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Abstract: 1- and 2-Naphthols were successfully alkenylated in a re-
gioselective manner by treating the corresponding lithium 1- and 2-
naphtholates with magnesium alkylidene carbenoids. The magne-
sium alkylidene carbenoids were generated in situ by a sulfoxide–
magnesium exchange reaction of 1-chlorovinyl 4-tolyl sulfoxides
with isopropylmagnesium chloride. The reaction of magnesium al-
kylidene carbenoids with lithium 2-naphtholates took place at the 1-
position of the naphthyl ring to give 1-(alk-1-enyl)-2-naphthols in
respectable yields. The alkenylation of 1-naphthols proceeded at the
2-position of the naphthol ring to give 2-(alk-1-enyl)-1-naphthols in
yields of 56–67%. In contrast to the reaction of lithium naphtholates
with magnesium alkylidene carbenoids, the reaction of lithium phe-
nolates gave low yields of the corresponding alk-1-enyl aryl ethers.

Key words: alkenation, phenols, carbenoids, sulfoxides, alkenes,
arenes, organometallic reagents

ortho-Alkenylphenolic compounds, such as 2-(alk-1-
enyl)-1-naphthols and 1-(alk-1-enyl)-2-naphthols, are im-
portant synthetic intermediates, especially as precursors
of derivatives of benzofurans or naphthofurans.1 The clas-
sical route for the synthesis of such compounds involves
allylation of the hydroxy group in a phenolic compound,
Claisen rearrangement of the resultant allyl aryl ether, and
subsequent transition metal-catalyzed isomerization of
the allylarene.2 The Heck reaction has become the most
popular method for the construction of styrene units.1c,3 A
regioselective ortho-monohalogenation of electron-rich
phenolic compounds is required for the synthesis of ortho-
alkenylphenolic compounds by means of the Heck reac-
tion.4 Direct alkenylation with alkynes is a simple and
straightforward method for the introduction of alkenyl
groups into phenolic compounds.5 However, because the
reaction has to be carried out in the presence of a Lewis
acid under harsh reaction conditions, its synthetic scope is
limited. Accordingly, the development of an alternative
route for the preparation of ortho-alkenylphenolic com-
pounds is required.

Previously, we found that treatment of 1-chlorovinyl 4-
tolyl sulfoxides 1 with Grignard reagents provides magne-

sium alkylidene carbenoids as reactive intermediates
(Scheme 1).6 These magnesium alkylidene carbenoids,
generated in situ, function as electrophilic alkenylating
agents for various nucleophiles, including Grignard re-
agents, aryllithiums, lithium acetylides, lithium amides,
lithium thiolates, or lithium enolates,7 although the nu-
cleophilic substitution reaction does not generally occur at
the vinylic carbon atom of the haloalkene. Meanwhile,
phenolic compounds are known to act as carbon nucleo-
philes toward dichlorocarbene in the Reimer–Tiemann re-
action.8 In addition, we recently found that the reaction of
lithium phenolates or naphtholates with cyclopropyl- or
cyclobutylmagnesium carbenoids gives spirocyclic die-
nones through a Buchner ring expansion.9 If phenolic
compounds could be alkenylated by magnesium alkyli-
dene carbenoids, then a variety of ortho-alkenylphenolic
compounds might be directly obtained. Here, we report
the synthesis of alkenylated 1- and 2-naphthols through
the substitution reaction of lithium 1- and 2-naphtholates
with magnesium alkylidene carbenoids. The reaction of
lithium phenolates with magnesium alkylidene carben-
oids is also reported.

Scheme 1  Reaction of magnesium alkylidene carbenoids with nu-
cleophiles

We examined the alkenylation of 2-naphthol (2a) by using
the spirocyclic 1-chlorovinyl 4-tolyl sulfoxide 1a as the
source of the corresponding magnesium alkylidene car-
benoid (Scheme 2). A solution of isopropylmagnesium
chloride in tetrahydrofuran was added to a mixture of lith-
ium 2-naphtholate (1.5 equiv) [prepared from 2-naphthol
(2a) and butyllithium] and sulfoxide 1a in tetrahydrofuran
at –78 °C, and the reaction mixture was allowed to warm
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to –10 °C. Acidic workup of the reaction mixture gave the
alkenylated 2-naphthol 3a in 7% yield, together with the
chloroalkene 4 (22%) and cumulene 5 (36%).

A comparison of the 1H NMR spectrum of 2-naphthol
(2a) with that of the product 3a showed that the signal for
the aromatic proton at the 1-position (δ = 7.13 ppm) dis-
appeared and a signal at δ = 6.30 ppm, corresponding to
an alkenyl proton, appeared, demonstrating that the alke-
nyl group had been introduced at the 1-position of the
naphthol ring. The presence of a phenolic hydroxy group
in product 3a was confirmed by a H–D exchange experi-
ment with methanol-d4 and by the iron(III) chloride test.

The alkenylation of 2-naphthol might occur by the follow-
ing mechanism (Scheme 3). Initially, the magnesium al-
kylidene carbenoid I is generated from sulfoxide 1a and
isopropylmagnesium chloride by a sulfoxide–magnesium
exchange reaction.6 Subsequent nucleophilic substitution
of lithium 2-naphtholate by the magnesium alkylidene
carbenoid I takes place predominantly at the 1-position of
the naphthol ring to give cyclohexadienone II.9b,10 The
nonaromatic intermediate II tautomerizes to the more-sta-
ble aromatic 2-naphtholate III. Finally, protonation of 2-
naphtholate III leads to the formation of the 1-(alk-1-
enyl)-2-naphthol 3a. 

Scheme 3  A plausible mechanism for the alkenylation of 2-naphthol
with magnesium alkylidene carbenoid I

We then examined various reaction conditions in an at-
tempt to improve the efficiency of the alkenylation reac-
tion. Chloroalkene 4 and cumulene 5 were the major
byproducts in this reaction.7a The former seemed to arise
from the protonation of magnesium alkylidene carbenoid

I by water, and the latter appeared to originate from the di-
merization of magnesium alkylidene carbenoid I as a re-
sult of the low nucleophilicity of lithium 2-naphtholate.
To eliminate trace amounts of the proton source from the
reaction medium, we added tert-butylmagnesium chlo-
ride, which is not reactive toward sulfoxide 1a, to the re-
action mixture before conducting the sulfoxide–
magnesium exchange reaction. We also reduced the con-
centration of the magnesium alkylidene carbenoid I from
0.5 mol/L to 0.1 mol/L in an attempt to limit the self-cou-
pling reaction of magnesium alkylidene carbenoid I. Fur-
thermore, we used five equivalents of lithium 2-
naphtholate to compensate for its low nucleophilicity. As
a result, we obtained the desired 1-(alk-1-enyl)-2-naph-
thol 3a in 66% yield, and we reduced the yields of byprod-
ucts 4 and 5 to 6% and 7%, respectively (Table 1, entry 1). 

We then examined the alkenylation of the substituted 2-
naphthols 2b and 2c and the related compounds 2d and 2e
with the magnesium alkylidene carbenoid generated from
sulfoxide 1a under the optimized reaction conditions de-
scribed above (Table 1, entries 2–5). Alkenylation of 7-
methoxy-2-naphthols (2b) with the magnesium alkyli-
dene carbenoid gave the corresponding 1-(alk-1-enyl)-2-
naphthol 3b in 78% yield (entry 2). 6-Bromo-2-naphthol
(2c) similarly gave the 1-(alk-1-enyl)-2-naphthol 3c in
62% yield (entry 3). 2-Methoxynaphthalene (2d) did not
react with the magnesium alkylidene carbenoid (entry 4),
indicating that a phenolic hydroxy group is essential for
the alkenylation reaction to occur. The lithium thiolate
prepared from naphthalene-2-thiol (2e) exhibited a differ-
ent reactivity toward the magnesium alkylidene carbenoid
(entry 5). In this reaction, the sulfur atom was alkenylated
to give alk-1-enyl aryl sulfide 3e′ (Figure 1) in 87% yield,
and 1-(alk-1-enyl)naphthalene-2-thiol 3e was not formed.
The trend for the reactivity observed for the reaction of
lithium naphthalene-2-thiolate is analogous to that ob-
served for the reaction of lithium benzenethiolates.7e

To explore the scope of the alkenylation reaction further,
we examined a range of magnesium alkylidene carben-
oids as alkenylating agents for lithium 2-naphtholate (Ta-
ble 2). The reaction of lithium 2-naphtholate with
magnesium alkylidene carbenoids generated from sulfox-
ides 1b–e containing rings of various sizes gave moderate
yields of the corresponding 1-(alk-1-enyl)-2-naphthols
3f–i (Table 2, entries 1–4). The acyclic 2,2-dialkyl-substi-

Scheme 2 Alkenylation of 2-naphthol (2a) with a magnesium alkylidene carbenoid generated from sulfoxide 1a
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tuted sulfoxides 1f–h could also be used in the alkenyl-
ation reaction and gave the desired products 3j–l in 44–
53% yield (entries 5–7, respectively), whereas alkenyl-
ation using sulfoxide 1i, which contains two phenyl
groups in the β-position, failed due to the ease with which
diphenylacetylene is formed through the Fritsch–Butten-
berg–Wiechell rearrangement of the resultant magnesium
alkylidene carbenoid (entry 8). 

In an attempt to synthesize (E)- and (Z)-1-(alk-1-enyl)-2-
naphthols selectively, we examined the reaction of 2-
naphthol (2a) with the two geometrical isomers of each of
the 1-chlorovinyl 4-tolyl sulfoxides 1j–l bearing two dif-
ferent substituents in the β-position (Table 3).7f In all cas-
es, the reaction proceeded with partial geometric
isomerization to give the 1-(alk-1-enyl)-2-naphthols 3n–p
as mixtures of (E)- and (Z)-isomers (entries 1–6). In the
case of the reaction with the sulfoxide (E)-1l, the (Z)-1-
(alk-1-enyl)-2-naphthol (Z)-3p was obtained as the major
isomer with an E/Z ratio of 14:86 (entry 5). Similarly, the
reaction with the other isomer, (Z)-1l, preferentially gave
the (E)-1-(alk-1-enyl)-2-naphthol (E)-3p with an E/Z ratio

of 89:11. These geometrical outcomes suggest that the re-
action might proceed by an SN2-type mechanism at the
carbenoid carbon atom.7f,10 The geometry-selective syn-
thesis of 1-(alk-1-enyl)-2-naphthols is difficult to achieve
at this stage because the magnesium alkylidene carben-
oids gradually isomerize.7a For instance, when the reac-
tions shown in entries 1 and 2 were conducted without
lithium 2-naphtholate, the chloroalkene was obtained as a
mixture of the (E)- and (Z)-isomers with E/Z ratios of
72:28 and 59:41, respectively.

We also examined the alkenylation of 1-naphthols 6 (Ta-
ble 4). 1-Naphthol (6a) underwent alkenylation with the
magnesium alkylidene carbenoid generated from sulfox-
ide 1a to give a 67% yield of the 2-(alk-1-enyl)-1-naph-
thol 7a (entry 1). The presence of an electron-donating or
electron-withdrawing group at the 4-position had hardly
any effect on the efficiency of the reaction (entries 2 and
3). The alkenylation of phenanthren-1-ol (6d) took place
at the 2-position to provide the 2-(alk-1-enyl)phenan-
thren-1-ol 7d in 56% yield (entry 4). 

Table 1  Alkenylation of 2-Naphthols and Related Compounds 2a–e 
with the Magnesium Alkylidene Carbenoid Generated from Sulfox-
ide 1a

Entry Reactant ER1 R2 R3 3 Yield (%)

1 2a OH H H 3a 66

2 2b OH OMe H 3b 78

3 2c OH H Br 3c 62

4 2d OMe H H 3d 0a

5 2e SH H H 3e 0b

a Chloroalkene 4 and cumulene 5 were obtained in 26% and 40% 
yields, respectively. 
b Sulfide 3e′ (Figure 1) was obtained in an 87% yield. 

O

O

S

Cl

O Tol

THF
–78 to –10 °C

i-PrMgCl

R1E

+
R1E

O

O

3
2

1a

R2

R3

R2

R3
/BuLi

Figure 1 Sulfide byproduct from an alkenylation of naphthalene-2-
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Table 2  Alkenylation of 2-Naphthol (2a) with Magnesium Alkyli-
dene Carbenoids Generated from Sulfoxides 1b–i

Entry Reactant CR2 Product Yield (%)

1 1b 3f 38

2 1c 3g 50

3 1d 3h 51

4 1e 3i 48

5 1f CMe2 3j 61

6 1g CEt2 3k 44

7 1h C[(CH2)2Ph]2 3l 53

8a 1i CPh2 3m 0

a 2-Chloro-1,1-diphenylethene and diphenylacetylene were obtained 
in 22% and 77% yields, respectively. 
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Finally, we subjected phenols 8 to the alkenylation reac-
tion (Table 5). In contrast to the reaction with 1- and 2-
naphthols, the reaction with phenol (8a) gave the alk-1-
enyl phenyl ether 10a and not the corresponding ortho-
(alk-1-enyl)phenol 9a (entry 1). Analysis of the product
10a by using the iron(III) chloride test showed the ab-
sence of a phenolic hydroxy group. The reaction of phe-
nols 8b–d bearing various substituents on the 4-position

of the phenol also proceeded at the oxygen atom to give
low yields of the corresponding ethers 10b–d (entries 2–
4). Although the factor primarily responsible for the dif-
ference in the reactivity of lithium phenolates and lithium
naphtholates toward magnesium alkylidene carbenoids
remains to be clarified,11 it is noteworthy that a new bond
between a vinylic carbon and an oxygen atom was formed
directly. However, a significant amount of cumulene 5
was also produced, and this reaction does not, at this
stage, appear to have much promise for the synthesis of
vinyl ethers. 

In summary, we have succeeded in directly alkenylating
1- and 2-naphthols by using magnesium alkylidene car-
benoids as alkenylating agents. The present method al-
lowed us to introduce a variety of alkenyl groups onto the
naphthol ring in a regiospecific manner. Studies on further
applications of the direct alkenylation of nucleophiles
with magnesium alkylidene carbenoids are currently on-
going and will be reported in due course. 

Melting points were measured on a Yanaco MP-S3 apparatus and
are uncorrected. NMR spectra were recorded in CDCl3 soln by us-
ing JEOL JNM-LA 300, JEOL JNM-LA 500, and Bruker AV 600
spectrometers. The geometries of (E)-3p and (Z)-3p were assigned
on the basis of their NOESY spectra. Mass spectra were obtained at
70 eV by direct insertion with a HITACHI M-80B mass spectrom-
eter. IR spectra were recorded on a PerkinElmer Spectrum One
FTIR instrument. Silica gel 60 N (Kanto Chemical) containing
0.5% fluorescence reagent 254 and a quartz column were used for
column chromatography, and the products that absorbed UV light
were detected by UV irradiation. The geometric isomers (E)-3p and
(Z)-3p were separated by means of recycling gel-permeation chro-
matography using an LC-9201 system (Japan Analytical Industry
Co., Ltd.). Anhyd THF was purchased from Kanto Chemical Co.,
Inc. and used as supplied. All reactions involving air- or water-sen-
sitive compounds were routinely conducted under a positive pres-

Table 3 Alkenylation of 2-Naphthol (2a) with Magnesium Alkylidene Carbenoids Generated from (E)- and (Z)-1-Chlorovinyl 4-Tolyl Sulf-
oxides (E)- and (Z)-1j–l

Entry Reactant R1 R2 Product Yield (%) E/Z ratio

1 (E)-1j 3n 72 31:69

2 (Z)-1j 3n 67 68:32

3 (E)-1k CH=CH2 Me 3o 48 40:60

4 (Z)-1k Me CH=CH2 3o 45 71:29

5 (E)-1l (CH2)4Me Me 3p 43 14:86

6 (Z)-1l Me (CH2)4Me 3p 63 89:11
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Table 4  Alkenylation of 1-Naphthols 6 with the Magnesium Alkyl-
idene Carbenoid Generated from Sulfoxide 1a

Entry 6 R1 R2 R3 7 Yield (%)

1 6a H H H 7a 67

2 6b OMe H H 7b 62

3 6c Cl H H 7c 63

4 6d 7d 56
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sure of argon in glassware that had been flame-dried. Sulfoxides 1
were prepared according to the procedure described in the litera-
ture.12 Sulfoxides 17a,f,12,13 and 1-(alk-1-enyl)-2-naphthols 3g14a and
3j14b are known compounds.

1-(1,4-Dioxaspiro[4.5]dec-8-ylidenemethyl)-2-naphthol (3a); 
Typical Procedure
A 1.65 M soln of BuLi in hexane (0.606 mL, 1.00 mmol) was added
dropwise to a soln of 2-naphthol (2a; 144 mg, 1.00 mmol) in THF
(1.0 mL) at –78 °C, and the mixture was stirred at –78 °C for 10
min. A soln of sulfoxide 1a (65.4 mg, 0.200 mmol) in THF (1.0 mL)
and a 1.03 M soln of t-BuMgCl in THF (0.194 mL, 0.200 mmol)
were then added to the soln at –78 °C. A 2.0 M soln of i-PrMgCl in
THF (0.280 mL, 0.56 mmol) was then added dropwise at –78 °C.
The mixture was allowed to warm to –10 °C over 1 h then the reac-
tion was quenched with sat. aq NH4Cl (1.5 mL) and the mixture was
extracted with CHCl3 (3 × 7 mL). The organic layers were com-
bined, dried (MgSO4), and concentrated under reduced pressure.
The residue was purified by column chromatography (silica gel,
hexane–EtOAc) to give 3a as a yellow oil [yield: 39.1 mg (0.132
mmol, 66%); Rf = 0.12 (hexane–EtOAc, 5:1)], together with 4 as a
colorless oil [yield: 2.2 mg (0.012 mmol, 6%); Rf = 0.39 (hexane–
EtOAc, 5:1)], and 5 as a colorless solid [yield: 2.0 mg (0.0066
mmol, 7%); Rf = 0.21 (hexane–EtOAc, 5:1)].

3a
IR (neat): 3411 (OH), 2951, 2885, 1620, 1595, 1269, 1203, 1140,
1121, 1087, 1033, 908, 817, 750 cm–1.
1H NMR (300 MHz, CDCl3): δ = 1.62 (t, J = 6.5 Hz, 2 H), 1.91 (t,
J = 6.5 Hz, 2 H), 2.12–2.22 (m, 2 H), 2.66 (dt, J = 1.1, 6.5 Hz, 2 H),
3.95–4.01 (m, 4 H), 5.42 (s, 1 H), 6.30 (s, 1 H), 7.19 (d, J = 8.8 Hz,
1 H), 7.33 (ddd, J = 1.3, 6.9, 8.2 Hz, 1 H), 7.43 (ddd, J = 1.3, 6.9,
8.2 Hz, 1 H), 7.67–7.82 (m, 3 H).

H/D exchange experiment: a soln of 3a (10 mg, 0.034 mmol) in
CD3OD (2 mL) was stirred at r.t. for 24 h. The intensity of the signal
at 5.42 ppm decreased to 54%.
13C NMR (126 MHz, CDCl3): δ = 26.8, 33.3, 35.1, 36.3, 64.4
(2 × C), 108.4, 114.9, 115.9, 117.0, 123.2, 124.1, 126.3, 128.2,
128.7, 128.9, 133.1, 147.7, 150.2.

MS (EI): m/z (%) = 296 (100) [M+], 234 (18), 195 (17), 181 (38),
165 (20), 158 (38), 153 (22), 140 (39), 96 (22).

HRMS (EI): m/z [M+] calcd for C19H20O3: 296.1412; found:
296.1412.

1-(1,4-Dioxaspiro[4.5]dec-8-ylidenemethyl)-7-methoxy-2-naph-
thol (3b)
Yield: 50.9 mg (78%); yellow oil.

IR (neat): 3385 (OH), 2951, 2887, 1623, 1513, 1267, 1222, 1139,
1121, 1085, 1032, 909, 831, 756 cm–1.
1H NMR (300 MHz, CDCl3): δ = 1.59–1.68 (m, 2 H), 1.90 (t,
J = 6.5 Hz, 2 H), 2.18 (t, J = 6.5 Hz, 2 H), 2.62–2.70 (m, 2 H), 3.88
(s, 3 H), 3.95–4.02 (m, 4 H), 5.39 (s, 1 H), 6.24 (s, 1 H), 6.96–7.08
(m, 3 H), 7.60–7.70 (m, 2 H).
13C NMR (126 MHz, CDCl3): δ = 26.8, 33.3, 35.2, 36.5, 55.2, 64.4
(2 × C), 103.2, 108.4, 114.4, 115.0, 115.1, 115.2, 124.1, 128.6,
129.8, 134.4, 147.8, 150.8, 158.2.

MS (EI): m/z (%) = 326 (100) [M+], 281 (14), 264 (15), 225 (14),
211 (23), 187 (71), 153 (24), 140 (41), 96 (20).

HRMS (EI): m/z [M+] calcd for C20H22O4: 326.1518; found:
326.1517.

1-(1,4-Dioxaspiro[4.5]decan-8-ylidenemethyl)-6-bromonaph-
thalen-2-ol (3c)
Yield: 46.4 mg (62%); yellow oil.

IR (neat): 3334 (OH), 2951, 2885, 1614, 1589, 1498, 1268, 1204,
1140, 1121, 1090, 1074, 1033, 909, 886, 823, 757, 734 cm–1.
1H NMR (300 MHz, CDCl3): δ = 1.62 (t, J = 6.5 Hz, 2 H), 1.90 (t,
J = 6.5 Hz, 2 H), 2.14 (t, J = 6.5 Hz, 2 H), 2.61–2.69 (m, 2 H), 3.95–
4.02 (m, 4 H), 5.43 (s, 1 H), 6.25 (s, 1 H), 7.20 (d, J = 8.9 Hz, 1 H),
7.48 (dd, J = 2.0, 8.9 Hz, 1 H), 7.56–7.64 (m, 2 H), 7.92 (d, J = 2.0
Hz, 1 H).
13C NMR (126 MHz, CDCl3): δ = 26.8, 33.3, 35.0, 36.3, 64.4
(2 × C), 108.3, 114.2, 116.2, 117.0, 118.1, 125.9, 127.9, 129.5,
129.9, 130.1, 131.6, 148.4, 150.5.

MS (EI): m/z (%) = 374 (100) [M+], 236 (22), 165 (19), 153 (22),
140 (62), 121 (19), 96 (30).

HRMS (EI): m/z [M+] calcd for C19H19BrO3: 374.0518; found:
374.0512.

8-[(2-Naphthylsulfanyl)methylene]-1,4-dioxaspiro[4.5]decane 
(3e′)
Yield: 54.3 mg (87%); colorless crystals; mp 72.2–73.3 °C (hex-
ane).

IR (KBr): 2950, 1623, 1588, 1136, 1113, 1083, 1036, 942, 910, 853,
825, 810, 741, 682 cm–1.
1H NMR (500 MHz, CDCl3): δ = 1.75 (t, J = 6.5 Hz, 2 H), 1.79 (t,
J = 6.5 Hz, 2 H), 2.48 (t, J = 6.5 Hz, 2 H), 2.59 (t, J = 6.5 Hz, 2 H),
4.00 (s, 4 H), 6.06 (s, 1 H), 7.40 (dd, J = 2.3, 8.6 Hz, 1 H), 7.42 (t,
J = 7.6 Hz, 1 H), 7.46 (t, J = 7.6 Hz, 1 H), 7.71 (br s, 1 H), 7.74 (d,
J = 7.6 Hz, 1 H), 7.75 (d, J = 8.6 Hz, 1 H), 7.78 (d, J = 7.6 Hz, 1 H).

Table 5 Reaction of Phenols 8 with the Magnesium Alkylidene Carbenoid Generated from Sulfoxide 1a

Entry Reactant R Phenol Product Yield (%) Ether Product Yield (%) of 10 Yield (%) of 5

1 8a H 9a 0 10a 20 22

2 8b OMe 9b 0 10b 25 19

3 8c F 9c 0 10c 27 16

4 8d Ph 9d 0 10d 25 20

O
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13C NMR (126 MHz, CDCl3): δ = 27.0, 33.2, 34.9, 35.9, 64.4
(2 × C), 108.5, 113.7, 125.5, 125.6, 126.4, 126.5, 127.0, 127.7,
128.4, 131.6, 133.8, 134.6, 145.1.

MS (EI): m/z (%) = 312 (100) [M+], 212 (10), 153 (49), 128 (13),
115 (21), 109 (18), 99 (15).

HRMS (EI): m/z [M+] calcd for C19H20O2S: 312.1184; found:
312.1185.

1-(Cyclopentylidenemethyl)-2-naphthol (3f)
Yield: 17.0 mg (38%); yellow oil.

IR (neat): 3507 (OH), 2955, 2868, 1622, 1595, 1516, 1465, 1388,
1265, 1204, 1140, 814, 747 cm–1.
1H NMR (500 MHz, CDCl3): δ = 1.69 (quint, J = 7.1 Hz, 2 H), 1.79
(quint, J = 7.1 Hz, 2 H), 2.07 (br t, J = 7.1 Hz, 2 H), 2.63 (br t,
J = 7.1 Hz, 2 H), 5.52 (s, 1 H), 6.41–6.46 (m, 1 H), 7.19 (d, J = 8.9
Hz, 1 H), 7.32 (t, J = 7.4 Hz, 1 H), 7.43 (t, J = 7.4 Hz, 1 H), 7.69 (d,
J = 8.9 Hz, 1 H), 7.75 (d, J = 7.4 Hz, 1 H), 7.76 (d, J = 7.4 Hz, 1 H).
13C NMR (126 MHz, CDCl3): δ = 26.2, 30.6, 34.0, 112.1, 117.0,
117.3, 123.1, 124.1, 126.2, 128.2, 128.6, 128.8, 132.6, 149.8, 154.5.

MS (EI): m/z (%) = 224 (100) [M+], 195 (17), 181 (62), 165 (18),
157 (20), 152 (15), 144 (16).

HRMS (EI): m/z [M+] calcd for C16H16O: 224.1201; found:
224.1205.

1-(Cyclohexylidenemethyl)-2-naphthol (3g)14a

Yield: 23.8 mg (50%); yellow oil.

IR (neat): 3510 (OH), 2929, 2854, 1621, 1596, 1516, 1465, 1390,
1203, 1141, 814, 747 cm–1.
1H NMR (500 MHz, CDCl3): δ = 1.37–1.54 (m, 2 H), 1.57–1.66 (m,
2 H), 1.76 (br quint, J = 6.0 Hz, 2 H), 2.00 (t, J = 6.0 Hz, 2 H), 2.48
(br s, 2 H), 5.47 (s, 1 H), 6.20 (s, 1 H), 7.19 (d, J = 9.0 Hz, 1 H), 7.32
(t, J = 7.7 Hz, 1 H), 7.43 (t, J = 7.7, Hz, 1 H), 7.70 (d, J = 9.0 Hz, 1
H), 7.76 (d, J = 7.7 Hz, 2 H).
13C NMR (126 MHz, CDCl3): δ = 26.4, 27.8, 29.0, 30.3, 36.8,
113.1, 116.2, 116.8, 123.1, 124.2, 126.2, 128.2, 128.6, 128.7, 133.2,
150.0, 150.7.

MS (EI): m/z (%) = 238 (100) [M+], 195 (16), 181 (49), 165 (13),
157 (53), 152 (14), 144 (17), 128 (13).

HRMS (EI): m/z [M+] calcd for C17H18O: 238.1358; found:
238.1363.

1-(Cyclooctylidenemethyl)-2-naphthol (3h)
Yield: 27.1 mg (51%); yellow oil.

IR (neat): 3511 (OH), 2923, 2854, 1621, 1595, 1516, 1466, 1447,
1388, 1267, 1208, 1141, 814, 747 cm–1.
1H NMR (500 MHz, CDCl3): δ = 1.21–1.75 (m, 8 H), 1.88 (br s, 2
H), 2.13 (br s, 2 H), 2.55 (br s, 2 H), 5.46 (s, 1 H), 6.35 (s, 1 H), 7.19
(d, J = 8.8 Hz, 1 H), 7.32 (t, J = 7.8 Hz, 1 H), 7.43 (t, J = 7.8 Hz, 1
H), 7.70 (d, J = 8.8 Hz, 1 H), 7.74 (d, J = 7.8 Hz, 1 H), 7.77 (d,
J = 7.8 Hz, 1 H).
13C NMR (126 MHz, CDCl3): δ = 25.2, 26.0, 26.7, 27.2, 28.8, 30.8,
36.0, 116.7, 116.9, 117.0, 123.1, 124.1, 126.2, 128.2, 128.7, 128.8,
133.0, 149.8, 153.5.

MS (EI): m/z (%) = 266 (100) [M+], 207 (21), 195 (19), 181 (65),
164 (21), 157 (69), 152 (18), 144 (28), 128 (13).

HRMS (EI): m/z [M+] calcd for C19H22O: 266.1671; found:
266.1670.

1-(Cyclopentadecylidenemethyl)-2-naphthol (3i)
Yield: 35.0 mg (48%); yellow oil.

IR (neat): 3514 (OH), 2928, 2857, 1621, 1596, 1516, 1463, 1388,
1348, 1267, 1207, 1141, 815, 758 cm–1.

1H NMR (500 MHz, CDCl3): δ = 1.02–1.50 (m, 22 H), 1.65–1.74
(m, 2 H), 1.88–2.04 (m, 2 H), 2.33–2.44 (m, 2 H), 5.46 (s, 1 H), 6.25
(s, 1 H), 7.19 (d, J = 8.7 Hz, 1 H), 7.32 (t, J = 7.6 Hz, 1 H), 7.42 (t,
J = 7.6 Hz, 1 H), 7.70 (d, J = 8.7 Hz, 1 H), 7.72 (d, J = 7.6 Hz, 1 H),
7.76 (d, J = 7.6 Hz, 1 H).
13C NMR (126 MHz, CDCl3): δ = 26.1, 26.4, 26.50, 26.53, 26.7,
27.5, 27.6, 27.7, 31.2, 36.3, 116.4, 116.8, 123.1, 124.2, 126.1,
128.1, 128.6, 128.8, 133.1, 149.7, 152.1.

MS (EI): m/z (%) = 364 (100) [M+], 181 (37), 157 (25), 144 (20).

HRMS (EI): m/z [M+] calcd for C26H36O: 364.2766; found:
364.2769.

1-(2-Methylprop-1-en-1-yl)-2-naphthol (3j)14b

Yield: 24.2 mg (61%); colorless oil.

IR (neat): 3511 (OH), 2972, 2934, 2912, 1620, 1595, 1516, 1465,
1388, 1267, 1206, 1141, 959, 812, 749 cm–1.
1H NMR (500 MHz, CDCl3): δ = 1.61 (s, 3 H), 2.09 (s, 3 H), 5.43
(s, 1 H), 6.28 (s, 1 H), 7.20 (d, J = 8.5 Hz, 1 H), 7.32 (t, J = 7.6 Hz,
1 H), 7.43 (t, J = 7.6 Hz, 1 H), 7.71 (d, J = 8.5 Hz, 1 H), 7.72 (d,
J = 7.6 Hz, 1 H), 7.77 (d, J = 7.6 Hz, 1 H).
13C NMR (126 MHz, CDCl3): δ = 19.6, 25.5, 116.7, 116.8, 116.9,
123.1, 124.2, 126.2, 128.2, 128.8, 133.0, 142.9, 150.1.

MS (EI): m/z (%) = 198 (100) [M+], 183 (69), 181 (19), 165 (39),
155 (18), 152 (16), 128 (15).

HRMS (EI): m/z [M+] calcd for C14H14O: 198.1045; found:
198.1049.

1-(2-Ethylbut-1-en-1-yl)-2-naphthol (3k)
Yield: 19.9 mg (44%); yellow oil.

IR (neat): 3512 (OH), 2966, 2934, 1621, 1595, 1516, 1464, 1387,
1267, 1205, 1141, 816, 747 cm–1.
1H NMR (300 MHz, CDCl3): δ = 0.88 (t, J = 7.6 Hz, 3 H), 1.27 (t,
J = 7.4 Hz, 3 H), 1.97 (q, J = 7.6 Hz, 2 H), 2.41 (dq, J = 1.3, 7.4 Hz,
2 H), 5.45 (s, 1 H), 6.19 (s, 1 H), 7.20 (d, J = 8.8 Hz, 1 H), 7.32 (ddd,
J = 1.3, 6.8, 8.1 Hz, 1 H), 7.42 (ddd, J = 1.3, 6.8, 8.1 Hz, 1 H), 7.66–
7.80 (m, 3 H).
13C NMR (126 MHz, CDCl3): δ = 12.5, 13.1, 24.6, 28.5, 114.3,
116.7, 116.8, 123.1, 124.1, 126.1, 128.1, 128.6, 128.8, 133.1, 149.8,
154.5.

MS (EI): m/z (%) = 226 (85) [M+], 197 (100), 181 (30), 179 (22),
169 (20), 165 (17), 157 (19), 152 (20), 144 (24), 141 (19), 128 (19),
115 (15).

HRMS (EI): m/z [M+] calcd for C16H18O: 226.1358; found:
226.1355.

1-[4-Phenyl-2-(2-phenylethyl)but-1-en-1-yl]-2-naphthol (3l)
Yield: 40.1 mg (53%); yellow oil.

IR (neat): 3494 (OH), 3061, 3026, 2926, 2857, 1621, 1595, 1516,
1496, 1464, 1455, 1388, 1207, 1140, 816, 749, 699 cm–1.
1H NMR (500 MHz, CDCl3): δ = 2.26 (br s, 2 H), 2.53–2.68 (m, 2
H), 2.79 (br s, 2 H), 3.01 (br s, 2 H), 4.83 (s, 1 H), 6.11 (s, 1 H), 6.87
(d, J = 7.4 Hz, 2 H), 7.05–7.14 (m, 4 H), 7.26–7.31 (m, 4 H), 7.31–
7.40 (m, 3 H), 7.43 (d, J = 8.4 Hz, 1 H), 7.66 (d, J = 8.7 Hz, 1 H),
7.72 (d, J = 7.8 Hz, 1 H).
13C NMR (126 MHz, CDCl3): δ = 32.6, 33.8, 34.0, 37.6, 116.2,
116.9, 119.0, 123.1, 124.2, 125.9, 126.2, 126.3, 128.0, 128.1, 128.2,
128.5, 128.7, 128.8, 132.9, 141.1, 141.2, 148.3, 149.8.

MS (EI): m/z (%) = 378 (100) [M+], 195 (25), 181 (22), 157 (74),
143 (23), 129 (17), 105 (33), 91 (41).

HRMS (EI): m/z [M+] calcd for C28H26O: 378.1984; found:
378.1982.
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1-(Cyclohex-2-en-1-ylidenemethyl)-2-naphthol (3n)
Obtained as a 31:69 mixture of geometric isomers (Table 3, entry
1); yield: 34.0 mg (72%); yellow oil.

IR (neat): 3514 (OH), 2935, 1621, 1594, 1516, 1465, 1388, 1267,
1204, 1141, 958, 816, 750 cm–1.
1H NMR (500 MHz, CDCl3) (M: major isomer, m: minor isomer):
δ = 1.67 (quint, J = 6.2 Hz, 2 Hm), 1.90 (quint, J = 6.0 Hz, 2 HM),
2.15–2.27 (m, 2 HM, 4 Hm), 2.68 (t, J = 6.0 Hz, 2 HM), 5.34 (s, 1 Hm),
5.53 (s, 1 HM), 5.93–6.07 (m, 2 HM, 1 Hm), 6.24 (s, 1 HM), 6.34 (s, 1
Hm), 6.43–6.47 (m, 1 Hm), 7.194 (d, J = 8.4 Hz, 1 HM), 7.195 (d,
J = 9.4 Hz, 1 Hm), 7.32 (t, J = 7.7 Hz, 1 HM), 7.33 (t, J = 7.7 Hz, 1
Hm), 7.41–7.46 (m, 1 HM, 1 Hm), 7.712 (d, J = 8.4 Hz, 1 HM), 7.715
(d, J = 9.4 Hz, 1 Hm), 7.72 (d, J = 7.7 Hz, 1 Hm), 7.74 (d, J = 7.7 Hz,
1 HM), 7.766 (d, J = 7.7 Hz, 1 HM), 7.773 (d, J = 7.7 Hz, 1 Hm).
13C NMR (126 MHz, CDCl3): δ = 22.4, 23.3, 25.7, 26.1, 26.7, 31.9,
115.4, 115.9, 116.9, 117.0, 123.2, 123.3, 124.2, 124.3, 124.9,
126.27, 126.31, 128.1, 128.2, 128.8, 129.0, 129.8, 131.9, 132.9,
134.2, 141.4, 143.6, 150.1, 150.2.

MS (EI): m/z (%) = 236 (100) [M+], 219 (12), 207 (39), 194 (14),
181 (29), 165 (13), 157 (25), 152 (12), 129 (12).

HRMS (EI): m/z [M+] calcd for C17H16O: 236.1201; found:
236.1199.

1-(2-Methylbuta-1,3-dien-1-yl)-2-naphthol (3o)
Obtained as a 40:60 mixture of geometric isomers (Table 3, entry
3); yield: 20.2 mg (48%); yellow oil.

IR (neat): 3520 (OH), 3060, 2924, 1621, 1595, 1515, 1465, 1388,
1267, 1206, 1141, 818, 748 cm–1.
1H NMR (500 MHz, CDCl3) (M: major isomer, m: minor isomer):
δ = 1.75 (s, 3 Hm), 2.20 (s, 3 HM), 5.20 (d, J = 11.0 Hz, 1 HM), 5.26
(s, 1 Hm), 5.28 (d, J = 10.6 Hz, 1 Hm), 5.40 (s, 1 HM), 5.42 (d,
J = 17.6 Hz, 1 Hm), 5.47 (d, J = 17.4 Hz, 1 HM), 6.35 (dd, J = 11.0,
17.4 Hz, 1 HM), 6.52 (s, 1 HM), 6.60 (s, 1 Hm), 6.77 (dd, J = 10.6,
17.6 Hz, 1 Hm), 7.195 (d, J = 9.3 Hz, 1 HM), 7.204 (d, J = 8.7 Hz, 1
Hm), 7.34 (t, J = 8.0 Hz, 1 HM), 7.40 (t, J = 8.0 Hz, 1 Hm), 7.44 (t,
J = 8.0 Hz, 1 HM, 1 Hm), 7.68 (d, J = 8.0 Hz, 1 Hm), 7.71 (d, J = 8.0
Hz, 1 HM), 7.73 (d, J = 9.3 Hz, 1 HM), 7.74 (d, J = 8.7 Hz, 1 Hm),
7.776 (d, J = 8.0 Hz, 1 HM), 7.783 (d, J = 8.0 Hz, 1 Hm).

MS (EI): m/z (%) = 210 (38) [M+], 195 (100), 181 (10), 165 (20),
152 (15).

HRMS (EI): m/z [M+] calcd for C15H14O: 210.1045; found:
210.1046.

1-[(1Z)-2-Methylhept-1-en-1-yl]-2-naphthol [(Z)-3p]
Yield: 21.9 mg (43%); yellow oil.

IR (neat): 3512 (OH), 2955, 2929, 2858, 1622, 1595, 1516, 1465,
1388, 1267, 1205, 1141, 815, 747 cm–1.
1H NMR (500 MHz, CDCl3): δ = 0.70 (t, J = 6.9 Hz, 3 H), 1.00–
1.13 (m, 4 H), 1.34 (quint, J = 7.4 Hz, 2 H), 1.88–1.99 (m, 2 H),
2.07 (s, 3 H), 5.46 (s, 1 H), 6.23 (s, 1 H), 7.19 (d, J = 8.8 Hz, 1 H),
7.31 (t, J = 8.0 Hz, 1 H), 7.42 (t, J = 8.0 Hz, 1 H), 7.70 (d, J = 8.0
Hz, 1 H), 7.72 (d, J = 8.8 Hz, 1 H), 7.76 (d, J = 8.0 Hz, 1 H).
13C NMR (126 MHz, CDCl3): δ = 13.7, 22.2, 22.9, 27.1, 31.4, 33.0,
116.77, 116.80, 123.1, 124.3, 126.1, 128.1, 128.7, 128.75, 128.81,
133.1, 147.3, 149.9.

MS (EI): m/z (%) = 254 (100) [M+], 197 (20), 183 (60), 181 (19),
157 (28), 144 (27).

HRMS (EI): m/z [M+] calcd for C18H22O: 254.1671; found:
254.1675.

1-[(1E)-2-Methylhept-1-en-1-yl]-2-naphthol [(E)-3p]
Yield: 32.0 mg (63%); yellow oil.

IR (neat): 3513 (OH), 2956, 2929, 2857, 1621, 1595, 1517, 1465,
1387, 1266, 1207, 1141, 815, 747 cm–1.

1H NMR (500 MHz, CDCl3): δ = 0.97 (br t, J = 6.7 Hz, 3 H), 1.36–
1.46 (m, 4 H), 1.58 (s, 3 H), 1.65 (quint, J = 7.4 Hz, 2 H), 2.37 (t,
J = 7.4 Hz, 2 H), 5.41 (s, 1 H), 6.28 (s, 1 H), 7.20 (d, J = 8.7 Hz, 1
H), 7.32 (t, J = 8.0 Hz, 1 H), 7.43 (t, J = 8.0 Hz, 1 H), 7.70 (d,
J = 8.0 Hz, 1 H), 7.71 (d, J = 8.7 Hz, 1 H), 7.77 (d, J = 8.0 Hz, 1 H).
13C NMR (126 MHz, CDCl3): δ = 14.1, 17.7, 22.6, 27.8, 31.7, 39.3,
116.3, 116.7, 116.9, 123.1, 124.1, 126.2, 128.2, 128.7, 128.8, 132.9,
147.1, 149.9.

MS (EI): m/z (%) = 254 (100) [M+], 197 (30), 183 (90), 181 (33),
179 (21), 165 (20), 157 (41), 152 (18), 144 (44).

HRMS (EI): m/z [M+] calcd for C18H22O: 254.1671; found:
254.1675.

2-(1,4-Dioxaspiro[4.5]dec-8-ylidenemethyl)-1-naphthol (7a)
Yield: 39.7 mg (67%); yellow oil.

IR (neat): 3416 (OH), 2926, 2850, 1718, 1572, 1385, 1271, 1245,
1120, 1085, 1033, 759 cm–1.
1H NMR (500 MHz, CDCl3): δ = 1.67 (t, J = 6.5 Hz, 2 H), 1.85 (t,
J = 6.5 Hz, 2 H), 2.31 (t, J = 6.5 Hz, 2 H), 2.55 (t, J = 6.5 Hz, 2 H),
3.95–4.02 (m, 4 H), 5.52 (s, 1 H), 6.29 (s, 1 H), 7.15 (d, J = 8.4 Hz,
1 H), 7.38 (d, J = 8.4 Hz, 1 H), 7.43–7.50 (m, 2 H), 7.74–7.80 (m, 1
H), 8.19–8.25 (m, 1 H).
13C NMR (126 MHz, CDCl3): δ = 26.6, 33.5, 35.2, 36.1, 64.4
(2 × C), 108.4, 117.1, 117.3, 119.5, 122.2, 123.9, 125.2, 126.1,
127.40, 127.44, 133.8, 145.7, 148.0.

MS (EI): m/z (%) = 296 (100) [M+], 234 (14), 195 (18), 181 (23),
158 (22), 140 (51), 96 (22).

HRMS (EI): m/z [M+] calcd for C19H20O3: 296.1412; found:
296.1414.

2-(1,4-Dioxaspiro[4.5]dec-8-ylidenemethyl)-4-methoxy-1-naph-
thol (7b)
Yield: 40.4 mg (62%); yellow oil.

IR (neat): 3391 (OH), 2952, 2886, 1621, 1596, 1459, 1390, 1288,
1225, 1122, 1097, 1081, 1033, 759 cm–1.
1H NMR (500 MHz, CDCl3): δ = 1.68 (t, J = 6.5 Hz, 2 H), 1.85 (t,
J = 6.5 Hz, 2 H), 2.34 (t, J = 6.5 Hz, 2 H), 2.55 (t, J = 6.5 Hz, 2 H),
3.94 (s, 3 H), 3.97–4.01 (m, 4 H), 5.17 (s, 1 H), 6.27 (s, 1 H), 6.49
(s, 1 H), 7.43–7.54 (m, 2 H), 8.14–8.20 (m, 2 H).
13C NMR (126 MHz, CDCl3): δ = 26.7, 33.4, 35.2, 36.1, 55.7, 64.4
(2 × C), 105.2, 108.4, 116.0, 117.8, 121.7, 122.0, 124.8, 125.4,
125.6, 125.9, 141.8, 145.2, 148.7.

MS (EI): m/z (%) = 326 (100) [M+], 280 (14), 225 (11), 211 (11),
202 (14), 187 (23), 140 (62), 99 (29), 96 (20), 86 (11).

HRMS (EI): m/z [M+] calcd for C20H22O4: 326.1518; found:
326.1518.

4-Chloro-2-(1,4-dioxaspiro[4.5]dec-8-ylidenemethyl)-1-naph-
thol (7c)
Yield: 41.6 mg (63%); yellow oil.

IR (neat): 3410 (OH), 2952, 2886, 1595, 1380, 1270, 1215, 1121,
1081, 1033, 760 cm–1.
1H NMR (300 MHz, CDCl3): δ = 1.67 (t, J = 6.5 Hz, 2 H), 1.85 (t,
J = 6.5 Hz, 2 H), 2.30 (dt, J = 1.1, 6.5 Hz, 2 H), 2.55 (dt, J = 1.1, 6.5
Hz, 2 H), 3.96–4.01 (m, 4 H), 5.53 (s, 1 H), 6.21 (s, 1 H), 7.26 (s, 1
H), 7.49–7.63 (m, 2 H), 8.13–8.28 (m, 2 H).
13C NMR (126 MHz, CDCl3): δ = 26.7, 33.4, 35.1, 36.1, 64.4
(2 × C), 108.3, 116.2, 117.3, 122.4, 122.7, 124.2, 124.9, 126.0,
127.08, 127.11, 130.6, 146.7, 147.2.

MS (EI): m/z (%) = 330 (100) [M+], 268 (16), 215 (18), 206 (29),
193 (18), 165 (18), 140 (79), 99 (34), 96 (30).

HRMS (EI): m/z [M+] calcd for C19H19ClO3: 330.1023; found:
330.1020.
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2-(1,4-Dioxaspiro[4.5]dec-8-ylidenemethyl)phenanthren-1-ol 
(7d)
Yield: 38.8 mg (56%); colorless oil.

IR (neat): 3419 (OH), 2951, 2886, 1598, 1574, 1462, 1239, 1215,
1137, 1120, 1083, 1033, 753 cm–1.
1H NMR (500 MHz, CDCl3): δ = 1.69 (t, J = 6.5 Hz, 2 H), 1.87 (t,
J = 6.5 Hz, 2 H), 2.35 (t, J = 6.5 Hz, 2 H), 2.58 (t, J = 6.5 Hz, 2 H),
3.97–4.02 (m, 4 H), 5.56 (s, 1 H), 6.34 (s, 1 H), 7.34 (d, J = 8.5 Hz,
1 H), 7.58 (t, J = 7.7 Hz, 1 H), 7.63 (t, J = 7.7 Hz, 1 H), 7.74 (d,
J = 9.3 Hz, 1 H), 7.89 (d, J = 7.7 Hz, 1 H), 8.19 (d, J = 9.3 Hz, 1 H),
8.22 (d, J = 8.5 Hz, 1 H), 8.64 (d, J = 7.7 Hz, 1 H).
13C NMR (126 MHz, CDCl3): δ = 26.6, 33.5, 35.2, 36.1, 64.4
(2 × C), 108.4, 114.4, 117.0, 119.2, 120.6, 121.4, 122.9, 126.1,
126.4, 126.5, 127.8, 128.5, 130.0, 130.7, 132.0, 146.2, 148.8.

MS (EI): m/z (%) = 346 (100) [M+], 284 (15), 245 (19), 231 (21),
215 (13), 208 (42), 202 (17), 140 (35), 96 (27).

HRMS (EI): m/z [M+] calcd for C23H22O3: 346.1569; found:
346.1564.

8-(Phenoxymethylene)-1,4-dioxaspiro[4.5]decane (10a)
Yield: 9.8 mg (20%); colorless oil.

IR (neat): 2950, 2882, 1686, 1597, 1492, 1236, 1102, 1078, 1034,
907, 754, 692 cm–1.
1H NMR (500 MHz, CDCl3): δ = 1.69 (t, J = 6.5 Hz, 2 H), 1.74 (t,
J = 6.5 Hz, 2 H), 2.27 (t, J = 6.5 Hz, 2 H), 2.46 (t, J = 6.5 Hz, 2 H),
3.99 (s, 4 H), 6.25 (s, 1 H), 6.98 (d, J = 7.9 Hz, 2 H), 7.02 (t, J = 7.9
Hz, 1 H), 7.30 (t, J = 7.9 Hz, 2 H).
13C NMR (126 MHz, CDCl3): δ = 22.4, 27.3, 34.8, 36.0, 64.3
(2 × C), 108.9, 115.8, 122.0, 122.5, 129.5, 133.3, 157.7.

MS (EI): m/z (%) = 246 (55) [M+], 153 (100), 109 (81), 94 (12), 91
(15), 81 (14), 77 (15).

HRMS (EI): m/z [M+] calcd for C15H18O3: 246.1256; found:
246.1251.

8-[(4-Methoxyphenoxy)methylene]-1,4-dioxaspiro[4.5]decane 
(10b)
Yield: 13.8 mg (25%); yellow oil.

IR (neat): 2961, 2877, 1683, 1505, 1471, 1375, 1219, 1109, 1099,
1029, 908, 833, 683 cm–1.
1H NMR (300 MHz, CDCl3): δ = 1.65–1.76 (m, 4 H), 2.24 (dt,
J = 1.0, 6.4, Hz, 2 H), 2.46 (dt, J = 1.0, 6.4, Hz, 2 H), 3.77 (s, 3 H),
3.98 (s, 4 H), 6.15–6.20 (m, 1 H), 6.80–6.94 (m, 4 H).

MS (EI): m/z (%) = 276 (99) [M+], 215 (14), 192 (12), 153 (100),
124 (32), 109 (40), 81 (17).

HRMS (EI): m/z [M+] calcd for C16H20O4: 276.1362; found:
276.1364.

8-[(4-Fluorophenoxy)methylene]-1,4-dioxaspiro[4.5]decane 
(10c)
Yield: 14.3 mg (27%); colorless oil.

IR (neat): 2951, 2883, 1687, 1504, 1444, 1375, 1246, 1204, 1124,
1102, 1034, 907, 831, 756, 681 cm–1.
1H NMR (300 MHz, CDCl3): δ = 1.65–1.76 (m, 4 H), 2.25 (dt,
J = 1.0, 6.4 Hz, 2 H), 2.45 (dt, J = 1.0, 6.4 Hz, 2 H), 3.98 (s, 4 H),
6.16–6.19 (m, 1 H), 6.88–7.02 (m, 4 H).

MS (EI): m/z (%) = 264 (41) [M+], 153 (100), 112 (9), 109 (26), 99
(10), 81 (13).

HRMS (EI): m/z [M+] calcd for C15H17FO3: 264.1162; found:
264.1164.

8-[(Biphenyl-4-yloxy)methylene]-1,4-dioxaspiro[4.5]decane 
(10d)
Yield: 16.1 mg (25%); colorless oil.

IR (neat): 2956, 2880, 1688, 1606, 1518, 1485, 1375, 1248, 1202,
1101, 1074, 1031, 905, 763 cm–1.
1H NMR (300 MHz, CDCl3): δ = 1.67–1.79 (m, 4 H), 2.29 (dt,
J = 1.0, 6.4 Hz, 2 H), 2.48 (dt, J = 1.0, 6.4 Hz, 2 H), 3.99 (s, 4 H),
6.27–6.31 (m, 1 H), 7.01–7.09 (m, 2 H), 7.27–7.35 (m, 1 H), 7.38–
7.46 (m, 2 H), 7.49–7.58 (m, 4 H).

MS (EI): m/z (%) = 322 (100) [M+], 261 (12), 238 (12), 170 (31),
153 (98), 109 (20).

HRMS (EI): m/z [M+] calcd for C21H22O3: 322.1569; found:
322.1569.

Iron(III) Chloride Test
0.1 M aq FeCl3 (1 mL, 0.1 mmol) was added to a soln of 3a (10.0
mg, 0.034 mmol) in 1:1 H2O–EtOH (2 mL) at r.t. The color of the
soln immediately changed from yellow to green. When a soln of
FeCl3 was added to a soln of 10a, the color of the soln did not
change.
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