmentally is of a great interest in chemistry and industry as they offer them simplicity in handling, safety of disposal, and less industrial corrosion (Michail et al., 2011; Fan et al., 2006). The reactive centers because of highly mobility have an advantage of being recyclable, too.

Quinolone-incorporated heterocycles (Uchida et al., 1985; Hong et al., 2001; Parmar et al., 2012a), as new molecular templates, are anticipated to have promising pharmaceutical activities especially antioxidant and anticancer (Hong et al., 2001; Parmar et al., 2012a, b, c; Faber and Kappe, 1984; Chen et al., 2004; Ukrainets et al., 1993). Both 3.4-double bond and 2-oxo functionalities in 2-quinolone unit are well known for hydroxyl radical scavenging properties (Uchida et al., 1985). Rebamipide, for example, is effective antioxidant as well as antiulcer agent (Hong et al., 2001). Alkylation in general and allylation in particular improves affinity of resulted heterocycles towards the cholecystokinin (CCK2) receptor that has been involved in many pathological situations (Lattmann et al., 2002). Those which include anxiety (Bain and Candillis, 2000) and panic (Tullio et al., 2000) particularly, are relevant targets to therapeutic interventions. Considering the biological significance of quinoline-based compounds and a part of our ongoing interest (Parmar et al., 2011b, 2012a, b; c), it was therefore planned to prepare some new pyrazolonylidenemethylquinolones 5a-h, 4,4'-[(quinoline-3-yl)methylene]bis(1H-pyrazol-5-ols) 6a-h, and dipyrazolo[3,4-*b*:4',3'-*e*]pyranylquinolones **7a–h**.

Results and discussion

Chemistry

First, we treated quinolines 2a-b obtained (from acetanilides 1a-b) via Vilsmeier-Haack reaction with 70 % acetic acid (Scheme 1). Second, the quinolone obtained was treated with allyl bromide in the presence of potassium carbonate suspended in DMF (dimethylformamide) (Parmar et al., 2012a). Finally, N-allyl-2-quinolone-3-carbaldehyde 3 thus obtained was heated with corresponding pyrazolone 4 taken in varied amounts in the presence of 20 mol % tetrabutyl ammonium hydrogensulftae (TBA-HS) under solvent-free conditions. At 100 °C, while 1:1 mixture of reactants (3 and 4 each in 1.12 mmol) results in (pyrazolonylidene)methylquinolones 5a-h formation via Knoevenagel condensation, their 1:2 mixture (4 in 2.24 mmol and 3 in 1.12 mmol) in 4,4'-[(quinoline-3-yl)methylene]bis(1H-pyrazol-5-ols) 6a-h formation via Knoevenagel-Michael reaction (Scheme 2). On heating the reaction mass containing Knoevenagel-Michael products further at 120 °C, cyclization of the products 6a-h was observed, highlighting a new tandem Knoevenagel-Michael-cyclization route to dipyrazolo [3,4-b:4',3'-e] pyranylquinolones 7a-h products. The protocol had advantageously employed no chromatography for product separation, and the workup procedure used was very simple. In our early work, TBA-HS has been successfully used to promote domino/

Knoevenagel-*hetero*-Diels–Alder reaction in refluxing xylene (Parmar *et al.*, 2011b, 2012b). Investigating further, we in present work described the application of this PTC catalyst in solvent-free environment too, highlighting a new greener approach to access heterocycles (Table 1; Scheme 2).

The mechanism of the entire domino reaction begins with the formation of reactive species tetrabutylammonium pyrazolonate. With quinolone-3-carbaldehyde, it formed Z-Knoevenagel alkene **5** at 100 °C. Consuming second molecule of pyrazolone, this Knoevenagel-adduct **5** then transformed into Michael-adducts **6**. Finally, in the influence of TBA–HS, compound **6** gave cyclized products **7** at 120 °C (Scheme 3).

The recyclability of the catalyst was also tested, confirmed and established by re-using the recovered catalyst, at least four times without the significant loss of its activity (Fig. 1). To recover the catalyst, the reaction mass, after being dissolved in methanol, was first poured into ice cold water to precipitate the product. The solid products were then isolated through ordinary filtration. Heating the filtrate in vacuum at 70 °C evaporated the fluid aqueous-organic mixture and gave residues of TBA–HS in 6 h.

The structure of all newly synthesized compounds **5a-h**. **6a-h** and **7a-h** was confirmed by mass, IR, ¹H NMR and ¹³C NMR spectral data. In the IR of all, the band at around 1.640 cm^{-1} can be assigned to amide linkage of quinolone moiety. At a small distance, the second band at around $1,673 \text{ cm}^{-1}$ in all Knoevenagel-adducts 5 is assigned to pyrazolone moiety. Formation of all new families of compounds: 5, 6 and 7, can be asserted from the spectral data. In Michael-adduct 6a, broad bands that appeared in the region around $3,418 \text{ cm}^{-1}$ confirm the presence of pyrazolol (enol form) moieties. In ¹H NMR, the singlet at δ 2.40 in 5a, at 2.35 in 6a and at 2.29 in 7a confirms the presence of methyl protons at pyrazole ring. A complete shift of singlet arylidine CH proton from δ 8.19 in **5a** to δ 5.16 a little bit higher in 6a indicate the formation of Michael-adduct 6a from Knoevenagel alkene 5a. The same could also be traced out from ¹³C NMR which evidenced the complete transformation of alkene sp² CH (appeared in the aromatic region δ 120–150 of **5a**) into sp³ CH (appeared at δ 29.44 in **6a**). In the same way, the cyclization of Michael-adduct could also be evidenced from observing the disappearance of peaks δ 12.56 and δ 14.29 of **6a** (assigned to hydroxyl groups) in **7a**. Further, a

Table 1Synthesis of Knoevenagel-adducts pyrazolonylidenemethylquinolones5a-h, Michael-adducts 4,4'-[(quinoline-3-yl) methylene]bis(1H-pyrazol-5-ols)6a-h, and cyclized products dipyrazolo[3,4-b: 4',3'-e]pyranylquinolones7a-h

Entry	Compounds	R ¹	R^2	Time	Yield %
1	5a	Н	Ph	20 min	90
2	5b	Н	2-Cl Ph	25 min	87
3	5c	Н	3-Cl Ph	20 min	91
4	5d	Н	2,5-Cl ₂ Ph	25 min	88
5	5e	Cl	Ph	20 min	91
6	5f	Cl	2-Cl Ph	25 min	89
7	5g	Cl	3-Cl Ph	30 min	90
8	5h	Cl	2,5-Cl ₂ Ph	20 min	93
9	6a	Н	Ph	2.0 h	92
10	6b	Н	2-Cl Ph	1.5 h	91
11	6c	Н	3-Cl Ph	2.0 h	93
12	6d	Н	2,5-Cl ₂ Ph	1.5 h	94
13	6e	Cl	Ph	2.0 h	92
14	6f	Cl	2-Cl Ph	2.0 h	91
15	6g	Cl	3-Cl Ph	2.0 h	93
16	6h	Cl	2,5-Cl ₂ Ph	1.5 h	92
17	7a	Н	Ph	1.5 h	89
18	7b	Н	2-Cl Ph	2.0 h	85
19	7c	Н	3-Cl Ph	1.5 h	88
20	7d	Н	2,5-Cl ₂ Ph	1.5 h	87
21	7e	Cl	Ph	1.5 h	89
22	7 f	Cl	2-Cl Ph	2.0 h	86
23	7g	Cl	3-Cl Ph	2.0 h	85
24	7h	Cl	2,5-Cl ₂ Ph	1.5 h	88

Scheme 1 Synthesis of *N*-allyl-2-quinolone-3-carbaldehyde. Reagents and conditions: (*i*) DMF, POCl₃, 75–80 °C, 8 h; (*ii*) 70 % AcOH, reflux, 4 h; (*iii*) allyl bromide, K₂CO₃, DMF, 12 h, RT

Scheme 2 Knoevenagel– Michael–cyclization reaction. Reagents and conditions: (*i*) 20 % TBA–HS, solvent-free 100 °C; (*ii*) 5 % SLS, water, reflux; (*iii*) 20 % TBA–HS, solvent-free, 120 °C

 $R^1 = H, Cl$ $R^2 = Ph, 2-Cl Ph, 3-Cl Ph, 2,5-Cl_2Ph$

multiplet at δ 6.03, a doublet at δ 5.01 (J = 2.0), and two doublets; one at 5.17 with J = 17.2 and second at δ 5.29 with J = 10.4 confirm the presence of allyl protons in **5a**. The same can be concluded from ¹³C NMR wherein both CH₂ gave characteristic peaks; one at δ 45.44 and second at δ 117.50.

Besides above, the 2D NMR NOESY spectrum was also taken to assign E or Z configuration to Knoevenagel alkene **5e** generated from the *N*-allyl-2-quinolone-3-carbaldehydes **3b** and pyrazolone **4a**. As could be seen from the NOESY, it showed the apparent correlation between pyrazolone methyl (δ 2.40) protons and that of alkene sp² CH,

 $\underline{\textcircled{O}}$ Springer

confirming the Z configuration. Correlation of neither alkene sp² CH (δ 8.14) nor pyrazolone methyl protons with that of quinoline nitrogen ring too rules out the possibility of E-configuration. The proposed structure of **5e** has been depicted as Fig. 2.

Antimicrobial activity

The in vitro antimicrobial activity of all the compounds were determined against three Gram-positive *Streptococcus pneumoniae* (MTCC 1936), *Clostridium tetani* (MTCC

Scheme 3 Plausible mechanism for TBA-HS catalyzed Knoevenagel-Michael-cyclization reaction

Fig. 1 Recyclability of catalyst TBA-HS

Fig. 2 Characteristic NOESY of 5e

449), Bacillus subtilis (MTCC 441), three Gram-negative Salmonella typhi (MTCC 98), Vibrio cholerae (MTCC 3906), Escherichia coli (MTCC 443) bacteria and two Aspergillus fumigatus (MTCC 3008), Candida albicans (MTCC 227) fungi by the broth microdilution MIC (minimum inhibitory concentration) (Shadomy and Pfaller MA 1991) method according to NCCLS (National Committee for Clinical Laboratory Standards). (NCCLS, 2000) Strains employed for the activity were procured from [MTCC (Micro Type Culture Collection)] Institute of Microbial Technology, Chandigarh. Mueller-Hinton broth was used as nutrient medium to grow and dilute the compound suspension for the test bacteria and Sabouraud Dextrose Broth used for fungal nutrition. Bacterial strains were primarily inoculated into Mueller-Hinton agar and, after overnight growth, a number of colonies were directly suspended in saline solution until the turbidity matched the turbidity of the McFarland standard (approximately 10^8 CFU/mL), i.e., inoculum size for test strain was adjusted to 10⁸ CFU/mL (colony forming unit) per milliliter well by comparing the turbidity (turbidimetric method). Similarly, fungi were inoculated on Sabouraud Dextrose Broth; the procedures of inoculum standardization were also similar. DMSO was used as diluents/vehicle to get desired concentration of compounds to test upon standard microbial strains, i.e., the compounds were dissolved in DMSO and the solutions were diluted with a culture medium. Each compound and standard drugs were diluted obtaining

2,000 µg/mL concentration, as a stock solution. By further progressive dilutions with the test medium, the required concentrations were obtained for primary and secondary screening. In primary screening 1,000, 500, and 250 µg/mL concentrations of the compounds were taken. The active compounds found in this primary screening were further diluted to obtain 200, 100, 62.5 µg/mL concentrations for secondary screening to test in a second set of dilution against all microorganisms. Briefly, the control tube containing no antibiotic is immediately subcultured (before inoculation) by spreading a loopful evenly over a quarter of plate of medium suitable for the growth of the test organism. The tubes are then put for incubation at 37 °C for 24 h for bacteria and 48 h for fungi. Growth or a lack of growth in the tubes containing the antimicrobial agent was determined by comparison with the growth control, indicated by turbidity. The lowest concentration that completely inhibited visible growth of the organism was recorded as the minimum inhibitory concentration (MIC, $\mu g/mL$), i.e., the amount of growth from the control tube before incubation (which represents the original inoculum) is compared. A set of tubes containing only seeded broth and the solvent controls were maintained under identical conditions so as to make sure that the solvent had no influence on strain growth. All bioassays were repeated at least three times and the calculated error margin value was $\pm 2 \,\mu g/mL$. Protocols are summarized in Table 2 as the minimum inhibitory concentration (MIC, µg/mL).

Screening results showed that all Knoevenagel-adducts 5a-h, Michael-adducts 6a-h, and corresponding cyclized products dipyrazolo[3,4-b:4',3'-e]pyranylquinolones 7a-h are possessing good antibacterial activity against three Gram-positive (Streptococcus pneumoniae, Clostridium tetani, Bacillus subtilis) and three Gram-negative (Salmonella typhi, Vibrio cholerae, Escherichia coli) bacteria, in comparison to their antifungal activity against two fungus Aspergillus fumigatus and Candida albicans. The results are expressed in minimum inhibition concentration (MIC) measured in µg/mL (Table 2). More than 80 % of the total compounds tested are active against each type of Gram-positive and Gram-negative bacteria with a MIC in the range 250-50, except the ones against Salmonella typhi bacteria. Here, the highest 95.8 % of total screened candidates were potent particularly against type of these bacteria. Analyzing in terms of MIC, it was further inferred that majority have MIC equal to 200. Those with lowest MIC (50-62.5 µg/mL) include; 7d against Grampositive Streptococcus pneumoniae bacteria, and 5g and 7a against Gram-negative Escherichia coli bacteria, resembling the standard drug chloramphenicol. Additionally, compounds 5g and 7d are much closer to standard ciprofloxacin in terms of their potency against former type bacteria.

Table 2 Antibacterial and antifungal test results (MIC)

Compounds	Gram-positive bacteria			Gram-negative bacteria			Fungi	
	S.p. MTCC 1936	<i>C.t.</i> MTCC 449	<i>B.s.</i> MTCC 441	<i>S.t.</i> MTCC 98	<i>V.c.</i> MTCC 3906	<i>E.c.</i> MTCC 443	A.f. MTCC 3008	<i>C.a.</i> MTCC 227
5a	150	500	200	100	250	62.5	>250	>250
5b	250	500	250	200	100	500	>250	>250
5c	200	100	250	200	200	250	>250	>250
5d	250	250	100	100	200	250	>250	>250
5e	100	250	100	250	200	250	>250	>250
5f	500	500	500	250	500	500	>250	>250
5g	200	100	500	62.5	200	100	>250	>250
5h	250	100	200	100	125	100	>250	250
6a	500	100	500	200	500	250	>250	>250
6b	125	250	200	100	500	200	>250	>250
6c	250	200	250	200	200	500	>250	>250
6d	200	100	125	200	100	250	>250	>250
6e	250	200	250	500	200	500	>250	>250
6f	250	100	125	200	200	200	>250	250
6g	100	200	200	200	250	250	>250	>250
6h	250	500	250	100	250	100	>250	>250
7a	100	100	500	62.5	125	250	>250	>250
7b	500	250	200	200	100	500	>250	>250
7c	250	200	250	250	200	250	>250	>250
7d	50	250	200	100	500	250	>250	>250
7e	250	100	200	200	200	100	>250	>250
7f	200	100	250	250	200	200	>250	250
7g	500	250	500	200	500	100	>250	>250
7h	200	250	200	200	250	200	>250	>250
[A]	100	250	250	100	100	100	-	_
[B]	10	50	100	10	10	10	-	_
[C]	50	50	50	50	50	50	_	_
[D]	50	100	50	25	25	25	-	_
[E]	_	_	-	-	_	_	100	500
[F]	-	-	-	-	-	-	100	100

Bold numbers indicate relatively good activities, which are close to standards

MIC is minimum inhibitory concentration in μ g/mL as average of triplicate results, all with standard deviation $\pm 2 \mu$ g/mL

S.p. Streptococcus pneumoniae, C.t. Clostridium tetani, B.s. Bacillus subtilis, S.t. Salmonella typhi, V.c. Vibrio cholerae, E.c. Escherichia coli, A.f. Aspergillus fumigatus, C.a. Candida albicans, [A] ampicillin, [B] norfloxacin, [C] chloramphenicol, [D] ciprofloxacin, [E] griseofulvin, [F] nystatin

Antitubercular activity

A screening was conducted at 250 µg/ml against *M. tuberculosis* H37Rv following a Lowenstein–Jensen (L-J) MIC method. Compounds were added to liquid L-J medium and then media were sterilized by inspissations method. A culture of *M. tuberculosis* H37Rv grown on L-J medium was harvested in 0.85 % saline in bijou bottles. DMSO was used as vehicle to get a desired concentration. These tubes were then incubated at 37 °C for 24 h followed by streaking of *M. tuberculosis* H37Rv (5 × 10⁴)

bacilli per tube). These tubes were then incubated at 37 °C. Growth of bacilli was seen after 12, 22, and finally 28 days incubation. Tubes having the compounds were compared with control tubes where medium alone was incubated with *M. tuberculosis* H37Rv. The standard strain *M. tuberculosis* H37Rv was tested with known drugs; isoniazide, fluconazole and miconazole. The screening test results are summarized as % inhibition relative to standard drugs.

All the compounds were also screened against *M. Tuberculosis H37RV bacteria*. The screening test results were obtained and examined running L.J. method (NCCLS,

Table 3 Antitubercular test results

Compounds	Growth of inhibition ^a (%)	Compounds	Growth of inhibition ^a (%)
5a	92	6f	23
5b	86	6g	74
5c	27	6h	51
5d	46	7a	39
5e	35	7b	43
5f	91	7c	62
5g	44	7d	18
5h	26	7e	46
6a	88	7f	71
6b	80	7g	30
6c	65	7h	28
6d	39	Standard ^b	99
6e	87		

Bold numbers indicate relatively good activities, which are close to standards

^a A concentration 250 μ g/mL of each was used against *M. Tuber-culosis H37RV* bacteria, and standard deviation (SD) of measuring % growth inhibition thrice was in the 2–5 % range

 b Standard antimicrobials used were: isoniazide (0.2 µg/mL), fluconazole (>256 µg/mL) and miconazole (>256 µg/mL)

2009). Test results are shown in Table 3. Here, 250 μ g/mL of each compound was tested. From the test results, it divulges that compounds **5a** and **5f** are good in antitubercular activity as their percent growth inhibitions showed 91 and 92 %, respectively. For others **5b**, **6a** and **6e**, the percent growth inhibition lies in the 86–88 % range, indicating that they are less potent than the former ones. Nevertheless, these results when analyzed in terms of concentration are very close to the ones that standard drugs like fluconazole (>256 μ g/mL) and miconazole (>256 μ g/mL) reveal.

Experimental

All solvents and reagents were used as supplied from commercial sources. The recorded melting points are uncorrected. IR spectra were recorded in KBr on Shimadzu FT-IR 8401 spectrometer and are reported in wave numbers (cm⁻¹). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 400 spectrometer operating at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR as solutions in CDCl₃, unless otherwise indicated. Chemical shifts are reported as parts per million (ppm, δ) and referenced to the residual protic solvent. Coupling constants are reported in Hertz (Hz). Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; br, broad; m, multiplet. The degree of substitution (C, CH, CH₂, and CH₃) was determined by the DEPT-135 method. The ESI mass spectra were measured on Shimadzu LCMS-2010 spectrometer. Elemental analysis (% C, H, N) was carried out by Perkin-Elmer 2400 series-II elemental analyzer (Perkin-Elmer, USA). TLC was performed on Merck 60 F254 precoated silica plates, spots were detected either by UV (254 nm, 366 nm) or dipping into a permanganate [KMnO₄ (3 g), K₂CO₃ (20 g), NaOH (5 mL, 5 % in H₂O), H₂O (300 mL)] or an anisaldehyde solution [3 % *p*-methoxybenzaldehyde and 1 % H₂SO₄ in MeOH] or 2,4 dinitro phenyl hydrazine solution [2,4-DNP (12 g), conc. H₂SO₄ (6 mL), water (8 mL), EtOH (20 mL)] followed by heating.

Synthesis of *N*-allylquinolone-3-carbaldehyde **3a–b** (Parmar *et al.*, 2012a)

Synthesis of quinoline 2a-b

 $POCl_3$ (9 ml, 98.28 mmol) was added drop wise to DMF (2.7 ml, 34.65 mmol) whilst maintaining the temperature at 0–5 °C. The mixture was stirred for about 5 min. Acetanilide **1a–b** (10.37 mmol) was then added and the resulting solution heated for 8 h at 75–80 °C. The reaction mixture was cooled to room temperature and then poured into crushed ice with stirring. A pale yellow precipitate appeared immediately and was filtered and washed with water and then dried.

Synthesis of quinolone

A suspension of aldehyde **2a–b** (1 mmol) in 70 % acetic acid (10 ml) was heated under reflux for 4–6 h. The complication of the reaction was checked by TLC. Up on cooling the reaction mixture, a solid product precipitated out which was filtered, washed well with water, dried and purified by recrystallisation from DMF.

Synthesis of N-allylquinolone 3a-b

Allyl bromide (1.5 equiv.) and potassium carbonate (1.5 equiv.) were added to quinolones (1 mmol) in DMF (5 ml) and the reaction mixture was stirred at room temperature for 3–4 h. After completion (checked by TLC) the reaction mixture was poured into ice-cooled water (25 ml) where-upon a solid product precipitated out, which was filtered, washed well with water, dried and purified by recrystallisation from 70 % aqueous ethanol.

General procedure for the synthesis of Knoevenageladducts pyrazolonylidenemethylquinolones **5a-h**

N-Allyl quinolone **3a–b** (1.12 mmol), pyrazolone **4a–d** (1.12 mmol, 1 eq.) and TBA–HS (20 mol %) were well mixed in a round-bottom flask and heated to 100 °C for

20–35 min with constant stirring. After completion of the reaction as confirmed by TLC (ethyl acetate/n-hexane 3:7), reaction mass was cooled to room temperature, solid residue was obtained, which was crystallized from methanol to give the pure product **5**.

General procedure for the synthesis of Michael-adducts 4,4'-[(quinoline-3-yl)methylene]bis(1*H*-pyrazol-5-ols) **6a-h**

N-Allyl quinolone **3a–b** (1.12 mmol), pyrazolone **4a–d** (2.24 mmol, 2 eq.) and TBA–HS (20 mol %) were well mixed in a round-bottom flask and heated to 100 °C for 1.5–2.0 h with constant stirring. After completion of the reaction as checked by TLC (ethyl acetate/*n*-hexane 9.5:0.5), reaction mass was cooled to room temperature, solid residue was crystallized from methanol to give the product in pure form.

General procedure for the synthesis of cyclized products dipyrazolo[3,4-*b*:4',3'-*e*]pyranylquinolones **7a–h**

N-Allyl quinolone **3a–b** (1.12 mmol), pyrazolone **4a–d** (2.24 mmol, 2 eq.) and TBA–HS (20 mol %) were well mixed in a round-bottom flask and heated to 120 °C for 1.5–2.0 h with constant stirring. After completion of the reaction as checked by TLC (ethyl acetate/*n*-hexane 9.5:0.5), reaction mass was cooled to room temperature, gave solid residue, which was crystallized from methanol to give the pure product.

1-Allvl-3-[(Z)-(3-methvl-1-phenvl-1,5-dihvdro-4H-pyrazol-5-one-4-ylidene)methyl]quinolin-2(1H)-one 5a Orange solid, yield 90 %, 390 mg, mp 182–184 °C; $R_f = 0.42$ (ethyl acetate/*n*-hexane 3:7); IR (v_{max} , cm⁻¹): 3,043, 2,919, 2,857, 1,673, 1,644, 1,597, 1,361, 1,495, 1,236, 1,149, 1,109, 1,022, 992, 780, 754, 691, 671; ¹H NMR (400 MHz, CDCl₃): δ 2.40 (s, 3 H, CH₃), 5.01 (d, J = 2.0 Hz, 2H, CH₂), 5.17 (d, J = 17.2 Hz, 1H, one of =CH₂), 5.29 (d, J = 10.4 Hz, 1H, the other of =CH₂), 6.03 (m, 1H, CH), 7.20-7.98 (m, 9H, Ar-H), 8.19 (s, 1H, -CH=), 10.30 (s, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): 13.23 (CH₃), 45.44 (CH₂), 114.78, 117.50 (=CH₂), 119.21, 120.31, 122.94, 123.57, 124.98, 128.76, 128.82, 131.20, 131.89, 133.32, 138.29, 140.54, 140.87, 146.04, 151.29 (arom.), 161.24 (C₂=O), 162.27 (C₅'=O); ESI-MS: m/z: 370.2 $(M+H)^+$, Anal Calcd for C₂₃H₁₉N₃O₂: C, 74.78; H, 5.18; N, 11.37; Found: C, 74.64; H, 5.32; N, 11.55.

1-Allyl-3-{(Z)-[1-(2-chlorophenyl)-3-methyl-1,5-dihydro-4H-pyr-azol-5-one-4-ylidene]methyl}quinolin-2(1H)-one **5b** Orange solid, yield 87 %, 412 mg, mp 178–180 °C; $R_f = 0.40$

(ethyl acetate/*n*-hexane 3:7); IR (v_{max} , cm⁻¹): 3,063, 2,920, 2,852, 1,686, 1,640, 1,599, 1,497, 1,365, 1,231, 1,154, 1,062, 993, 790, 758, 723, 699; ¹H NMR (400 MHz, CDCl₃): δ 2.40 (s, 3 H, CH₃), 5.02 (d, J = 1.6 Hz, 2H, CH₂), 5.17 (d, J = 17.2 Hz, 1H, one of =CH₂), 5.29 (d, J = 10.4 Hz, 1H, the other of =CH₂), 6.01 (m, 1H, CH), 7.24-7.80 (m, 8H, Ar-H), 8.26 (s, 1H, -CH=) 10.30 (s, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): 13.30 (CH₃), 45.45 (CH₂), 114.82, 117.51 (=CH₂), 120.38, 123.02, 123.65, 127.50, 127.56, 129.23, 129.76, 130.54, 131.16, 131.91, 132.26, 133.39, 135.04, 140.95, 141.26, 146.19. 151.57(arom.), 161.32 (C₂=O), 163.01 (C₅'=O); ESI-MS: m/z: 404.1 (M+H)⁺, Anal Calcd for C₂₃H₁₈ClN₃O₂: C, 68.40; H, 4.49; N, 10.40; Found: C, 68.67; H, 4.65; N, 10.13.

1-Allyl-3-{(Z)-[1-(3-chlorophenyl)-3-methyl-1,5-dihydro-4Hpyrazol-5-one-4-ylidene]methyl]quinolin-2(1H)-one 5c Red solid, yield 91 %, 431 mg, mp 180–182 °C; $R_f = 0.55$ (ethyl acetate/*n*-hexane 3:7); IR (v_{max} , cm⁻¹): 3,059, 2,928, 2,867, 1,688, 1,645, 1,593, 1,492, 1,368, 1,238, 1,153, 1,064, 990, 821, 788, 757, 674; ¹H NMR (400 MHz, CDCl₃): δ 2.38 (s, 3 H, CH₃), 4.99 (d, J = 2.0 Hz, 2H, CH₂), 5.16 (d, J = 16.8 Hz, 1H, one of =CH₂), 5.24 (d, J = 10.0 Hz, 1H, the other of =CH₂), 6.00 (m, 1H, CH), 7.14-7.89 (m, 8H, Ar–H), 8.20 (s, 1H, –CH=), 10.31 (s, 1H, Ar–H); ¹³C NMR (100 MHz, CDCl₃): 14.23 (CH₃), 46.02 (CH₂), 115.63, 116.98 (=CH₂), 117.78, 120.52, 121.06, 122.15, 123.21, 123.87, 128.32, 129.11, 132.18, 133.46, 133.82, 135.32, 137.67, 139.04, 140.56, 147.13, 151.78 (arom.), 162.31 (C₂=O), 163.54 (C₅'=O); ESI-MS: m/z: 404.1 (M+H)⁺, Anal Calcd for C₂₃H₁₈ClN₃O₂: C, 68.40; H, 4.49; N, 10.40; Found: C, 68.60; H, 4.73; N, 10.69.

1-Allyl-3-{(Z)-[1-(2,5-dichlorophenyl)-3-methyl-1,5-dihydro-4H-pyrazol-5-one-4-ylidene [methyl]quinolin-2(1H)-one 5d Orange solid, yield 88 %, 452 mg, mp 202-204 °C; $R_f = 0.57$ (ethyl acetate/*n*-hexane 3:7); IR (v_{max} , cm⁻¹): 3,063, 2,924, 2,856, 1,685, 1,646, 1,596, 1,496, 1,364, 1,232, 1,152, 1,062, 993, 793, 784, 759, 684; ¹H NMR (400 MHz, CDCl₃): δ 2.36 (s, 3 H, CH₃), 5.04 (d, J = 1.6 Hz, 2H, CH₂), 5.14 (d, J = 16.8 Hz, 1H, one of =CH₂), 5.23 (d, J = 10.4 Hz, 1H, the other of =CH₂), 6.03 (m, 1H, CH), 7.12-8.12 (m, 7H, Ar-H), 8.23 (s, 1H, -CH=), 10.34 (s, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): 13.45 (CH₃), 44.49 (CH₂), 116.01, 117.67 (=CH₂), 120.21, 123.27, 124.38, 127.36, 130.45, 130.83, 131.32, 131.83, 132.61, 133.42, 134.48, 135.49, 136.21, 140.42, 141.69, 145.23, 152.26 (arom.), 161.61 (C₂=O), 163.32 $(C_5'=O)$; ESI-MS: *m/z*: 438.1 (M+H)⁺, Anal Calcd for C₂₃H₁₇Cl₂N₃O₂: C, 63.03; H, 3.91; N, 9.59; Found: C, 63.31; H, 3.72; N, 9.77.

1-Allyl-7-chloro-3-[(Z)-(3-methyl-1-phenyl-1,5-dihydro-4Hpyrazol-5-one-4-ylidene)methyl]quinolin-2(1H)-one 5e Red solid, yield 91 %, 410 mg, mp 208–211 °C; $R_f = 0.53$ (ethyl acetate/*n*-hexane 3:7); IR (v_{max} , cm⁻¹): 3,057, 2,921, 2,862, 1,680, 1,646, 1,599, 1,368, 1,490, 1,231, 1,138, 1,101, 1,031, 996, 790, 768, 682, 656; ¹H NMR (400 MHz, CDCl₃): δ 2.40 (s, 3 H, CH₃), 4.97 (d, J = 4.4 Hz, 2H, CH₂), 5.18 (d, J = 17.2 Hz, 1H, one of =CH₂), 5.33 (d, J = 10.4 Hz, 1H, the other of =CH₂), 6.01 (m, 1H, CH), 7.21-7.96 (m, 8H, Ar-H), 8.14 (s, 1H, -CH=), 10.29 (s, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): 13.62 (CH₃), 45.43 (CH₂), 116.62, 117.42 (=CH₂), 119.21, 120.43, 123.01, 124.86, 125.34, 127.56, 128.64, 128.82, 133.56, 136.32, 138.24, 140.27, 140.62, 146.41, 151.45 (arom.), 161.63 $(C_2=0).$ 162.72 $(C_{5}'=O);$ ESI-MS: m/z: 404.1 $(M+H)^+$, Anal Calcd for C₂₃H₁₈ClN₃O₂: C, 68.40; H, 4.49; N, 10.40; Found: C, 68.63; H, 4.76; N, 10.22.

1-Allvl-7-chloro-3-{(Z)-[1-(2-chlorophenyl)-3-methyl-1,5-dihydro-4H-pyrazol-5-one-4-ylidene]methyl}quinolin-2(1H)-one 5f Orange solid, yield 89 %, 437 mg, mp 226–228 °C; $R_f = 0.44$ (ethyl acetate/*n*-hexane 3:7); IR (v_{max} , cm⁻¹): 3,053, 2,916, 2,851, 1,687, 1,651, 1,587, 1,485, 1,358, 1,229, 1,159, 1,061, 995, 812, 768, 716, 681; ¹H NMR (400 MHz, $CDCl_3$): $\delta 2.40$ (s, 3 H, CH₃), 4.98 (d, J = 4.4 Hz, 2H, CH₂), 5.17 (d, J = 17.2 Hz, 1H, one of =CH₂), 5.32 (d, J = 10.8 Hz, 1H, the other of =CH₂), 6.01 (m, 1H, CH), 7.23-7.72 (m, 7H, Ar-H), 8.21 (s, 1H, -CH=), 10.28 (s, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): 13.59 (CH₃), 44.86 (CH₂), 116.12, 117.51 (=CH₂), 121.41, 123.46, 123.35, 127.32, 127.64, 128.53, 130.66, 131.36, 131.84, 132.65, 133.43, 135.21, 136.76, 140.68, 141.32, 146.27, 151.47 (arom.), 161.43 (C₂=O), 162.79 (C₅'=O); ESI-MS: m/z: 438.1 $(M+H)^+$, Anal Calcd for C₂₃H₁₇Cl₂N₃O₂: C, 63.03; H, 3.91; N, 9.59; Found: C, 63.21; H, 4.09; N, 9.70.

1-Allyl-7-chloro-3-{(Z)-[1-(3-chlorophenyl)-3-methyl-1,5-dihydro-4H-pyrazol-5-one-4-ylidene]methyl}quinolin-2(1H)one 5g Orange solid, yield 90 %, 441 mg, mp 196-198 °C; $R_f = 0.49$ (ethyl acetate/*n*-hexane 3:7); IR (v_{max} , cm^{-1}): 3,064, 2,912, 2,869, 1,679, 1,649, 1,586, 1,493, 1,366, 1,227, 1,156, 1,054, 990, 816, 778, 721, 693; ¹H NMR (400 MHz, CDCl₃): δ 2.37 (s, 3H, CH₃), 4.95 (d, J = 4.4 Hz, 2H, CH₂), 5.17 (d, J = 17.2 Hz, 1H, one of =CH₂), 5.31 (d, J = 10.4 Hz, 1H, the other of =CH₂), 6.00 (m, 1H, CH), 7.15-8.05 (m, 7H, Ar-H), 8.35 (s, 1H, -CH=), 10.22 (s, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): 13.65 (CH₃), 45.13 (CH₂), 116.23, 117.20 (=CH₂), 117.87, 121.21, 121.87, 122.45, 123.37, 123.76, 127.56, 127.76, 128.56, 132.84, 133.34, 135.78, 136.67, 137.23, 138.12, 140.34, 146.54, 151.65 (arom.), 161.03 (C₂=O), 162.13 ($C_5'=O$); ESI-MS: m/z: 438.1 (M+H)⁺, Anal Calcd for C₂₃H₁₇Cl₂N₃O₂: C, 63.03; H, 3.91; N, 9.59; Found: C, 62.87; H, 4.13; N, 9.76.

1-Allyl-7-chloro-3-{(Z)-[1-(2,5-dichlorophenyl)-3-methyl-1,5dihydro-4H-pyrazol-5-one-4-ylidene [methyl]quinolin-2(1H)one 5h Orange solid, yield 93 %, 492 mg, mp 170-172 °C; $R_f = 0.75$ (ethyl acetate/*n*-hexane 3:7); IR (v_{max} , cm^{-1}): 3,071, 2,928, 2,863, 1,688, 1,641, 1,590, 1,486, 1,361, 1,229, 1,159, 1,067, 991, 821, 788, 765, 664; ¹H NMR (400 MHz, CDCl₃): δ 2.46 (s, 3 H, CH₃), 5.08 (d, J = 2.0 Hz, 2H, CH₂), 5.17 (d, J = 17.2 Hz, 1H, one of =CH₂), 5.32 (d, J = 10.4 Hz, 1H, the other of =CH₂), 6.06 (m, 1H, CH), 7.02–7.90 (m, 6H, Ar–H), 8.14 (s, 1H, -CH=), 10.32 (s, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): 13.14 (CH₃), 46.01 (CH₂), 116.76, 117.50 (=CH₂), 120.89, 123.56, 124.52, 127.43, 127.23, 128.42, 129.71, 130.23, 131.12, 133.11, 134.67, 135.45, 136.91, 138.13, 140.46, 144.79, 146.12, 152.02 (arom.), 160.93 (C₂=O), 162.45 (C₅'=O); ESI-MS: *m*/*z*: 472.1 (M+H)⁺, Anal Calcd for C₂₃H₁₆Cl₃N₃O₂: C, 58.43; H, 3.41; N, 8.89; Found: C, 58.76; H, 3.33; N, 9.01.

4,4'-[(1-Allvl-quinolin-2-one)methylene]bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) 6a White solid, yield 92 %, 585 mg, mp 198–200 °C; $R_f = 0.45$ (ethyl acetate/*n*-hexane 9.5:0.5); IR $(v_{\text{max}}, \text{ cm}^{-1})$: 3,418, 3,073, 2,921, 1,639, 1,596, 1,415, 1,296, 1,023, 875, 795, 754, 689; ¹H NMR (400 MHz, DMSO- d_6): δ 2.35 (s, 6H, 2 CH₃), 4.93 (d, J = 2.0 Hz, 2H, CH₂), 4.97 (d, J = 17.2 Hz, 1H, one of =CH₂), 5.12 (d, J = 10.4 Hz, 1H, the other of =CH₂), 5.16 (s, 1H, CH), 5.93 (m, 1H, CH), 7.19-8.03 (m, 15H, Ar-H), 12.56 (s, 1H, OH), 14.29 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO-*d*₆): 12.29 (CH₃), 29.44 (CH), 44.67 (CH₂), 115.21, 116.96 (=CH₂), 120.27, 121.20, 122.48, 126.06, 128.32, 129.30, 129.35, 130.31, 130.87, 132.44, 133.13, 135.58, 138.27, 147.08, 153.43 (arom.), 160.99 (C=O); ESI-MS: m/z: 544.2 $(M+H)^+$, Anal Calcd for C₃₃H₂₉N₅O₃: C, 72.91; H, 5.38; N, 12.88; Found: C, 73.21; H, 5.57; N, 12.62.

4,4'-[(1-Allyl-quinolin-2-one)methylene]bis[3-methyl-1-(2chlorophenyl)-1H-pyrazol-5-ol] **6b** White solid, yield 91 %, 653 mg, mp 180–182 °C; $R_f = 0.44$ (ethyl acetate/ *n*-hexane 9.5:0.5); IR (v_{max} , cm⁻¹): 3,410, 3,079, 2,921, 1,642, 1,596, 1,420, 1,300, 1,067, 883, 744, 657; ¹H NMR (400 MHz, DMSO- d_6): δ 2.32 (s, 6H, 2 CH₃), 4.93 (m, 3H, CH₂ and one of =CH₂), 5.11 (m, 2H, the other of =CH₂ and CH), 5.92 (m, 1H, CH), 7.19-7.92 (m, 13H, Ar–H), 12.59 (s, 1H, OH), 14.09 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO- d_6): 12.43 (CH₃), 29.45 (CH), 44.71 (CH₂), 115.31, 116.59 (=CH₂), 119.73, 122.72, 127.43, 128.96, 129.46, 130.65, 130.69, 130.88, 131.76, 132.38, 132.86, 133.39, 134.75, 138.63, 140.95, 146.94, 153.21(arom.), 161.78 (C=O); ESI–MS: *m/z*: 611.2 (M+H)⁺, Anal Calcd for $C_{33}H_{27}Cl_2N_5O_3$: C, 64.71; H, 4.44; N, 11.43; Found: C, 64.86; H, 4.60; N, 11.64.

4,4'-[(1-Allyl-quinolin-2-one)methylene]bis[3-methyl-1-(3chlorophenyl)-1H-pyrazol-5-ol/6c White solid, yield 93 %, 667 mg, mp 184–186 °C; $R_f = 0.54$ (ethyl acetate/ *n*-hexane 9.5:0.5); IR (v_{max} , cm⁻¹): 3,421, 3,069, 2,924, 1,642, 1,592, 1,423, 1,291, 1,058, 881, 798, 768, 692; ¹H NMR (400 MHz, DMSO-d₆): δ 2.34 (s, 6H, 2 CH₃), 4.95 $(d, J = 2.0 \text{ Hz}, 2H, CH_2), 5.05 (d, J = 17.2 \text{ Hz}, 1H, one of$ =CH₂), 5.16 (d, J = 10.0 Hz, 1H, the other of =CH₂), 5.19 (s, 1H, CH), 6.00 (m, 1H, CH), 7.09-8.17 (m, 13H, Ar-H), 12.45 (s, 1H, OH), 14.21 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO-d₆): 13.43 (CH₃), 30.35 (CH), 44.77 (CH₂), 115.12, 117.56 (=CH₂), 119.18, 120.21, 121.67, 127.53, 128.46, 129.28, 130.49, 131.29, 131.84, 133.37, 135.41, 135.87, 137.23, 138.58, 141.39, 147.42, 152.17 (arom.), 161.34 (C = O); ESI-MS: m/z: 611.2 (M+H)⁺, Anal Calcd for C₃₃H₂₇Cl₂N₅O₃: C, 64.71; H, 4.44; N, 11.43; Found: C, 64.40; H, 4.14; N, 11.60.

4,4'-[(1-Allyl-quinolin-2-one)methylene]bis[3-methyl-1-(2,5dichlorophenyl)-1H-pyrazol-5-ol] 6d White solid, yield 94 %, 751 mg, mp 202–204 °C; $R_f = 0.68$ (ethyl acetate/ *n*-hexane 9.5:0.5); IR (v_{max} , cm⁻¹): 3,416, 3,071, 2,918, 1,639, 1,598, 1,421, 1,296, 1,063, 894, 787, 753, 667; ¹H NMR (400 MHz, DMSO- d_6): $\delta 2.37$ (s, 6H, 2 CH₃), 4.96 (m, 3H, CH_2 and one of = CH_2), 5.17 (m, 2H, the other of = CH_2 and CH), 5.96 (m, 1H, CH), 7.17-8.12 (m, 11H, Ar-H), 12.67 (s, 1H, OH), 14.21 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO-d₆): 13.94 (CH₃), 29.66 (CH), 45.13 (CH₂), 115.82, 117.23 (=CH₂), 118.61, 126.08, 127.62, 128.26, 129.15, 129.56, 130.13, 130.85, 131.59, 132.94, 133.72, 135.12, 136.18, 138.72, 141.62, 147.29, 151.91 (arom.), 162.15 (C=O); ESI-MS: m/z: 680.1 (M+H)⁺, Anal Calcd for C33H25Cl4N5O3: C, 58.17; H, 3.70; N, 10.28; Found: C, 58.01; H, 3.92; N, 10.54.

4,4'-[(1-Allyl-7-chloroquinolin-2-one)methylene]bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) **6e** White solid, yield 92 %, 592 mg, mp 218–220 °C; $R_f = 0.55$ (ethyl acetate/n-hexane 9.5:0.5); IR (v_{max} , cm⁻¹): 3,412, 3,061, 2,927, 1,631, 1,591, 1,417, 1,288, 1,021, 881, 828, 765, 665; ¹H NMR (400 MHz, DMSO- d_6): δ 2.32 (s, 6H, 2 CH₃), 4.90 (d, J = 2.0 Hz, 2H, CH₂), 4.99 (d, J = 17.6 Hz, 1H, one of =CH₂), 5.12 (d, J = 10.0 Hz, 1H, the other of =CH₂), 5.13 (s, 1H, CH), 5.92 (m, 1H, CH), 7.13–7.98 (m, 14H, Ar–H), 12.51 (s, 1H, OH), 14.23 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO- d_6): 12.16 (CH₃), 29.27 (CH), 44.44 (CH₂), 116.23, 117.12 (=CH₂), 120.25, 121.78, 122.23, 126.56, 128.08, 128.81, 129.67, 130.34, 131.56, 133.54, 135.62, 136.04, 138.64, 147.18, 152.05 (arom.), 161.19 (C=O); ESI–MS: *m/z*: 578.2 (M+H)⁺, Anal Calcd for C₃₃H₂₈ClN₅O₃: C, 68.57; H, 4.88; N, 12.12; Found: C, 68.71; H, 4.71; N, 12.31.

4,4'-[(1-Allvl-7-chloroquinolin-2-one)methylene]bis[3-methyl-1-(2-chlorophenyl)-1H-pyrazol-5-ol] 6f White solid, yield 91 %, 658 mg, mp 192–194 °C; $R_f = 0.48$ (ethyl acetate/ *n*-hexane 9.5:0.5); IR (v_{max} , cm⁻¹): 3,421, 3,068, 2,922, 1,637, 1,597, 1,411, 1,293, 1,025, 893, 821, 758, 690; ¹H NMR (400 MHz, DMSO-d₆): δ 2.33 (s, 6H, 2 CH₃), 4.89 (m, 3H, CH₂ and one of =CH₂), 5.11 (d, J = 10.4 Hz, 1H, the other of $=CH_2$), 5.14 (s, 1H, CH), 5.92 (m, 1H, CH), 7.26-7.95 (m, 12H, Ar-H), 12.57 (s, 1H, OH), 14.11 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO-*d*₆): 13.05 (CH₃), 29.23 (CH), 45.03 (CH₂), 116.71, 117.65 (=CH₂), 118.94, 122.54, 127.57, 128.85, 129.67, 130.65, 131.04, 131.56, 132.21, 132.89, 133.45, 135.68, 136.57, 138.56, 140.45, 147.32, 153.33 (arom.), 161.36 (C=O); ESI-MS: m/z: 646.1 (M+H)⁺, Anal Calcd for C₃₃H₂₆Cl₃N₅O₃: C, 61.26; H, 4.05; N, 10.83; Found: C, 61.07; H, 4.23; N, 10.69.

4,4'-[(1-Allyl-7-chloroquinolin-2-one)methylene]bis[3-methyl-1-(3-chlorophenyl)-1H-pyrazol-5-ol] 6g White solid, yield 93 %, 673 mg, mp 202–204 °C; $R_f = 0.57$ (ethyl acetate/ *n*-hexane 9.5:0.5); IR (v_{max} , cm⁻¹): 3,419, 3,071, 2,921, 1,636, 1,595, 1,412, 1,292, 1,026, 897, 825, 769, 672; ¹H NMR (400 MHz, DMSO- d_6): δ 2.31 (s, 6H, 2 CH₃), 4.95 $(d, J = 2.0 \text{ Hz}, 2H, CH_2), 5.01 (d, J = 16.8 \text{ Hz}, 1H, one of$ =CH₂), 5.14 (d, J = 10.0 Hz, 1H, the other of =CH₂), 5.17 (s, 1H, CH), 5.92 (m, 1H, CH), 7.12-8.07 (m, 12H, Ar-H), 12.59 (s, 1H, OH), 14.34 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO-d₆): 12.39 (CH₃), 30.43 (CH), 45.67 (CH₂), 116.43, 117.67 (=CH₂), 118.56, 119.98, 122.54, 127.69, 128.56, 130.04, 131.67, 132.79, 133.67, 134.78, 135.57, 136.89, 137.09, 138.43, 140.21, 147.11, 153.59 (arom.), 161.20 (C=O); ESI-MS: m/z: 646.1 (M+H)⁺, Anal Calcd for C₃₃H₂₆Cl₃N₅O₃: C, 61.26; H, 4.05; N, 10.83; Found: C, 61.56; H, 4.28; N, 11.03.

4,4'-[(1-Allyl-7-chloroquinolin-2-one)methylene]bis[3-methyl-1-(2,5-dichlorophenyl)-1H-pyrazol-5-ol] **6h** White solid, yield 92 %, 737 mg, mp 198–200 °C; $R_f = 0.78$ (ethyl acetate/*n*-hexane 9.5:0.5); IR (v_{max} , cm⁻¹): 3,418, 3,066, 2,921, 1,633, 1,594, 1,423, 1,287, 1,018, 893, 819, 792, 656; ¹H NMR (400 MHz, DMSO- d_6): δ 2.35 (s, 6H, 2 CH₃), 4.97 (d, J = 2.0 Hz, 2H, CH₂), 5.04 (d, J = 17.2 Hz, 1H, one of =CH₂), 5.18 (d, J = 10.4 Hz, 1H, the other of =CH₂), 5.19 (s, 1H, CH), 5.96 (m, 1H, CH), 7.18–8.23 (m, 10H, Ar–H), 12.56 (s, 1H, OH), 14.32 (s, 1H, OH); ¹³C NMR (100 MHz, DMSO- d_6): 14.01 (CH₃), 30.29 (CH), 46.48 (CH₂), 116.23, 117.78 (=CH₂), 119.62, 126.67, 127.45, 128.87, 129.45, 130.48, 130.93, 132.89, 133.65, 133.94, 135.73, 136.64, 137.03, 138.23, 141.54, 147.62, 152.28 (arom.), 162.04 (C=O); ESI–MS: m/z: 714.1 (M+H)⁺, Anal Calcd for C₃₃H₂₄Cl₅N₅O₃: C, 55.37; H, 3.38; N, 9.78; Found: C, 55.04; H, 3.13; N, 9.97.

1-Allvl-3-(3,5-dimethyl-1,7-diphenyl-1,4-dihydro-1H-dipyrazolo[3,4-b:4'3'-e]pyran-4-yl)quinoline-2-one 7a White solid, yield 87 %, 536 mg, mp 244–246 °C; $R_f = 0.56$ (ethyl acetate/*n*-hexane 9.5:0.5); IR (v_{max} , cm⁻¹): 3,061, 2,925, 1,631, 1,582, 1,492, 1,307, 1,026, 987, 792, 723, 692; ¹H NMR (400 MHz, DMSO- d_6): δ 2.29 (s, 6H, 2) CH_3), 4.94 (d, J = 1.6 Hz, 2H, CH_2), 4.96 (d, J = 17.6 Hz, 1H, one of =CH₂), 5.11 (s, 1H, CH), 5.16 (d, J = 10.8 Hz, 1H, the other of =CH₂), 5.97 (m, 1H, CH), 7.17-8.00 (m, 15H, Ar-H); ¹³C NMR (100 MHz, DMSOd₆): 13.24 (CH₂), 27.89 (CH), 44.30 (CH₂), 113.21.37, 117.42 (=CH₂), 120.51, 121.72, 122.58, 126.31, 128.37, 129.17, 129.59, 130.65, 130.74, 132.77, 133.63, 135.52, 138.92, 147.48, 149.85 (arom.), 162.12 (C=O); ESI-MS: m/z: 526.2 (M+H)⁺, Anal Calcd for C₃₃H₂₇N₅O₂: C, 75.41; H, 5.18; N, 13.32; Found: C, 75.64; H, 5.47; N, 13.04.

1-Allyl-3-(3,5-dimethyl-1,7-bis(2-chlorophenyl)-1,4-dihydro-1H-dipyrazolo[3,4-b:4'3'-e]pyran-4-yl)quinoline-2-one 7h White solid, yield 85 %, 592 mg, mp 236–238 °C; $R_f = 0.54$ (ethyl acetate/*n*-hexane 9.5:0.5); IR (v_{max} , cm^{-1}): 3,066, 2,921, 1,634, 1,579, 1,496, 1,313, 1,024, 982, 790, 749, 688; ¹H NMR (400 MHz, DMSO-*d*₆): δ 2.33 (s, 6H, 2 CH₃), 4.91 (m, 3H, CH₂ and one of =CH₂), 5.11 (m, 2H, the other of =CH₂ and CH), 5.94 (m, 1H, CH), 7.21-7.97 (m, 13H, Ar-H); ¹³C NMR (100 MHz, DMSOd₆): 12.32 (CH₃), 27.54 (CH), 44.51 (CH₂), 112.31, 116.59 (=CH₂), 119.99, 122.55, 127.94, 128.34, 128.95, 130.28, 130.49, 130.77, 131.03, 132.00, 132.73, 133.11, 135.55, 138.31, 140.39, 147.06, 153.25 (arom.), 161.62 (C=O); ESI-MS: m/z: 593.1 $(M+H)^+$, Anal Calcd for C₃₃H₂₅Cl₂N₅O₂: C, 66.67; H, 4.24; N, 11.78; Found: C, 66.33; H, 4.56; N, 12.01.

1-Allyl-3-(3,5-dimethyl-1,7-bis(3-chlorophenyl)-1,4-dihydro-1H-dipyrazolo[3,4-b:4'3'-e]pyran-4-yl)quinoline-2-one **7***c* White solid, yield 88 %, 613 mg, mp 240–242 °C; $R_f = 0.61$ (ethyl acetate/*n*-hexane 9.5:0.5); IR (v_{max} , cm⁻¹): 3,071, 2,928, 1,633, 1,586, 1,491, 1,321, 1,019, 978, 791, 761, 663; ¹H NMR (400 MHz, DMSO- d_6): δ 2.33 (s, 6H, 2 CH₃), 4.94 (m, 3H, CH₂ and one of =CH₂), 5.14 (m, 2H, the other of =CH₂ and CH), 5.94 (m, 1H, CH), 7.18–7.95 (m, 13H, Ar–H), ¹³C NMR (100 MHz, DMSO- d_6): 13.84 (CH₃), 28.10 (CH), 44.61 (CH₂), 112.53, 117.83 (=CH₂), 118.58, 119.93, 121.47, 127.95, 128.42, 129.65, 130.13, 131.23, 131.69, 133.75, 135.37, 135.80, 137.60, 138.53, 141.31, 147.75, 150.11 (arom.), 161.27 (C=O);

ESI–MS: m/z: 593.1 (M+H)⁺, Anal Calcd for C₃₃H₂₅Cl₂N₅O₂: C, 66.67; H, 4.24; N, 11.78; Found: C, 66.65; H, 4.04; N, 11.63.

1-Allyl-3-(3,5-dimethyl-1,7-bis(2,5-dichlorophenyl)-1,4-dihydro-1H-dipyrazolo[3,4-b:4'3'-e]pyran-4-yl)quinoline-2-one 7d White solid, yield 87 %, 677 mg, mp 252–254 °C; $R_f = 0.72$ (ethyl acetate/*n*-hexane 9.5:0.5); IR ($v_{\text{max}}, \text{ cm}^{-1}$): 3,062, 2,925, 1,632, 1,584, 1,501, 1,324, 1,020, 991, 782, 678; ¹H NMR (400 MHz, DMSO-*d*₆): δ 2.32 (s, 6H, 2 CH₃), 4.93 (d, J = 2.0 Hz, 2H, CH₂), 4.95 (d, J = 17.2 Hz, 1H, one of $=CH_2$), 5.11 (s, 1H, CH), 5.15 (d, J = 10.4 Hz, 1H, the other of $=CH_2$), 5.95 (m, 1H, CH), 7.22-8.04 (m, 11H, Ar-H); ¹³C NMR (100 MHz, DMSO-*d*₆): 13.54 (CH₃), 28.02 (CH), 44.97 (CH₂), 113.24, 117.79 (=CH₂), 118.65, 126.56, 128.14, 128.84, 129.65, 130.16, 130.78, 131.57, 132.07, 132.89, 133.94, 135.34, 136.81, 139.23, 141.75, 147.64, 151.01 (arom.), 161.63 (C=O); ESI-MS: m/z: 662.1 $(M+H)^+$, Anal Calcd for $C_{33}H_{23}Cl_4N_5O_2$: C, 59.75; H, 3.49; N, 10.56; Found: C, 59.73; H, 3.30; N, 10.36.

1-Allyl-7-chloro-3-(3,5-dimethyl-1,7-diphenyl-1,4-dihydro-1H-dipyrazolo[3,4-b:4'3'-e]pyran-4-yl)quinoline-2-one 7e White solid, yield 89 %, 557 mg, mp 236–238 °C; $R_f = 0.62$ (ethyl acetate/*n*-hexane 9.5:0.5); IR (v_{max} , cm^{-1}): 3,062, 2,926, 1,637, 1,582, 1,496, 1,309, 1,021, 989, 829, 757, 667; ¹H NMR (400 MHz, DMSO-*d*₆): δ 2.33 (s, 6H, 2 CH₃), 4.93 (m, 3H, CH₂ and one of =CH₂), 5.11 (s, 1H, CH), 5.14 (d, J = 12.0 Hz, 1H, the other of =CH₂), 5.91 (m, 1H, CH), 7.24–8.01 (m, 14H, Ar–H); ¹³C NMR (100 MHz, DMSO-d₆): 13.65 (CH₃), 27.86 (CH), 45.17 (CH₂), 112.69, 118.02 (=CH₂), 120.05, 121.64, 122.54, 125.92, 128.34, 128.95, 129.34, 130.49, 131.75, 133.27, 136.11, 136.88, 138.79, 147.42, 150.06 (arom.), 161.37 (C=O); ESI-MS: m/z: 560.2 (M+H)⁺, Anal Calcd for C₃₃H₂₆ClN₅O₂: C, 70.77; H, 4.68; N, 12.50; Found: C, 70.98; H, 4.82; N, 12.75.

1-Allyl-7-chloro-3-(3,5-dimethyl-1,7-bis(2-chlorophenyl)-1,4dihydro-1H-dipyrazolo[3,4-b:4'3'-e]pyran-4-yl)quinoline-2one 7f White solid, yield 86 %, 605 mg, mp 256–258 °C; $R_f = 0.56$ (ethyl acetate/*n*-hexane 9.5:0.5); IR (v_{max} , cm^{-1}): 3,063, 2,931, 1,641, 1,586, 1,486, 1,325, 1,029, 991, 824, 792, 657; ¹H NMR (400 MHz, DMSO-*d*₆): δ 2.33 (s, 6H, 2 CH₃), 4.90 (d, J = 2.0 Hz, 2H, CH₂), 4.99 $(d, J = 17.6 \text{ Hz}, 1\text{H}, \text{ one of = CH}_2), 5.12 (m, 2\text{H}, \text{ the other})$ of =CH₂ and CH), 5.93 (m, 1H, CH), 7.21-7.99 (m, 12H, Ar-H); ¹³C NMR (100 MHz, DMSO-*d*₆): 12.93 (CH₃), 28.21 (CH), 44.23 (CH₂), 113.17, 117.72 (=CH₂), 119.12, 122.42, 127.31, 128.64, 129.93, 130.42, 131.32, 131.28, 132.75, 132.81, 133.39, 135.59, 136.26, 138.91, 140.81, 147.16, 149.62 (arom.), 161.63 (C=O); ESI-MS: m/z: $628.1 (M+H)^+$, Anal Calcd for $C_{33}H_{24}Cl_3N_5O_2$: C, 63.02; H, 3.85; N, 11.14; Found: C, 63.28; H, 3.56; N, 10.84.

1-Allyl-7-chloro-3-(3,5-dimethyl-1,7-bis(3-chlorophenyl)-1,4dihydro-1H-dipyrazolo[3,4-b:4'3'-e]pyran-4-yl)quinoline-2one 7g White solid, yield 85 %, 709 mg, mp 236–238 °C; $R_f = 0.62$ (ethyl acetate/*n*-hexane 9.5:0.5); IR (v_{max} , cm^{-1}): 3,072, 2,928, 1,641, 1,584, 1,487, 1,301, 1,019, 992, 827, 772, 676; ¹H NMR (400 MHz, DMSO-*d*₆): δ 2.33 (s, 6H, 2 CH₃), 4.93 (m, 3H, CH₂ and one of =CH₂), 5.09 (s, 1H, CH), 5.13 (d, J = 10.8 Hz, 1H, the other of =CH₂), 5.91 (m, 1H, CH), 7.23–7.99 (m, 12H, Ar–H); ¹³C NMR (100 MHz, DMSO-d₆): 12.56 (CH₃), 28.31(CH), 44.38 (CH₂), 113.32, 117.59 (=CH₂), 118.46, 119.32, 122.63, 127.36, 128.92, 130.36, 131.39, 132.46, 133.63, 134.27, 135.47, 136.73, 137.32, 138.64, 140.63, 147.55, 150.14 (arom.), 161.48 (C=O); ESI-MS: m/z: 628.1 $(M+H)^+$, Anal Calcd for C₃₃H₂₄Cl₃N₅O₂: C, 63.02; H, 3.85; N, 11.14; Found: C, 63.34; H, 4.03; N, 11.34.

1-Allyl-7-chloro-3-(3,5-dimethyl-1,7-bis(2,5-dichlorophenyl)-1,4-dihydro-1H-dipyrazolo[3,4-b:4'3'-e]pyran-4-yl)quinoline-2-one 7h White solid, yield 88 %, 687 mg, mp 228–230 °C; $R_f = 0.82$ (ethyl acetate/*n*-hexane 9.5:0.5); IR $(v_{\text{max}}, \text{ cm}^{-1})$: 3,063, 2,922, 1,639, 1,567, 1,493, 1,309, 1,026, 991, 828, 786, 665; ¹H NMR (400 MHz, DMSO d_6): δ 2.31 (s, 6H, 2 CH₃), 4.96 (d, J = 1.6 Hz, 2H, CH₂), 5.04 (d, J = 17.6 Hz, 1H, one of =CH₂), 5.10 (s, 1H, CH), 5.18 (d, J = 10.4 Hz, 1H, the other of =CH₂), 5.94 (m, 1H, CH), 7.21-8.30 (m, 10H, Ar-H); ¹³C NMR (100 MHz, DMSO-d₆): 13.58 (CH₃), 27.91 (CH), 45.38 (CH₂), 112.78, 117.81 (=CH₂), 119.72, 126.43, 127.81, 128.92, 129.26, 130.56, 130.72, 132.82, 133.64, 134.31, 135.84, 136.62, 137.59, 138.46, 141.38, 147.61, 150.18 (arom.), 161.85 (C=O); ESI-MS: m/z: 696.0 (M+H)⁺, Anal Calcd for C₃₃H₂₂Cl₅N₅O₂: C, 56.80; H, 3.18; N, 10.04; Found: C, 56.96; H, 3.34; N, 9.81.

Conclusions

In conclusion, we have developed a new recyclable TBA– HS catalyzed one-pot procedure for quinolylmethelenebispyrazoles via a tandem Knoevenagel–Michael reaction under solvent-free conditions. Main advantage of the method is that chromatography was not used to isolate the desired product. Temperature- and stoichiometry-controlled nature of the products is other interesting part. While, equal amount of reactants yielded Knoevenageladducts at 100 °C, doubling the amount of one of the reactants pyrazolone with aldehyde resulted into formation of Knoevenagel–Michael-adducts. Heating the mixture at 120 °C, however, resulted in the cyclization of Michaeladducts and gave dipyrazolopyranylquinolines. Biological screening tests results revealed that all newly synthesized compounds possess antibacterial and antitubercular activities. Specifically, **7d** resembles standard drug ciprofloxacin in terms of its potency against *Streptococcus pneumoniae* bacteria. Compounds **5a** and **5f** on the other hand are very close to standard fluconazole (>256 μ g/mL) and miconazole (>256 μ g/mL) in their antitubercular activity, showing percent growth inhibitions in the 91–92 % range.

Acknowledgments We sincerely express our thanks to the Head, Department of Chemistry, S.P. University for providing necessary research facilities. Authors B. R. P., B. D. P. and H.A.B. acknowledge financial supports from the UGC under the UGC RFSMS Scheme. We also acknowledge the help rendered by Nutan Dye Chem, Surat.

References

- Abdel–Aziz N, Abuo-Rahma GEA, Hasan AA (2009) Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur J Med Chem 44:3480–3487
- Anderson WK, Jones AN (1984) Synthesis and evaluation of furan, thiophene, and azole bis[(carbamoyloxy)methyl] derivatives as potential antineoplastic agents. J Med Chem 27:1559–1565
- Bai YJ, Li M, Lu J, Wang ZJ, Shi Z (2004) Uncatalyzed microwaveenhanced reaction of 1-phenyl-3-methylpyrazol-5-one with aromatic aldehydes under solvent-free conditions. Chin J Org Chem 24:616–620
- Bailey DM, Hansen PE, Hlavac AG, Baizman ER, Pearl J, Defelice AF, Feigenson ME (1985) 3,4-Diphenyl-1H-pyrazole-1-propanamine antidepressants. J Med Chem 28:256–260
- Bain EE, Candillis PJ (2000) New directions in the treatment of anxiety disorders. Expert Opin Ther Patents 10:389–402
- Ballini R, Bosica G, Livi D, Palmieri A, Maggi R, Sartori G (2003) Use of heterogeneous catalyst KG-60-NEt2 in Michael and Henry reactions involving nitroalkanes. Tetrahedron Lett 44:2271–2273
- Baraldi PG, Saponaro G, Tabrizi MA, Baraldi S, Romagnoli R, Moorman AR, Varani K, Borea PA, Preti D (2012) Pyrrolo- and pyrazolo-[3,4-e][1,2,4]triazolo[1,5-c]pyrimidines as adenosine receptor antagonists. Bioorg Med Chem 20:1046–1059
- Behr LC, Fusco R, Jarboe CH (1967) Part-1. Pyrazoles. In: Weissberger A (ed) The chemistry of heterocyclic compounds, pyrazoles, pyrazolines, pyrazolidines, indazoles and condensed rings. Interscience Publishers, New York
- Buzykin BI, Lonshchakova TI (1971) Reaction of azines with 5-pyrazolones. Bull Acad Sci USSR Div Chem Sci 20:2224– 2226
- Chauhan PMS, Singh S, Chatterjee RK (1993) Antifilarial profile of substituted pyrazoles: a new class of antifilarial agents. Ind J Chem Sect B 32:858–861
- Chen YL, Chen IL, Lu CM, Tzeng CC, Tsao LT, Wang JP (2004) Synthesis and anti-inflammatory evaluation of 4-anilinofuro[2,3b]quinoline and 4-phenoxyfuro[2,3-b]quinoline derivatives. Part 3. Bioorg Med Chem 12:387–392
- DeWald HA, Lobbestael S, Butler DE (1977) Pyrazolodiazepines. 2. 4-Aryl-1,3-dialkyl-6,8-dihydropyrazolo[3,4-e][1,4]diazepin-7(1H)-ones as antianxiety and anticonvulsant agents. J Med Chem 20:1562–1569
- El-Hawash Soad AM, Badawey El-Sayed AM, El-Ashmawey Ibrahim M (2006) Nonsteroidal antiinflammatory agents—part 2 antiinflammatory, analgesic and antipyretic activity of some

substituted 3-pyrazolin-5-ones and 1,2,4,5,6,7–3H-hexahydroindazol-3-ones. Eur J Med Chem 41:155–165

- Elinson MN, Dorofeev AS, Nasybullin RF, Nikishin GI (2008) Facile and convenient synthesis of 4,4'-(arylmethylene)bis(1Hpyrazol-5-ols) by electrocatalytic tandem Knoevenagel–Michael reaction. Synthesis 12:1933–1937
- Elmoghayar MHR, EL-Algamey AGA, Nasr MYAS, Sallam MMM (1984) Activated nitriles in heterocyclic synthesis. Part III. Synthesis of *N*-amino-2-pyridone, pyranopyrazole and thiazolopyridine derivatives. J Heterocyclic Chem 21:1885–1887
- El-Nagdi MH, El-Moghayar MRH, Elgemeie GEH (1987) Chemistry of pyrazolopyrimidines. Adv Heterocyclic Chem 41:319–376
- EL-Nagdi MH, EL-Maoghayer MRH, Sadek KU (1990) Chemistry of pyrazoles condensed to heteroaromatic five- and six-membered rings. Adv Heterocyclic Chem 48:223–299
- Faber K, Kappe T (1984) Non-steroidal antiinflammatory agents. 2. Synthesis of 4-hydroxy-1-methyl-2-oxo-dihydroquinolin-3-yl acetic acid and related tetrazolyl derivatives. J Heterocycl Chem 21:1881–1883
- Fan X, Zhang X, Zhou L, Keith KA, Kern ER, Torrence PF (2006) A pyrimidine–pyrazolone nucleoside chimera with potent in vitro anti-orthopoxvirus activity. Bioorg Med Chem Lett 16:3224–3228
- Garnovskii AD, Uraev AI, Minkin VI (2004) Metal complexes from aryl and hetarylazocompounds. Arkivoc (iii):29–41
- Gunasekaran P, Perumal S, Yogeeswari P, Sriram DA (2011) facile four-component sequential protocol in the expedient synthesis of novel 2-aryl-5-methyl-2,3-dihydro-1H-3-pyrazolones in water and their antitubercular Evaluation. Eur J Med Chem 46:4530–4536
- Hong WS, Jung HY, Yang SK, Myung SJ, Kim JH, Min YI, Chung MH, Lee HS, Kim HW (2001) The antioxidant effect of rebamipide on oxygen free radical production by *H. pylori*activated human neutrophils: in comparison with *N*-acetylcysteine, ascorbic acid and glutathione. Pharmacol Res 44:293–297
- Koyama G, Umezawa H (1965) Formycin B and its relation to formycin. J Antibiot 18A:175-177
- Kuo SC, Huang LJ, Nakamura H (1984) Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. J Med Chem 27:539–544
- Lattmann E, Sattayasai J, Billinton DC, Poyner DR, Puapairoj P, Tiamkao S (2002) Synthesis and evaluation of N1-substituted-3propyl-1,4-benzodiazepine-2-ones as cholecystokinin (CCK2) receptor ligands. J Pharm Pharmacol 54:827
- Li XL, Ma H, Wang YM, Meng JM (1995) Studies on solid state condensation reaction of aromatic aldehydes and 3-methyl-1phenyl-5-pyrazolone. Chem J Chin Univ 16:1903–1906
- Li XL, Du DM, Wang YM, Meng JB (1997) Solid state reactions of nitrogenous heterocyclic compounds. 1. Solid state reactions of 3-methyl-1-phenyl-5-pyrazolone with carbonyl compounds. Sci China Series B Chem 40:205–214
- Londershausen M (1996) Approaches to new parasiticides. Pestic Sci 48:269–292
- Lube HA. (1970) ed The chemistry of synthetic dyes and pigments. American Chemical Society, Washington, DC
- Macquarrie DJ, Maggi R, Mazzacani A, Sartori G, Sartorio R (2003) Understanding the influence of the immobilization procedure on the catalytic activity of aminopropylsilicas in C–C forming reactions. Appl Catal A:Gen 246:183–188
- Mahajan RN, Havaldar FH, Fernandes PS (1991) Syntheses and biological activity of heterocycles derived from 3-methoxy-1phenyl-1H-pyrazole-5-carboxylate. J Indian Chem Soc 68: 245–249
- McDonald E, Jones K, Brough PA, Drysdale MJ, Workman P (2006) Discovery and development of pyrazole-scaffold Hsp90 inhibitors. Curr Top Med Chem 6:1193–1203

- Michail E, Anatolii V, Evgeniya T, Ivan B, Gennady N (2011) Stereoselective electrocatalytic cyclization of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) to (5R*,6R*)-11-aryl-4,10-dimethyl-2,8-diphenyl-2,3,8,9-tetraazadispiro[4.0.4.1]undeca-3,9-diene-1,7-diones. Synthesis 2011:3015–3019
- NCCLS (2000) National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 5th ed. Approved Standard (M7A5); National Committee for Clinical Laboratory Standards, Wayne, PA
- NCCLS (2009) National Committee on Clinical Laboratory Standards. Susceptibility testing of mycobacteria, nocardiae and other aerobic actinomycetes; approved standard. Wayne, PA, USA
- Niknam K, Saberi D, Sadegheyan M, Deris A (2010) Silica-bonded S-sulfonic acid: an efficient and recyclable solid acid catalyst for the synthesis of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols). Tetrahedron Lett 51:692–694
- Parmar NJ, Teraiya SB (2009) Cobalt(II) and nickel(II) chelates of some 5-pyrazolone-based, Schiff-base ligands. J Coordination Chem 62:2388–2398
- Parmar NJ, Teraiya SB, Patel RA (2010) Studies on oxovanadium(IV), Cr(III), Co(II), Ni(II), and Cu(II) chelates of some bisketimino ligands. J Coordination Chem 63:3279–3290
- Parmar NJ, Barad HA, Pansuriya BR, Patel RA (2011a) Chelation and extraction of copper(II) with 5-pyrazolone-based Schiff bases. J. Coordination Chem 64:688–698
- Parmar NJ, Teraiya SB, Patel RA, Talpada NP (2011b) Tetrabutylammonium hydrogen sulfate mediated domino reaction: synthesis of novel benzopyran-annulated pyrano[2,3-c]pyrazoles. Tetrahedron Lett 52:2853–2856
- Parmar NJ, Barad HA, Pansuriya BR, Teraiya SB, Gupta VK, Kant R (2012a) An efficient one-pot synthesis, structure, antimicrobial and antioxidant investigations of some novel quinolyldibenzo[b, e][1,4]diazepinones. Bioorg Med Chem Lett 22:3816–3821
- Parmar NJ, Pansuriya BR, Labana BM, Sutariya TR, Kant R, Gupta VK (2012b) Access to Some Angular Aminochromeno[2,3c]pyrazole Precursors by a Domino Knoevenagel–hetero-Diels– Alder Reaction. Eur J Org Chem 5953
- Parmar NJ, Teraiya SB, Barad HA, Sharma D, Gupta VK (2012c) Efficient one-pot synthesis of precursors of some novel aminochromene annulated heterocycles via domino/Knoevenagel-hetero-Diels–Alder reaction. Synth Commun. doi:10.1080/00397 911.2011.652755
- Pavlov PT, Goleneva AF, Lesnov AE, Prokhorova TS (1998) Biological activity of some pyrazolone derivatives. Pharm Chem J 32:370–372
- Rosiere CE, Grossman MI (1951) An analog of histamine that stimulates gastric acid secretion without other actions of histamine. Science 113:651
- Shadomy S, Pfaller MA (1991) Laboratory studies with antifungal agents: susceptibility tests and quantization in body fluids. In: Balows A, Hausler WJ, Hermann KL, Isenberg HD, Shadomy HJ (eds) Manual of Clinical Microbiology, 5th edn, Washington DC, chap 117, p 1173
- Shi DQ, Chen J, Wu N, Zhuang QY, Wang XS (2005) Condensation of aromatic aldehyde with 1-phenyl-3-methylpyrazol-5-one in aqueous media. Chin J Org Chem 25:405–408
- Singh D, Singh D (1984) Syntheses of 1,3-disubstituted 4-arylidenepyrazolin-5-ones and the keto and enol forms of 4,4'arylidenebis(1,3-disubstituted pyrazolin-5-ones). J Chem Eng Data 29:355–356
- Singh D, Singh D (1991) Synthesis and antifungal activity of some 4-arylmethylene derivatives of substituted pyrazolones. J Indian Chem Soc 68:165–167
- Sobhani S, Safaei E, Hasaninejad AR, Rezazadeh S (2009) An ecofriendly procedure for the efficient synthesis of bis(indolyl)methanes in aqueous media. J Organomet Chem 694:3027–3031

- Sugiura S, Ohno S, Ohtani O, Izumi K, Kitamikado T, Asai H, Kato K (1977) Syntheses and antiinflammatory and hypnotic activity of 5-alkoxy-3-(N-substituted carbamoyl)-1-phenylpyrazoles. 4. J Med Chem 20:80–85
- Sujatha K, Shanthi G, Panneer Selvam N, Manoharan S, Perumal PT, Rajendran M (2009) Synthesis and antiviral activity of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) against peste des petits ruminant virus (PPRV). Bioorg Med Chem Lett 19:4501–4503
- Tale NP, Tiwari GB, Karade NN (2011) Un-catalyzed tandem Knoevenagel–Michael reaction for the synthesis of 4,4'-(arylm-ethylene)bis(1H-pyrazol-5-ols) in aqueous medium. Chin Chem Lett 22:1415–1418
- Tullio P, Delarge J, Pirotte B (2000) Therapeutic and chemical developments of cholecystokinin receptor ligands. Exp Opin Investig Drugs 9:129–146
- Uchida M, Tabusa F, Komatsu M, Morita S, Kanbe T, Nakagawa K (1985) Studies on 2(1H)-quinolinone derivatives as gastric antiulcer active agents. 2-(4-chlorobenzoylamino)-3-[2(1H)quinolinon-4-yl] propionic acid and related compounds. Chem Pharm Bull 33:3775–3786
- Ukrainets IV, Taran SG, Evtifeeva OA, Turov AV (1993) 4-Hydroxy-2quinolines. 15. Synthesis of N-(2-pyridyl)amides of 1-R-4-hydroxy-

2-quinolone-3-carboxylic acids as possible new nonsteroidal antiinflammatory agents. Khim Geterotsikl Soedin 8:1101–1104

- Verheijen JC, Richard DJ, Curran K, Kaplan J, Lefever M, Nowak P, Malwitz DJ, Brooijmans N, Toral-Barza L, Zhang WG, Lucas J, Hollander I, Ayral-Kaloustian S, Mansour TS, Yu K, Zask A (2009) Discovery of 4-morpholino-6-aryl-1H-pyrazolo[3,4d]pyrimidines as highly potent and selective ATP-competitive inhibitors of the mammalian Target of RAPAMYCIN (mTOR): optimization of the 6-aryl Substituent. J Med Chem 52: 8010–8024
- Wang W, Wang SX, Qin XY, Li JT (2005) Reaction of aldehydes and pyrazolones in the presence of sodium dodecyl sulfate in aqueous media. Synth Commun 35:1263–1269
- Yao CS, Yu CX, Tu SJ, Shi DQ, Wang XS, Zhu YQ, Yang HZ (2007) The synthesis of 4,4'-arylmethylene-bis(3-(trifluoromethyl)-1phenyl-1H-pyrazol-5-ol) in aqueous media without catalyst. J Fluorine Chem 128:105–109
- Zang H, Su Q, Mo Y, Cheng B (2011) Ionic liquid under ultrasonic irradiation towards a facile synthesis of pyrazolone derivatives. Ultrason Sonochem 18:68–72