

Contents lists available at ScienceDirect

### Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

journal homepage: www.elsevier.com/locate/saa

# Conformational analysis, X-ray crystallographic, FT-IR, FT-Raman, DFT, MEP and molecular docking studies on 1-(1-(3-methoxyphenyl) ethylidene) thiosemicarbazide





R.R. Saravanan<sup>a,\*</sup>, S. Seshadri<sup>b</sup>, S. Gunasekaran<sup>c</sup>, R. Mendoza-Meroño<sup>d</sup>, S. Garcia-Granda<sup>d</sup>

<sup>a</sup> Department of Physics, Misrimal Navajee Munoth Jain Engineering College, Thoraipakkam, Chennai 600 097, India

<sup>b</sup> Department of Physics, L.N. Govt. Arts College, Ponneri, Thiruvallur 601 001, India

<sup>c</sup> Research & Development, St. Peter's University, Avadi, Chennai 600 054, India

<sup>d</sup> Faculty of Chemistry, Department of Physical and Analytical Chemistry, University Oviedo, C/ Julian Claveria, 8, 33006 Oviedo, Asturias, Spain

#### HIGHLIGHTS

- The FT-IR, FT-Raman studies were carried out for synthesized MPET.
- MEP plays an important role in determining the stability of the MPET.
- Structures of MPET have been studied by spectroscopic and X-ray diffraction method.
- Conformational analysis used to examine the positions of a MPET molecule.

#### ARTICLE INFO

Article history: Received 23 July 2014 Received in revised form 22 November 2014 Accepted 10 December 2014 Available online 30 December 2014

Keywords: MPET FT-IR FT-Raman Docking Crystallography

#### G R A P H I C A L A B S T R A C T



#### ABSTRACT

Conformational analysis, X-ray crystallographic, FT-IR, FT-Raman, DFT, MEP and molecular docking studies on 1-(1-(3-methoxyphenyl) ethylidene) thiosemicarbazide (MPET) are investigated. From conformational analysis the examination of the positions of a molecule taken and the energy changes is observed. The docking studies of the ligand MPET with target protein showed that this is a good molecule which docks well with target related to HMG-CoA. Hence MPET can be considered for developing into a potent anti-cholesterol drug. MEP assists in optimization of electrostatic interactions between the protein and the ligand. The MEP surface displays the molecular shape, size and electrostatic potential values. The optimized geometry of the compound was calculated from the DFT–B3LYP gradient calculations employing 6-31G (d, p) basis set and calculated vibrational frequencies are evaluated via comparison with experimental values.

© 2014 Elsevier B.V. All rights reserved.

#### Introduction

Thiosemicarbazones are compounds that have been studied for a considerable period of time for their biological properties. Traces of interest date back to the beginning of the 20th century, but the

\* Corresponding author. Mobile: +91 99940 31849. *E-mail address:* saravapj@gmail.com (R.R. Saravanan).

http://dx.doi.org/10.1016/j.saa.2014.12.026 1386-1425/© 2014 Elsevier B.V. All rights reserved. first reports on their medical applications began to appear in the Fifties as drugs against tuberculosis and leprosy [1,2]. Thiosemicarbazones are a class of small molecules that has been evaluated over the last 50 years as antivirals [3,4] and as anticancer therapeutics, [5] as well as for their parasiticidal action against *Plasmodium falciparum* [6] and *Trypanosoma cruzi* [7,8] which are the causative agents of malaria and Chagas's disease, respectively. Brockman et al. first showed that 2-formylpyridine thiosemicarbazone

#### Table 1

Details of the experimental diffraction data collections and refinements.

|                                                       | 1                                                           |
|-------------------------------------------------------|-------------------------------------------------------------|
| Empirical formula<br>Formula weight                   | C <sub>10</sub> H <sub>13</sub> N <sub>3</sub> OS<br>223.29 |
| Color, shape                                          | Colorless                                                   |
| Temperature (K)                                       | 293                                                         |
| Crystal size (mm)                                     | 0.20 0.17 0.11                                              |
| Crystal system                                        | Monoclinic                                                  |
| Space group                                           | P21/c                                                       |
| Lattice constants                                     |                                                             |
| a (Å)                                                 | 6 9460(1)                                                   |
| $h(\mathbf{A})$                                       | 8 4300(2)                                                   |
| $c(\mathbf{A})$                                       | 196150(2)                                                   |
| α (°)                                                 | 90.00                                                       |
| $\beta(\circ)$                                        | 99.722(2)                                                   |
| ν (°)                                                 | 90.00                                                       |
| Volume (Å <sup>3</sup> )                              | 1140.7(3)                                                   |
| Ζ                                                     | 4                                                           |
| λ (Å)                                                 | 1.5418                                                      |
| Calculated density, $\rho$ (g cm <sup>-3</sup> )      | 1.300                                                       |
| $\theta$ rang for data collection (°)                 | 4.53-73.03                                                  |
| Absorption coefficient (mm <sup>-1</sup> )            | 2.350                                                       |
| F(000)                                                | 472                                                         |
| Reflections collected                                 | 4538                                                        |
| Independent reflections                               | 2201 $[R(int) = 0.0140]$                                    |
| Parameters                                            | 188                                                         |
| Goodness-of-fit on $F^2$                              | 1.061                                                       |
| Final R indices $[I > 2\sigma(I)]$                    | R1 = 0.0327                                                 |
|                                                       | wR2 = 0.0908                                                |
| R indices (all data)                                  | R1 = 0.0340                                                 |
|                                                       | wR2 = 0.0923                                                |
| Largest $\Delta F$ peak and hole (e Å <sup>-3</sup> ) | 0.188 and -0.182                                            |
|                                                       |                                                             |

#### Table 2

|  | Hvdro | gen-bond | geometry | / (Å. | 0 |
|--|-------|----------|----------|-------|---|
|--|-------|----------|----------|-------|---|

| D–H…A                | D–H (Å) | H…A (Å) | D…A (Å)  | D-HA (°) |
|----------------------|---------|---------|----------|----------|
| N(2)-H(10)S(1) (i)   | 0.88(2) | 2.68(2) | 3.526(2) | 162.1(2) |
| N(3)-H(11a)S(1)(ii)  | 0.90(2) | 2.48(2) | 3.344(2) | 160.4(2) |
| N(3)-H(11b)O(1)(iii) | 0.90(2) | 2.27(2) | 3.071(2) | 149.1(2) |

Symmetry Codes (i) -x, 1/2+y, 1/2-z (ii) -x, -1/2+y, 1/2-z (iii) 1-x, 2-y, -z.



possesses anti-leukemic activity in mice bearing leukemic cells [9]. Following this report, various aliphatic, aromatic, and heteroaromatic carbaldehyde thiosemicarbazones were synthesized and evaluated for antitumor activity against a wide spectrum of transplanted murine neoplasms [10]. Vibrational spectroscopy has the potential to yield valuable structural and conformational information of organic compounds if used in conjugation with accurate quantum chemical calculations. [11].

During the last few years, a variety of experimental methods developed by physicists and biologists allowed direct monitoring of ligand-receptor interaction at the single molecule level. The continual progress within the field of crystallography, spectroscopy and Bioinformatics made available the structure of many ligandreceptor complexes with angstrom resolution. In this paper, we present, the conformational stability, synthesis, X-ray crystallographic, molecular structure, spectroscopic characterization and molecular docking studies of 1-(1-(3-methoxyphenyl) ethylidene) thiosemicarbazide (MPET). The optimized geometry and vibrational wavenumbers for conformers of MPET were calculated at the B3LYP level of theory with the 6-31G basis set. In order to provide templates for molecular modeling studies, experimental results obtained from X-crystallography and those from B3LYP methods were compared. The possible stable conformers of (MPET) were searched. Molecular docking studies for MPET also performed to find the interaction with anti cholesterol target.

#### Experimental

#### Sample preparation

A solution of 1-(3-methoxyphenyl) ethanone (3.003 g 0.02 mol) and thiosemicarbazide (1.82 g, 0.02 mol) in absolute methanol (80 ml) was refluxed for 2 h in the presence of p-toluenesulfonic acid as a catalyst, with continuous stirring. On cooling to room temperature the precipitate was filtered off, washed with copious cold methanol and dried in air. Colorless single crystals of MPET were obtained after recrystallization from a solution in methanol. 1H-RMN (DMSO-d6):  $\sigma$  (ppm) 2.28 (s 3H, CH<sub>3</sub>) 3.806 (s 3H,



Fig. 1. The various possible stable conformers of MPET.

| Table 3                                                                                                 |
|---------------------------------------------------------------------------------------------------------|
| Total energies of different conformations of MPET calculated at the B3LYP/6-31G (d, p) level of theory. |

| S. No. | Conformer | Energy (Hartree) | kJ/mol            | Energy difference (kJ/mol) |
|--------|-----------|------------------|-------------------|----------------------------|
| 1.     | C2        | -1026.53914423   | -2695178.72848369 | 0.000                      |
| 2.     | C1        | -1026.52692861   | -2695146.65637094 | 32.072                     |
| 3.     | C3        | -1026.49678837   | -2695067.52316479 | 111.205                    |
| 4.     | C4        | -1026.49440378   | -2695061.26242327 | 117.466                    |



Fig. 2. The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.

OCH<sub>3</sub>) 6.95–6.98 (d 1H, Ar-H) 7.28–7.32 (t 1H, Ar-H) 7.44–7.47 (d 1H, Ar-H) 7.44 (s 1H, Ar-H), 7.93 (s 1H, NH<sub>2</sub>) 8.27 (s 1H, NH<sub>2</sub>) 10.19 (s, –CNH-N). 13C-RMN (DMSO-d<sub>6</sub>):  $\sigma$  (ppm) 14.45 (1C, –CH<sub>3</sub>) 55.41 (1C, –OCH<sub>3</sub>) 112.05 (1C, aromatic) 115.20 (1C, aromatic) 119.36 (1C, aromatic) 129.47 (1C, aromatic) 139.36 (1C, aromatic) 147.95 (1C, aromatic) 159.55 (1C, –C=N) 179.12 (1C, C=S).

#### Single crystal X-ray structure determination

The diffraction data from a selected single crystal was collected at room temperature on Oxford Diffraction Xcalibur Gemini S



Fig. 4. MEP of MPET.

diffractometer equipped with CuK $\alpha$  radiation ( $\lambda = 1.5418$  Å). The data were processed with CrysAlis software and Empirical absorption correction using spherical harmonics, were implemented with SCALE3 ABSPACK scaling algorithm [12]. The crystallographic data, the data collection parameters, and the refinement parameters for each structure are summarized in Table 1. The Hydrogen Bond geometry of MPET is given in Table 2.

Crystal structure was solved by direct methods using Sir2008 [13] and refined by full-matrix least-square calculations against  $F^2$  using SHELXL [14]. All non-hydrogen atoms were refined with anisotropic displacement parameters. All the hydrogen atoms were located at the difference Fourier map in isotropically refined. The



Fig. 3. Intermolecular interactions in the crystal packing along bc plane.

figures were produced using ORTEP-3 [15] MERCURY [16]. The software used for the preparation of the materials for publication: WinGX [17], PLATON [18], PARST [19].

#### Computational method

The combination of spectroscopic methods with DFT calculations are powerful tools for understanding the fundamental vibrational properties and the electronic structure of the compounds [20]. The entire calculations carried out in the present work were performed at B3LYP levels included in the Gaussian 03W [21] package program with the 6-31G (d, p) basis set functions of the DFT utilizing gradient geometry optimization [22]. All the geometries were optimized using the 6-31G (d, p) basis set using DFT [23] employing Becke's three parameter hybrid functional [24] combined with the Lee-Yang-Parr correlation [25] functional (B3LYP) method. By combining the results of the Gaussview program [26] with symmetry considerations, vibrational band assignments were made with a high degree of accuracy. In order to find the most optimized geometry, the energy calculations were carried out using the B3LYP method with 6-31G (d, p) basis set for 4 different possible conformers.

#### **Results and discussion**

#### Conformational analysis

Conformational analysis is the examination of the positions a molecule takes and the energy changes it undergoes as it converts among its different conformations. Because each of the various conformations of a molecule has different properties, the conformation the molecule normally adopts has a deep influence on its physical and chemical properties. The various possible stable conformers of MPET were shown in Fig. 1. From B3LYP/6-31G (d, p) calculation the conformer C2 is predicted more stable from 32.072 to 117. 466 kJ/mol than the other MPET conformers. When comparing C2 with C4 the positional change of atoms like S and NH<sub>2</sub>. This change makes the structure C2 has more energy than C4. When comparing C3 and C4 the orientation of both CH<sub>3</sub> and NH<sub>2</sub> group are changed, but this makes very small change in the energy. The total energies obtained for these conformers were shown in Table 3. It is clear from Table 3 that the conformer C2 has produced the global energy minimum.

#### X-ray of the crystal structures

The compound crystallizes in the monoclinic lattice with  $P_{2_1/c}$  symmetry. The ORTEP diagram of MPET is shown in Fig 2, displacement ellipsoids are drawn at 50% probability level. The molecular conformation in the crystal the C9–C8/N1/N2/S1 plane form a dihedral angle of 42.73 (5)° with the benzene ring (C1–C6). The C=N bond length [1.280 (2) Å] and C=S bond length [1.6916 (2) Å] are in agreement with those values observed before (Wang et al. [27]).

The crystal packing is established by typical intermolecular N–H···S hydrogen-bond interactions of thiosemicarbazone moiety, forming sheets along the  $2_1$  axes. The methoxy group is involved in N–H···O strong hydrogen bond *Fig* 3. Additionally  $\pi$ – $\pi$  stacking interactions [Cg1 (C1 $\rightarrow$ CG)···Cg1 (iv) = 4.3934 (2) Å, offset = 25.52° for [iv: 1–x, 1–y, –z] are present in the crystal contributing to stabilize chains. The Details of the experimental diffraction data collections and refinements are shown in Table 1.



Fig. 5. Theoretical and experimental FT-IR spectra of MPET.

#### Molecular electrostatic potential (MEP)

Molecular electrostatic potential (MEP) mapping is very useful in the investigation of the molecular structure with its physiochemical property relationships [28–31]. Molecular electrostatic potential surfaces are important in computer-aided drug design as a result of them assisting in optimization of electrostatic interactions between the protein and the ligand. These surfaces are accustomed compare different inhibitors with substrates or transition states of the reaction. Electrostatic potential surfaces are either displayed as isocontour surfaces or mapped onto the molecular electron density. The later are more widely used because they maintain the sense of underlying chemical structure better than isocontour plots. The MEP surface displays the molecular shape, size and electrostatic potential values. The color scheme for the MEP surface is partially negative charge or red-electron rich: partially positive charge or blue-electron deficient: vellowslightly electron rich region; light blue-slightly electron deficient region, respectively. Potential increases in the order red < orange < yellow < green < blue. The MEP diagram of MPET is shown in Fig. 4. The MPET molecule must present atoms either with positive potential isosurface and atoms with negative potential isosurface. The MEP of MPET clearly indicates the electron rich centers of sulfur and the positive potential isosurface centers of N1, O1 and H11B.

#### Vibrational assignments

#### N–H vibrations

The N-H stretching vibrations give rise to a weak band at 3500– 3300 cm<sup>-1</sup>. Saravanan et al. [32] have observed the N–H stretching band at 3393 cm<sup>-1</sup> in FT-IR and 3395 cm<sup>-1</sup> in FT Raman spectra of (E) -1-[1-(4-Chlorophenyl) ethylidene] thiosemicarbazide). In the experimental FTIR spectrum of MPET observed at 3441, 3455 cm<sup>-1</sup> and in FT Raman 3445, 3453 cm<sup>-1</sup> is assigned to symmetric N–H stretching vibration with PEDs 99% and 99% respectively. The symmetric stretching mode calculated at 3443, 3456 cm<sup>-1</sup> by B3LYP/6-31G (d, p). Fig. 5 shows that the comparison of theoretical and experimental FT-IR spectra of MPET. Fig. 6 shows that the comparison of theoretical and experimental FT-Raman spectra of MPET.

#### C-H vibrations

The C–H stretching vibrations of aromatic and hetero aromatic structures occur [33,34] in the region  $3100-2900 \text{ cm}^{-1}$  for asymmetric stretching modes of vibrations. This permits the ready identification of the structure. A medium band is observed at 2916 and 2962 cm<sup>-1</sup> in infrared and an intense band is observed at 2920 and 2961 cm<sup>-1</sup> in FT-Raman can be assigned to C–H stretching respectively. The corresponding calculated fundamentals using B3LYP/6-31G (d, p) are 2919 and 2962. The theoretically scaled vibrations



Fig. 6. Theoretical and experimental FT-Raman spectra of MPET.

## Table 4 Theoretical and experimental vibrational wavenumbers $(cm^{-1})$ of MPET Calculated using B3LYP/6-31G (d, p).

| $\nu_{IR} \ cm^{-1}$ | $\nu_{Raman} \ cm^{-1}$ | $v_{cal} \ cm^{-1}$ | IR intensity | Raman activity | Р      | Reduced mass     | Force constant | Characterisation of normal modes with PED (%)                      |
|----------------------|-------------------------|---------------------|--------------|----------------|--------|------------------|----------------|--------------------------------------------------------------------|
|                      |                         | 26                  | 4.3542       | 3.7119         | 0.6085 | 4.3542           | 0.0021         | $\tau$ ring (11) + CH <sub>3</sub> twist (17)                      |
|                      |                         | 39                  | 7.5068       | 2.7877         | 0.7386 | 7.5068           | 0.0077         | τ ring (16) + τCN(27)                                              |
|                      |                         | 64                  | 5.9822       | 1.6427         | 0.7007 | 5.9822           | 0.0163         | $\tau CH_3(18) + \gamma CH(18)$                                    |
|                      |                         | 87                  | 1.7265       | 0.7491         | 0.7207 | 3.2956           | 0.0163         | τCH <sub>3</sub> (21)                                              |
|                      |                         | 101                 | 3.9113       | 4.9905         | 0.4538 | 4.0950           | 0.0268         | $\gamma CH_3(33) + \tau CN(25)$                                    |
|                      | 115                     | 120                 | 0.2783       | 1.6370         | 0.7499 | 2.1853           | 0.0203         | γ CH <sub>3</sub> (26)                                             |
|                      |                         | 144                 | 2.3858       | 2.2641         | 0.6963 | 2.4891           | 0.0332         | $CN_{rock}$ (41)                                                   |
|                      | 166                     | 168                 | 0.7045       | 2.3952         | 0.3824 | 2.1176           | 0.0385         | $CN_{rock}$ (36)                                                   |
|                      | 210                     | 204                 | 7.7305       | 4.0996         | 0.4758 | 3.4792           | 0.0924         | $\tau CH_3(33)$                                                    |
|                      | 216                     | 212                 | 2.3260       | 2.8639         | 0.7245 | 2.1867           | 0.0619         | $\tau CH_3(24) + \gamma CS(15)$                                    |
|                      | 251                     | 250                 | 149.7140     | 1.4301         | 0.0085 | 1.32/3           | 0.0557         | $\gamma NH_2(43) + \gamma CN (13)$                                 |
|                      | 204                     | 207                 | 12.3150      | 3.4710         | 0.4698 | 1.0434           | 0.0749         | $\tau CH_3(27)$                                                    |
|                      | 294                     | 200                 | 19.1545      | 0.3733         | 0.4039 | 2.4017           | 0.1802         | (1111) (10)                                                        |
|                      | 336                     | 333                 | 10 7059      | 2.4979         | 0.2448 | 2.9495<br>4 4755 | 0.1875         | $\beta C(H_3(23)) = \beta C(H_3(23)) + \beta C(H_3(23))$           |
|                      | 405                     | 400                 | 14 4834      | 3 2431         | 0.2886 | 5 3126           | 0.5379         | β NCS (26)                                                         |
|                      | 100                     | 421                 | 1.3401       | 12.9384        | 0.4935 | 3.7885           | 0.4291         | $\beta \text{ NH}_2(31) + \nu \text{CH}(59)$                       |
|                      |                         | 441                 | 4.5653       | 3.9710         | 0.3992 | 3.5444           | 0.4390         | $\beta ring (37) + vCN (65)$                                       |
|                      | 451                     | 449                 | 0.3528       | 4.0438         | 0.1939 | 4.0951           | 0.5191         | $\beta$ ring (32)                                                  |
|                      | 469                     | 470                 | 104.6209     | 1.1166         | 0.7472 | 1.2058           | 0.1702         | γ NH(27)                                                           |
|                      | 504                     | 505                 | 13.8440      | 4.3139         | 0.2082 | 4.5765           | 0.7450         | β CCC (16)                                                         |
|                      | 533                     | 528                 | 3.1115       | 2.5292         | 0.2854 | 4.0873           | 0.7246         | $\omega$ CH (15) + CH <sub>3scis</sub> (16)                        |
|                      |                         | 560                 | 2.6713       | 3.0754         | 0.4978 | 4.2962           | 0.8590         | β ring (26) + vCO (54)                                             |
|                      | 577                     | 574                 | 3.8228       | 0.0970         | 0.5923 | 1.4837           | 0.3120         | τNH <sub>2</sub> (22) + νCO (61)                                   |
|                      |                         | 610                 | 0.3992       | 0.6858         | 0.6703 | 4.0140           | 0.9515         | Ring breathing (65)                                                |
| 622                  | 622                     | 619                 | 4.7611       | 4.4126         | 0.7027 | 4.0441           | 0.9875         | β ring (24) + γCO (45)                                             |
|                      | 633                     | 628                 | 1.4329       | 6.3711         | 0.7316 | 2.5420           | 0.6372         | β CNH (31) + vCS (69)                                              |
| 681                  | 678                     | 679                 | 9.3106       | 2.0878         | 0.7207 | 2.2721           | 0.6686         | $CH_3 opr (18) + \gamma CH (26)$                                   |
|                      | 695                     | 697                 | 3.1283       | 7.2100         | 0.5439 | 4.8040           | 1.4942         | $\beta$ CCH (15) + vCN (72)                                        |
| 778                  |                         | 775                 | 28.1163      | 9.7691         | 0.3567 | 1.4230           | 0.5430         | $\gamma CH (15) + \gamma CO (26)$                                  |
|                      | 000                     | 818                 | 21.0770      | 31.7347        | 0.1791 | 3.1864           | 1.3579         | $\gamma CN (29) + \beta CNH (15)$                                  |
| 833                  | 830                     | 832                 | 23.7718      | 1.8974         | 0.3551 | 1.5522           | 0.6835         | $\gamma$ CH twist (19) + $\delta$ CO (23)                          |
| 860                  | 862                     | 865                 | 52.5218      | 13.9415        | 0.3309 | 2.4989           | 1.2026         | $\beta \operatorname{ring} (21) + \delta \operatorname{CH}_3 (17)$ |
| 877                  | 878                     | 8/5                 | 35.2894      | 2.7519         | 0.6868 | 1.7832           | 0.8690         | $TCH(43)+\delta CH_3(21)$                                          |
| 065                  | 940                     | 945                 | 0.0000       | 1.0075         | 0.4510 | 1.2711           | 1 2654         | P(CH(67)) = P(CH(57))                                              |
| 905                  | 974                     | 902                 | 1.0961       | 78 5506        | 0.2247 | 5 8763           | 3 5/10         | $\beta CH(07) = \delta CH(14)$                                     |
|                      | 997                     | 1001                | 1 5534       | 8 8515         | 0.1340 | 1 5819           | 1 0195         | $\delta CH_{2}(24) + \delta CH(32)$                                |
|                      | 1015                    | 1017                | 21 7532      | 14 9224        | 0.4225 | 2 2583           | 1 4889         | B CCC(15)                                                          |
| 1031                 | 1013                    | 1035                | 52 0104      | 3 2886         | 0.4833 | 4 4959           | 3 0847         | $\gamma CC (16) + \tau CH_{2}(26)$                                 |
| 1051                 | 1052                    | 1066                | 17 2099      | 22,7360        | 0.2681 | 1.8048           | 1 3031         | $CH_{2}$ opr (78) + $\delta CH(31)$                                |
| 1086                 |                         | 1082                | 9.9143       | 61.6583        | 0.2496 | 1.6818           | 1.2527         | β CCH(32)                                                          |
|                      | 1110                    | 1114                | 120.3939     | 103.0271       | 0.3343 | 4.1043           | 3.2479         | $CH_{3}opr(20) + \gamma CC (51)$                                   |
|                      |                         | 1134                | 0.6475       | 4.3457         | 0.7485 | 1.2732           | 1.0413         | $CH_{3}$ opr (45) + $\gamma CC$ (32)                               |
| 1151                 | 1152                    | 1148                | 8.1783       | 39.0904        | 0.3394 | 1.1265           | 0.9387         | CHipr (56) + vNN(77)                                               |
| 1173                 | 1171                    | 1169                | 7.8691       | 8.3031         | 0.5794 | 1.3929           | 1.2067         | δCH <sub>3</sub> (63) + δCH (29)                                   |
| 1229                 | 1229                    | 1225                | 200.1657     | 41.2047        | 0.4438 | 2.6359           | 2.5173         | δCH <sub>3</sub> (28)+ β CCH (79)                                  |
|                      | 1244                    | 1243                | 418.7783     | 24.5974        | 0.3748 | 1.9619           | 1.9295         | $\delta CH (47) + \delta CC(64)$                                   |
| 1282                 | 1281                    | 1279                | 12.9725      | 14.8739        | 0.5408 | 2.0929           | 2.1634         | $\delta CH_3 (13) + \nu CN (69)$                                   |
|                      |                         | 1297                | 11.4490      | 388.3666       | 0.3125 | 2.9000           | 3.1013         | $\delta CC (31) + v CN (56)$                                       |
| 1319                 | 1318                    | 1321                | 19.2909      | 152.4666       | 0.2578 | 3.8786           | 4.3231         | $\gamma CH_3 (10) + \delta CC (73)$                                |
| 1364                 | 1362                    | 1363                | 7.7079       | 9.7992         | 0.7496 | 1.2/3/           | 1.5056         | V(C(81))                                                           |
|                      | 1403                    | 1405                | 123.2757     | /0.4237        | 0.3001 | 2.5009           | 3.1408         | $\gamma CH_3 (19) + \delta CH(13)$                                 |
| 1420                 | 1427                    | 1406                | 14.0800      | 8.0845         | 0.1021 | 2.3578           | 2.9671         | $\beta CH_3(21)+0CO(79)$                                           |
| 1429                 | 1427                    | 1432                | 3 8316       | 14.7229        | 0.3921 | 1.2100           | 1.3624         | VCN(64)<br>CH-scis (61) + 8CH (37)                                 |
| 1446                 |                         | 1433                | 7 3721       | 27 0013        | 0.1555 | 1.0471           | 1 3969         | $CH_{a}scis(01) + vCN(82)$                                         |
| 1440                 | 1455                    | 1452                | 75 2736      | 193178         | 0.7300 | 1.0471           | 1,5305         | B CH <sub>2</sub> (31)                                             |
| 1463                 | 1 155                   | 1460                | 142 2858     | 16 1730        | 0.5550 | 1 1 2 7 3        | 1.5296         | $vCN(78) + \delta CH(65)$                                          |
| 1 105                | 1478                    | 1474                | 335 7285     | 10 4048        | 03175  | 1.6377           | 2 2642         | $vCN(62) + \delta CH(26)$                                          |
| 1492                 | 1489                    | 1490                | 62 9492      | 136 8894       | 0 3984 | 1 9879           | 2.8070         | vCH(45) + vCC(23)                                                  |
| 1102                 | 1100                    | 1561                | 263.4853     | 183.0268       | 0.3402 | 1.6242           | 2.5149         | vCC(63)                                                            |
|                      |                         | 1568                | 7.2270       | 1381.9847      | 0.3380 | 5.8616           | 9.1719         | $\delta CH_3 (11) + \nu CN (60)$                                   |
| 1589                 | 1592                    | 1590                | 121.9896     | 534.3458       | 0.3885 | 5.4348           | 8.7486         | vCO (89)                                                           |
| 1604                 |                         | 1603                | 5.9833       | 702.2122       | 0.2999 | 8.8243           | 14.4293        | vC=N (96)                                                          |
|                      |                         | 2902                | 46.4998      | 123.2235       | 0.0289 | 1.0351           | 5.5424         | vC-H (98)                                                          |
| 2916                 | 2920                    | 2919                | 7.2530       | 111.8711       | 0.0069 | 1.0429           | 5.6501         | vC-H(99)                                                           |
| 2962                 | 2961                    | 2962                | 41.0482      | 40.6345        | 0.7498 | 1.1061           | 6.1678         | vC-H(99)                                                           |
|                      | 2970                    | 2968                | 9.9206       | 46.0600        | 0.7499 | 1.1006           | 6.1650         | vC-H(99)                                                           |
|                      | 3038                    | 3034                | 27.9342      | 173.7227       | 0.4475 | 1.0996           | 6.4352         | v <sub>s</sub> CH <sub>3</sub> (98)                                |
|                      | 3053                    | 3051                | 7.6161       | 39.1178        | 0.5383 | 1.0950           | 6.4813         | $v_s CH_3(99)$                                                     |
|                      | 3063                    | 3071                | 11.7149      | 90.0515        | 0.5080 | 1.0880           | 6.5262         | vCH <sub>3</sub> (98)                                              |
|                      | 3100                    | 3097                | 6.3808       | 169.4561       | 0.2942 | 1.0930           | 6.6628         | $v_a CH_3(100)$                                                    |
|                      | 3102                    | 3107                | 5.9265       | 67.6353        | 0.1166 | 1.0931           | 6.7086         | $v_a CH_3(98)$                                                     |

Table 4 (continued)

| $\nu_{IR} \ cm^{-1}$ | $\nu_{Raman} \ cm^{-1}$ | $v_{cal} \ cm^{-1}$ | IR intensity | Raman activity | Р      | Reduced mass | Force constant | Characterisation of normal modes with PED (%) |
|----------------------|-------------------------|---------------------|--------------|----------------|--------|--------------|----------------|-----------------------------------------------|
|                      | 3111                    | 3111                | 5.6715       | 52.1374        | 0.2443 | 1.0888       | 6.7000         | vC-H(100)                                     |
| 3441                 | 3445                    | 3443                | 32.7024      | 189.4240       | 0.2148 | 1.0754       | 8.1026         | vNH(99)                                       |
| 3455                 | 3453                    | 3456                | 36.0834      | 128.9123       | 0.1223 | 1.0477       | 7.9536         | $v_{s}NH_{2}(99)$                             |
| 3620                 | 3617                    | 3615                | 109.2166     | 58.0800        | 0.6396 | 1.1036       | 9.1679         | $v_a NH_2(98)$                                |

v: stretching;  $\beta$ : in-plane bending;  $\gamma$ : out-of-plane bending; asym: asymmetric stretching; sym: symmetric stretching; ipr: in-plane rocking; opr: out-of-plane rocking;  $\tau$ Ring: ring out of-plane bending; scis: scissoring; wag: wagging.

by B3LYP/6-31G (d, p) level method also show good agreement with experiment recorded data.

The bands due to C–H in-plane bending vibrations are observed in the region 1000–1300 cm<sup>-1</sup> [35]. In the present study the C–H in plane bending vibrations were observed at 1173 and 1229 cm<sup>-1</sup> in FT-IR and at 1171 and 1229 cm<sup>-1</sup> in FT-Raman. The deviation is 2 cm<sup>-1</sup> between experimental and calculated B3LYP/6-311++G (d, p) values in MPET show better agreement with theoretical values. The C–H out-of-plane bending vibrations appear within the region 900–675 cm<sup>-1</sup> [36]. The vibrations identified at 681 cm<sup>-1</sup> in FT-IR and 678 cm<sup>-1</sup> in FT-Raman are assigned to C–H out-of-plane bending for MPET. The B3LYP level at 6–31G (d, p) gives the wavenumber value at 679 cm<sup>-1</sup> for C–H out-of-plane bending and are shown in Table 4.

#### C–C vibrations

The C–C stretching modes of the phenyl group are expected in the range from 1650 to  $1200 \text{ cm}^{-1}$ . The actual position of these modes is determined not to much by the nature of the substituent's but by the form of substitution around the ring [37]. In the present study, the bands at 1492 and 1364 cm<sup>-1</sup> in FT-IR spectrum and 1489 and 1362 cm<sup>-1</sup> in FT-Raman are assigned to C-C stretching vibration for our MPET molecule. The theoretically computed wavenumbers at 1490 and 1363 cm<sup>-1</sup> in B3LYP method also correlated with the experimental observations. The calculated PED values corresponding to these two modes are 23% and 81%.

#### C-N vibrations

Saravanan et al. [32] have observed the C–N stretching band at 1296 cm<sup>-1</sup> in FT-IR and 1291 cm<sup>-1</sup> in FT-Raman spectrum of (E) - 1-[1-(4-Chlorophenyl) ethylidene] thiosemicarbazide. In the present work, the bands at 1282 and 1281 cm<sup>-1</sup> in the FT-IR and FT-Raman spectrum of MPET are assigned to the C-N stretching mode of vibrations respectively. The calculated bands at a B3LYP level in the same region show band positions at 1279 cm<sup>-1</sup> for C–N vibrations.

#### N–N vibrations

Azo compounds are difficult to identify by IR spectroscopy because no significant bands are observed for those, the azo group being non polar in nature [38–40]. Crane et al. [41] have observed the N-N stretching band at 1151 cm<sup>-1</sup> and Seena et al. [42] at 1136 cm<sup>-1</sup>. In the present work the band appears at 1151 cm<sup>-1</sup> in FT-IR and 1152 cm<sup>-1</sup> in FT-Raman assigned to N–N vibrations. The theoretically computed values by B3LYP/6-31G (d, p) method for N–N vibrations coincide with experimental values.

#### Molecular docking studies

The structure of the target receptor, Human reductase with HMG-CoA (PDB id: 1DQ8) were obtained from the RCSB protein databank [http://www.rcsb.org/pdb]. Protein retrieved from the database was analyzed for pockets before docking studies, to ensure the possible number of binding sites of protein and ligand. The binding sites for the target receptor were searched from the Q-



Fig. 7. Poseview of MPET with HMG-CoA receptor, dotted lines shows hydrogen bonds.

site finder [www.bioinformatics.leeds.ac.uk/qsitefinder]. The small molecule or ligand is optimized by Gaussian 03W [21] package in the basis set B3LYP/6-31G (d, p). The ligand-protein docking simulations are carried out by Autodock tools [43] V1.5.4. and Autodock V4.2. Programs.

The non bonded atoms in the target receptor like an oxygen atom of  $H_2O$  molecules that were present in the crystal structure of Human reductase with HMG and CoA, is cleaned up by removing  $H_2O$  molecules and hydrogen atoms also added. Autodock docks a flexible ligand to a rigid receptor. Affinity maps for all the atom types present as well as electrostatic map, were computed with grid spacing of 0.375 E. Evaluation of the results was done by sorting the different complexes with respect to predicted binding energy.

The Autodock V4.2 software is used to simulate the binding mode of the target receptor and ligand. The protein structure of HMG-CoA reductase (PDB ID: 1DQ8) used as a target receptor. Fig. 7 shows the poseview of MPET with HMG-CoA receptor. Poseview [44–46], a tool which displays molecular complexes incorporating a simple, easy-to-perceive arrangement of the ligand and the amino acids towards which it forms interactions. HMG-CoA reductase is the rate controlling enzyme of the mevalonate pathway, the metabolic pathway that produces cholesterol and isoprenoids. The 10 docking candidates were ranked by energy and the one with the lowest energy was regarded as the best mimic structure. There are two hydrogen bonds joining MPET and HMG-CoA reductase.

The hydrogen bonds between HMG-CoA and MPET also shown in Fig. 7. Hydrogen bonding in docking plays a significant role in interaction studies. The hydrogen bonds formed between N1, O1 and H11B with GLY806, MET655 and GLY765, the distance are 3.5, 3.1 and 2.2 Å. The energy value between binding sites of HMG-CoA and MPET are -5.08 kcal/mol.

#### Conclusion

The FT-IR. FT-Raman studies were carried out for synthesized MPET. DFT calculations at the B3LYP/6-31G (d, p) level of theory were performed in order to analyze structural properties of MPET. The calculated structural parameters by the DFT method closely match with single crystal XRD data. MEP plays an important role in determining the stability of the molecule. The energies for the various possible conformers of the title compound was calculated and the minimum energy structure was chosen for the computational study as well as for Docking. From the Molecular docking studies, it shows that the positive potential isosurface of MPET are very active and also interact with protein target. Hence this MPET based new compound has also tested to estimate its potential against cholesterol biosynthesis.

#### Acknowledgement

One of the authors, R.R. Saravanan, feels indebted to Prof. S. Garcia-Granda. The authors thank Misrimal Navajee Munoth Jain Engineering College Management, Thoraipakkam, Chennai 600 097, India for their support. We thank financial support from Spanish Ministerio de Economía y Competitividad (MAT2010-15094, Factoría de Cristalización - Consolider Ingenio 2010, FEDER funds.

#### Appendix A. Supplementary material

Full crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Center, CCDC No. 988294. This data can be obtained free of charge via www.ccdc.cam.ac.uk or from Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, CB2, 1EZ, UK (fax: +44 (0)1223 336033 or email: deposit@ccdc.cam.ac.uk).

#### References

- [1] E.M. Bavin, R.J.W. Rees, J.M. Robson, M. Seiler, D.E. Seymour, D. Suddaby, J. Pharm. Pharmacol. 2 (1950) 764-772.
- [2] O. Koch, G. Stuttgen, Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol. 210 (1950) 409 - 423
- [3] V. Mishra, S.N. Pandeya, C. Pannecouque, M. Witvrouw, E. De Clercq, Arch. Pharm. (Weinheim) 335 (2002) 183-186.
- [4] R.C. Condit, R. Easterly, R.F. Pacha, Z. Fathi, R.J. Meis, Virology 185 (1991) 857-861
- [5] R.A. Finch, M.C. Liu, A.H. Cory, J.G. Cory, A.C. Sartorelli, Adv. Enzyme Regul. 39 (1999) 3-12.
- [6] D.L. Klayman, J.F. Bartosevich, T.S. Griffin, C.J. Mason, J.P. Scovill, J. Med. Chem. 22 (1979) 855-862.
- [7] H.R. Wilson, G.R. Revankar, R.L. Tolman, J. Med. Chem. 17 (1974) 760–761.
- [8] X. Du, C. Guo, E. Hansell, P.S. Doyle, C.R. Caffrey, T.P. Holler, J.H. McKerrow, F.E. Cohen, J. Med. Chem. 45 (2002) 2695-2707.

- [9] R.W. Brockman, J.R. Thomson, M.J. Bell, H.E. Skipper, Cancer Res. 16 (1956) 167-170
- [10] J. Easmon, G. Purstinger, G. Heinisch, T. Roth, H.H. Fiebig, W. Holzer, W. Jager, M. Jenny, J. Hofmann, J. Med. Chem. 44 (2001) 2164-2171.
- [11] V. Balachandran, K. Parimala, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 95 (2012) 354-368.
- [12] Oxford Diffraction. CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Yarnton, Oxfordshire, (2010) England.
- [13] M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi, R. Spagna, J. Appl. Crystallogr. 40 (2007) 609.
- [14] G.M. Sheldrick, Acta Crystallogr. A 64 (2008) 112.
- [15] L.J. Farrugia, J. Appl. Cryst. 30 (1997) 565. [16] C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P.A. Wood, J. Appl. Crystallogr. 41 (2008) 466.
- [17] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
- [18] A.L. Speck, J. Appl. Crystallogr. 36 (2003) 7.
- [19] M. Nardelli, J. Appl. Crystallogr. 28 (1995) 659.
- [20] R. John Xavier, E. Gopinath, Spectrochim. Acta A 97 (2012) 215.
- [21] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T.Jr. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Knox, J.E. Li, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc., Wallingford, CT. (2004).
- [22] H.B. Schlegel, J. Comput. Chem. 3 (1982) 214
- [23] P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864-871.
- [24] D.J. Becke, Chem. Phys. 98 (1993) 5648.
- [25] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
- [26] A. Frisch, A.B. Neilson, A.J. HolHolder, Gaussview User Manual Gaussian: Pittsburgh. (2000).
- [27] G. Wang, F. Jian, Y.F. Ding, Acta Crystallogr. E 64 (2008) 01730.
- [28] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York, 1976.
- [29] J.S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam, 1996.
- [30] J.M. Seminario, Recent Developments and Applications of Modern Density Functional Theory, Elsevier 4 (1996) 800-806.
- [31] T. Yesilkaynak, G. Binzet, F. Mehmet Emen, U. Florke, N. Kulcu, H. Arslan, Eur. J. Chem. 1 (2010) 1.
- [32] R.R. Saravanan, S. Seshadri, S. Gunasekaran, R. Mendoza-Meroño, S. Garcia-Granda, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 121 (2014) 268–275.
- [33] S. Gunasekaran, U. Ponnambalam, S. Muthu, S. Ponnusamy, Asian J. Chem. 16 (2004) 1513-1518.
- [34] J. Fulara, M.J. Nowak, L. Lapinski, A. Les, L. Adamowicz, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 47 (1991) 595-613.
- [35] R.G. Parr, R.G. Pearson, Am. J. Chem. Soc. 105 (1983) 7512-7516.
- [36] G. Socrates, Infrared and Raman Characteristic Group Frequencies-Tables and Charts, third ed., Wiley, New York, 2001. [37] L.J. Bellamy, The Infrared Spectra of Complex Molecule, third ed., Willey, New
- York 1975
- [38] L. Clougherty, J. Sousa, G. Wyman, J. Org. Chem. 22 (1957) 462.
- [39] R. Kubler, R.W. Luttke, S. Weckherlin, Z. Elektrochem. 64 (1960) 650.
- [40] K.J. Morgan, J. Chem. Soc. (1961) 2151–2159.
  [41] L.G. Crane, D. Wang, L.M. Sears, B. Heynz, K. Carron, Anal. Chem. 67 (1995) 360. [42] E.B. Seena, N. Mathew, M. Kuriakose, M.R.P. Kurup, Polyhedron 27 (2008)
- 1455-1462.
- [43] M.F. Sanner, J. Mol. Graph. Model. 17 (1) (1999) 57-61.
- [44] K. Stierand, M. Rarey, ChemMedChem 2 (2007) 853.
- [45] K. Stierand, P. Maass, M. Rarey, Bioinformatics 22 (2006) 1710–1716.
- [46] P.C. Fricker, M. Gastreich, M. Rarey, J. Chem. Inf. Comput. Sci. 44 (3) (2004) 1065.