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Abstract
Abstract  A catalyst-free conjugate addition of dithiocarbamic acid salts to in situ generated ortho-quinone methides (o-
QMs) was investigated for the first time. Several dithiocarbamate derivatives of 4-hydroxycoumarine, 4-hydroxypyrone and 
2-naphthol were synthesized in moderate-to-good yields in water at room temperature.
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Introduction

ortho-Quinone methides (o-QMs) are valuable synthetic 
intermediates and are widely used in the synthesis of natural 
products, pharmaceuticals and biologically active molecules 
[1–3]. o-QMs are highly polarized and then quite reactive 
[4]. These reactive intermediates undergo 1,4-conjugate 
addition such as 1,4-Michael-type addition and aza-Michael 
reactions with nucleophiles [5, 6], as well as [4+2] cycload-
dition reactions with various dienophiles [7, 8].

In recent years, many strategies have been established 
for in situ generation of ortho-quinone methides [9–15]. 
However, these methods have various limitations such as 
the use of oxidant, acidic or basic conditions, use of organic 
solvents, high temperatures, or photoirradiations, which 
limit the application of o-QMs in organic synthesis [16]. 
Accordingly, designing novel synthesis methodologies to 
access ortho-quinone methides in mild reaction conditions 
seems to be highly desirable. Herein, we wish to report a 
catalyst-free facile generation of ortho-quinone methides in 
water and their subsequent reaction with dithiocarbamic acid 
salts as nucleophiles.

Organic dithiocarbamates are of significant importance as 
biologically active compounds [17], antibacterial [18, 19], 
antifungal [20] and potent anticancer agents [21], protecting 
groups in peptide synthesis [22], and linkers in solid phase 
organic synthesis [23]. Furthermore, they have found wide 
applications in the reversible addition–fragmentation chain 
transfer (RAFT) polymerization [24, 25], sulfur vulcani-
zation in rubber manufacturing [26, 27] and in medicinal 
chemistry [28].

Dithiocarbamic acid salts are good nucleophils and react 
with different electrophiles such as epoxides [29], alkyl 

halides [30, 31], α,β-unsaturated carbonyl compounds [32], 
alkynes [33] and arylhalides [34, 35]. These compounds also 
undergo reaction with carbonyl compounds [36].

Functionalization of dithiocarbamates leads to molecu-
lar diversity and production of derivatives which may have 
interesting biological properties. For instance, a series of 
dithiocarbamates derived from fluconazole analogs were 
synthesized through incorporation of dithiocarbamate moi-
ety with triazoles, showing enhanced antifungal activity 
of the resulting dithiocarbamates [37]. Kim and Lee have 
reported the synthesis of 3-[(N,N-disubstituted thiocar-
bonylthio) acetyl]coumarins and tested them for antifungal 
activity [38].

In continuation of our work on the synthesis of dithiocar-
bamates and investigations of their applications as interme-
diates in organic transformations [30–34, 39], herein, we 
reported the conjugate addition reaction of dithiocarba-
mic acid salts, as nucleophiles, to in situ generated o-QMs 
of bioactive heterocycles such as 4-hydroxycoumarine, 
4-hydroxypyrones, and 2-naphthol in water under catalyst-
free condition (Scheme 1). Surprisingly, to our knowledge, 
the trapping of o-QMs with dithiocarbamic acid salts as 
nucleophilic reagents has never been reported. Our stud-
ies are conceptually related to the works of Kumar et al. in 
which electron-rich arenes were employed as nucleophile in 
intermolecular Michael-type C–H hydroarylation of in situ 
generated o-QMs in water [40] and in glycerol [41].

Scheme 1   Addition of dithi-
ocarbamates to in situ generated 
ortho-quinone methide
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Results and discussion

We initiated our investigation by evaluating the one-pot, 
four-component reaction of in situ generated o-QM derived 
from 4-hydroxycoumarin and formaldehyde with pyrroli-
dine and carbon disulfide (CS2) in water in the absence 
of any catalyst at room temperature. Under these condi-
tions, the desired product 3a was obtained in 20% yield. 
As an alternative synthetic strategy to overcome the low 
yield of the desired product, the dithiocarbamic acid salt 
of pyrrolidine was prepared in a separate vessel and was 
added to the solution of in situ generated o-QM in water 
at room temperature. It was found that the reaction was 
completed within 4 h and 3a was obtained in 95% yield. 
The 1H NMR spectra of 3a show a characteristic peak at δ 
4.70 ppm corresponding to the hydrogens of CH2 attached 
to C-3 position of 4-hydroxycoumarin ring, whereas in the 
13C NMR spectra, the carbon of this CH2 was appeared at δ 
32.1 ppm. In addition, 13C of dithiocarbamate moiety was 
assigned at δ 193.6 ppm in 13C NMR spectra.

Comparative reactions were performed in other solvents 
to investigate the advantageous role of water as a solvent 
for this method. After screening different solvents such as 
ethanol, dichloromethane, toluene, tetrahydrofuran, and 
acetonitrile (Table 1, entries 1–6), it was found that the 
best solvent in terms of fast conversion, non-toxic, and 
quantified yield is water.

Attempts to obtain the desired product using a Bronsted 
acid such as boric acid, a heteropoly acid, or Lewis acids 
such as ZnCl2 and CuSO4 were not successful (Table 1, 
entries 7–10). Performing the reaction under reflux with-
out any catalyst provided 3a with considerably lower yield 
(Table 1, entry 11).

It is obvious that water is an inexpensive and environ-
mentally benign green solvent for various chemical and 
biological reactions. In many cases using water as the reac-
tion medium has high priority because of its unique reac-
tivity and selectivity which is due to hydrophobic effects, 
that is different from those in organic solvents [42–44]. 
Hence, water was chosen for further investigations.

To evaluate the scope of this process, dithiocarbamic acid 
salts of various amines a–f were subsequently reacted with 
in situ generated o-QMs derived from the Knoevenagel con-
densation of 4-hydroxycoumarin and formaldehyde under 
the above-optimized reaction condition and the results are 
summarized in Table 2. In almost all cases studied, the 
reaction proceeded smoothly and was typically completed 
within 4–8 h at r.t. The products 3a–f were obtained in good 
yields and their structures were assigned on the basis of 1H 
and 13C NMR spectral data. The proposed mechanism for 
1,4-Michael-type addition of 4-hydroxycoumarin with dithi-
ocarbamic acid salts is shown in Scheme 2.

It should be noted that using dithiocarbamic acid salts of 
primary aliphatic amines (such as propyl amine, cyclohexyl 
amine and benzylamine) in this process led to formation of 
undesired dimer adduct 4a, dicoumarol, as the major product 
(Scheme 3).

This process could easily be extended to other 4-hydroxy-
2-pyrones as well. Thus, 4-hydroxy-6-methyl-2-pyrone was 
converted into corresponding o-QM in reaction with formal-
dehyde in water solution. Reaction of the in situ generated 
o-QM with various dithiocarbamic acid salts as nucleophile 
under the optimized reaction conditions furnished products 
6a–f in moderate-to-good overall yields (Table 3).

The excellent results obtained for 4-hydroxy-2-pyrones 
inspired us to pursue this strategy further and extent it to 
electron-rich naphthols which are also known to be good 
substrates for in situ generation of o-QMs [45]. Thus, reac-
tion of 2-naphthol with formaldehyde in water generated 
highly reactive o-naphthoquinone methides (o-NQM), which 

Table 1   Optimization studies

All reactions were carried out with 1 mmol of 4-hydroxycoumarin (1 
equiv.), 2 mmol of formaldehyde (2 equiv.), 1.5 mmol of pyrrolidine 
dithiocarbamic acid salt (2a) (1.5 equiv.) and 10 mol% of catalyst in 
2 mL of solvent at r.t. for 5 h
a Isolated yield
b Heteropoly acid (H3PW12O40)
c Refluxed
d At room temperature for 16 h
e 1.0 equiv. of 2a was used as the substrate

Entry Catalyst (20 mol%) Solvent Yielda 3a (%)

1 Catalyst free Water 95
2 Catalyst free Ethanol 30
3 Catalyst free DCM 10
4 Catalyst free Toluene 10
5 Catalyst free THF 20
6 Catalyst free CH3CN 20
7 Boric acid Water 10
8b HPA Water 30
9 ZnCl2 Water Trace
10 CuSO4 Water Trace
11c Catalyst free Water 40
12d Catalyst free Water 92
13e Catalyst free Water 82
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Table 2   Conjugate addition of various dithiocarbamic acid salts to o-QM of 4-hydroxycoumarin

Isolated yield

Scheme 2   Proposed mechanism 
for 1,4-Michael-type addition of 
4-hydroxycoumarin with dithi-
ocarbamic acid salts
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could undergo facile conjugate addition with various dithi-
ocarbamic acid salts. This reaction proceeded under ambient 
temperature in an aqueous solution and products 8a–e were 
obtained in high overall yields (Table 4).

To demonstrate the practicality of this green process, 
we conducted the synthesis of (2-hydroxynaphthalen-1-yl) 

methyl pyrrolidine-1-carbodithioate (8a) on a gram scale. 
The conjugate addition reaction of pyrrolidine dithiocarba-
mic salt (2a) to in situ generated 2-naphthol o-QM (o-NQM) 
proceeded to completion within 6 h at room temperature 
in water as solvent and 1.43 g (96%) of product 8a was 
obtained (Scheme 4).

Scheme 3   Reaction of benzyl 
amine dithiocarbamic acid salt 
with o-QM

Table 3   Conjugate addition of various dithiocarbamic acid salts to o-QM of 4-hydroxy-6-methyl-2-pyrone

Isolated yield
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Conclusions

In summary, the first conjugate additions of dithiocarba-
mic acid salts to ortho-quinone methides, generated by 
the Knoevenagel condensation, have been developed. An 
aqueous medium under catalyst-free condition at room 

temperature was used to synthesis these compounds. 
Ortho-quinone methides were in situ synthesized from for-
maldehyde with 4-hydroxycoumarin, 4-hydroxypyrone or 
2-naphthol. Good yields (up to 96%) were achieved using 
stable o-QMs and a wide range of dithiocarbamic acid 

Table 4   Conjugate addition of various dithiocarbamic acid salts to o-QM of 2-naphthol

Isolated yield
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salts. Furthermore, the products were isolated very easily 
by a simple filtration procedure.

Experimental section

General information

All reactions were carried out under an atmosphere of air. 
Melting points were determined in open capillary tubes with 
an electrothermal melting point apparatus and were uncor-
rected. FT-IR spectra were recorded on a Perkin-Elmer sys-
tem 2000 FT-IR spectrometer. NMR spectra were recorded 
on a Bruker Avance DPX-300 and DPX-500 NMR spec-
trometer with TMS as the internal standard at room tem-
perature. Chemical shifts (δ) are quoted in ppm and coupling 
constants (J) are measured in Hertz (Hz). All experiments 
were monitored by thin-layer chromatography (TLC) on pre-
coated silica gel plates (Merck) and visualized under UV 
lamp at 254 nm for UV active materials. Elemental analysis 
was conducted with a Perkin-Elmer 2004 Series II CHN 
analyzer. Most reagents were obtained from commercial 
suppliers and used without further purification.

General procedure for the synthesis of 3a–f:

In a 25 mL round bottom flask equipped with a magnetic stir 
bar, 4-hydroxycoumarin (1 mmol), formaldehyde (2 mmol), 
and water (2 mL) were added. The reaction mixture was 
stirred at room temperature for 30 min. Then, the prepared 
dithiocarbamic acid salt [in a separate vessel with the reac-
tion of an amine (1.5 mmol) and CS2 (3 mmol)] was added. 
The reaction mixture was further stirred at room temperature 
for an appropriate time and the progress of the reaction was 
monitored by TLC. After completion of the reaction, the 

solid product was filtered off and recrystallized from ethanol. 
The purified product was obtained as a white solid.

General procedure for the synthesis of 6a–f:

4-Hydroxy-6-methyl-2-pyrone (1 mmol), formaldehyde 
(2 mmol), and water (2 mL) were taken in a 25 mL round 
bottom flask equipped with a magnetic stir bar. The reac-
tion mixture was stirred at room temperature for 30 min. 
After that, the prepared dithiocarbamic acid salt [in a sepa-
rate vessel with the reaction of an amine (1.5 mmol) and 
CS2 (3 mmol)] was added. The reaction mixture was further 
stirred at room temperature for an appropriate time and its 
progress was monitored by TLC. After completion of the 
reaction, the solid product was filtered off and recrystallized 
from ethanol. The purified product was obtained as a pale 
brown solid.

General procedure for the synthesis of 8a–e

In a 25 mL round bottom flask equipped with a magnetic 
stir bar, 2-naphthol (1 mmol), formaldehyde (2 mmol), and 
water (2 mL) were added. The reaction mixture was stirred 
at room temperature for 1 h. Then, the prepared dithiocar-
bamic acid salt [in a separate vessel with the reaction of an 
amine (1.5 mmol) and CS2 (3 mmol)] was added. The reac-
tion mixture was further stirred at room temperature for an 
appropriate time and TLC was used to monitor the reaction 
progress. After completion of the reaction, the solid product 
was filtered off and recrystallized from ethanol. The purified 
product was obtained as an off-white solid.

(4‑Hydroxy‑2‑oxo‑2H‑chromen‑3‑yl)methyl pyrroli-
dine‑1‑carbodithioate (3a)  White solid; yield: 95%; 
m.p.  179–181  °C, IR (KBr, cm−1) νmax 3383, 2957, 
2873, 2701, 2544, 1704, 1628, 1540, 1465, 1441, 1275, 

Scheme 4   Synthesis of 8a on a 
gram scale
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1219, 1147, 1102, 1052, 1004, 954, 903, 864, 763; 1H 
NMR (300 MHz, CDCl3) δ (ppm): 10.50 (s, 1H), 7.90 (d, 
J = 7.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.26 (m, 2H), 4.70 
(s, 2H), 3.95 (t, J = 6.4 Hz, 2H), 3.64 (t, J = 6.4 Hz, 2H), 2.04 
(m, 4H); 13C NMR (75 MHz, CDCl3) δ (ppm): 193.6, 163.7, 
161.9, 152.6, 132.1, 124.0, 123.9, 116.3, 116.1, 102.5, 55.9, 
51.3, 32.1, 25.9, 24.2. Anal. calcd for C15H15NO3S2: C, 
56.05; H 4.70, N 4.36. Found: C 55.83, H 4.79, N 4.33.

(4‑Hydroxy‑2‑oxo‑2H‑chromen‑3‑yl)methyl dimethylcarba-
modithioate (3b)  White solid; yield 93%; m.p. 185–189 °C, 
IR (KBr, cm−1) νmax 3217, 2928, 1675, 1625, 1498, 1454, 
1616, 1393, 1254, 1212, 1165, 1132, 1106, 1061, 984, 950, 
934, 769; 1H NMR (300 MHz, CDCl3) δ (ppm): 10.36 (br, 
1H), 7.89 (d, J = 7.1 Hz, 1H), 7.53 (dt, J = 1.18, J = 7.1 Hz, 
1H), 7.28 (m, 2H), 4.74 (s, 2H), 3.61 (s, 3H), 3.40 (s, 3H); 
13C NMR (75 MHz, CDCl3) δ (ppm): 192.6, 175.7, 165.8, 
154.1, 131.5, 124.3, 123.1, 121.2, 116.5, 88.8, 56.2, 42.7. 
Anal. calcd for C13H13NO3S2: C 52.85, H 4.43, N 4.74. 
Found: C 52.77, H 4.52, N 4.72.

(4‑Hydroxy‑2‑oxo‑2H‑chromen‑3‑yl)methyl diethylcarbamo-
dithioate (3c)  White solid; yield: 89%; m.p. 170–173 °C, IR 
(KBr, cm−1) νmax 3735, 2980, 2695, 2496, 1696, 1625, 1526, 
1455, 1270, 1222, 1143, 1102, 1049, 977, 954, 902, 767 ; 
1H NMR (300 MHz, CDCl3) δ (ppm): 10.51 (s, 1H), 7.90 
(d, J = 7.5 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.28 (m, 2H), 
4.74 (s, 2H), 4.06 (q, J = 6.7 Hz, 2H), 3.77 (q, J = 6.7 Hz, 
2H), 1.31 (m, 6H); 13C NMR (75 MHz, CDCl3) δ (ppm): 
196.8, 163.8, 162.1, 152.7, 132.2, 124.1, 123.9, 116.3, 
116.2, 102.5, 50.9, 47.6, 32.9, 12.1, 11.5. Anal. calcd for 
C15H17NO3S2: C 55.71, H 5.30, N 4.33. Found: C 55.63, H 
5.41, N 4.31.

(4‑Hydroxy‑2‑oxo‑2H‑chromen‑3‑yl)methyl piperidine‑1‑car-
bodithioate (3d)  White solid; yield 90%; m.p.  180–
181  °C, IR (KBr, cm−1) νmax 3340, 2998, 2863, 1701, 
1628, 1469, 1429, 1273, 1127, 1100, 1004, 921, 830; 1H 
NMR (300 MHz, CDCl3) δ (ppm): 10.20 (s, 1H), 7.85 (d, 
J = 7.3 Hz, 1H), 7.47 (t, J = 7.3 Hz, 1H), 7.26 (m, 2H), 4.56 
(s, 2H), 4.18 (t, J = 6.3 Hz, 2H), 3.88 (t, J = 6.3 Hz, 2H), 
1.30–1.51 (m, 6H); 13C NMR (75 MHz, CDCl3) δ (ppm): 
193.2, 163.3, 162, 152.7, 132.3, 124.1, 123.8, 116.4, 116.1, 
102.6, 53.2, 51.6, 32.8, 26.4, 25.8, 24.6. Anal. calcd for 
C16H17NO3S2: C 57.28, H 5.11, N 4.17. Found: C 57.19, H 
5.23, N 4.16.

(4‑Hydroxy‑2‑oxo‑2H‑chromen‑3‑yl)methyl morpho-
line‑4‑carbodithioate (3e)  White solid; yield 79%; m.p. 128–
130 ◦C, IR (KBr, cm−1) νmax 3055, 1638, 1600, 1537, 1445, 
1407, 1225, 1075, 952, 753; 1H NMR (300 MHz, CDCl3) δ 
(ppm): 10.21 (s, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.54 (m, 1H), 
7.29 (m, 2H), 4.78 (s, 1H), 4.38 (t, J = 6.5 Hz, 2H), 3.96 (t, 

J = 6.5 Hz, 2H), 3.75 (m, 4H); 13C NMR (75 MHz, CDCl3) 
δ (ppm): 198.9, 163.7, 162.0, 152.7, 132.3, 124.1, 124.0, 
116.4, 116.0, 102.3, 66.3, 65.8, 52.8, 50.9, 32.7. Anal. calcd 
for C15H15NO4S2: C 53.39, H 4.47, N 4.15. Found: C 53.31, 
H 4.59, N 4.12.

(4‑Hydroxy‑2‑oxo‑2H‑chromen‑3‑yl)methyl azepane‑1‑car-
bodithioate (3f)  White solid; yield 85%; m.p. 180–183 °C, 
1H NMR (300 MHz, CDCl3) δ (ppm): 10.50 (br, 1H), 7.92 
(d, J = 7.2 Hz, 1H), 7.54 (t, J = 7.2 Hz, 1H), 7.29 (m, 2H), 
4.76 (s, 1H), 4.23 (t, J = 6.0 Hz, 2H), 3.92 (t, J = 6.0 Hz, 2H), 
1.90 (m, 4H), 1.60 (m, 4H); 13C NMR (75 MHz, CDCl3) 
δ (ppm): 195.8, 163.9, 162.5, 152.9, 132.0, 124.3, 124.0, 
116.7, 116.4, 102.9, 56.4, 53.4, 32.5, 28.3, 27.4, 27.0, 26.8. 
Anal. calcd for C17H19NO3S2: C 58.42, H 5.48, N 4.01. 
Found: C 58.33, H 5.56, N 3.98.

(4‑Hydroxy‑6‑methyl‑2‑oxo‑2H‑pyran‑3‑yl)methyl pyrroli-
dine‑1‑carbodithioate (6a)  Pale brown solid; yield: 87%; 
m.p. 155–157 °C, IR (KBr, cm−1) νmax 3388, 2965, 2867, 
2635, 1660, 1629, 1558, 1424, 1327, 1254, 1108, 1009, 953, 
915, 869; 1H NMR (500 MHz, CDCl3) δ (ppm): 10.7 (br, 
1H), 5.83 (s,1H), 4.52 (s, 2H), 3.93 (t, J = 6.5 Hz, 2H), 3.62 
(t, J = 6.5 Hz, 2H), 2.18 (s, 3H), 2.08 (t, J = 6.7 Hz, 2H), 1.99 
(t, J = 6.7 Hz, 2H);13C NMR (125 MHz, CDCl3) δ (ppm): 
193.9, 166.9, 165.5, 161.2, 101.4, 99.7, 55.8, 51.2, 31.8, 
25.9, 24.3, 19.7. Anal. calcd for C12H15NO3S2: C 50.51, H 
5.30, N 4.91. Found: C 50.39, H 5.39, N 4.90.

(4‑Hydroxy‑6‑methyl‑2‑oxo‑2H‑pyran‑3‑yl)methyl diethyl-
carbamodithioate (6b)  Pale brown solid; yield 82%; 
m.p. 147–149 °C, IR (KBr, cm−1) νmax 3408, 2970, 2869, 
2624, 1632, 1564, 1438, 1331, 1261, 1100, 959, 919, 836, 
767; 1H NMR (300 MHz, CDCl3) δ (ppm): 10.2 (s, 1H), 
5.80 (s, 1H), 4.55 (s, 2H), 4.04 (q, J = 6.7 Hz, 2H), 3.71 
(q, J = 6.7 Hz, 2H), 2.19 (s, 3H), 1.26–1.99 (m, 6H); 13C 
NMR (75 MHz, CDCl3) δ (ppm): 193.9, 166.5, 165.2, 160.9, 
101.0, 99.5, 47.9, 46.7, 31.8, 19.7, 13.0, 12.1. Anal. calcd 
for C12H17NO3S2: C 50.15, H 5.96, N 4.87. Found: C 50.06, 
H 6.05, N 4.86.

(4‑Hydroxy‑6‑methyl‑2‑oxo‑2H‑pyran‑3‑yl)methyl dimethyl-
carbamodithioate (6c)  Pale brown solid; yield: 84%; 
m.p. 160–162 °C, IR (KBr, cm−1) νmax 3419, 3009, 2955, 
1673, 1529, 1471, 1446, 1375, 1289, 1246, 1213, 1160, 
1111, 1038, 972, 944, 894, 787; 1H NMR (300 MHz, CDCl3) 
δ (ppm): 10.5 (s, 1H), 5.95 (s, 1H), 4.40 (s, 2H), 3.54 (s, 3H), 
3.34 (s, 3H), 2.43 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 
(ppm): 193.4, 166.5, 164.9, 161.3, 101.3, 99.9, 56.5, 33.5, 
19.5. Anal. calcd for C10H13NO3S2: C 46.30, H 5.05, N 5.40. 
Found: C 46.21, H 5.16, N 5.37.
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(4‑Hydroxy‑6‑methyl‑2‑oxo‑2H‑pyran‑3‑yl)methyl piperi-
dine‑1‑carbodithioate (6d)  Pale brown solid; yield 80%; 
m.p. 151–156 °C, IR (KBr, cm−1) νmax 3329, 3015, 2859, 
1653, 1546, 1474, 1449, 1380, 1297, 1245, 1219, 1171, 
1117, 972, 839, 740; 1H NMR (300 MHz, CDCl3) δ (ppm): 
9.8 (br, 1H), 5.89 (s, 1H), 4.49 (s, 2H), 4.13 (t, J = 6.6 Hz, 
2H), 3.84 (t, J = 6.6 Hz, 2H), 2.20 (s, 3H), 1.23–1.28 (m, 
6H); 13C NMR (75 MHz, CDCl3) δ (ppm): 192.5, 164.9, 
164.2, 160.1, 101.1, 99.7, 52.7, 51.3, 31.8, 26.2, 25.5, 24.4, 
19.4. Anal. calcd for C13H17NO3S2: C 52.15, H 5.71, N 4.68. 
Found: C 52.03, H 5.82, N 4.65.

(4‑Hydroxy‑6‑methyl‑2‑oxo‑2H‑pyran‑3‑yl)methyl morpho-
line‑4‑carbodithioate (6e)  Pale brown solid; yield 70%; 
m.p. 130–133 °C, IR (KBr, cm−1) νmax 3291, 3015, 1653, 
1589, 1509, 1476, 1350, 1297, 1234, 1208, 1125, 1104, 979, 
820, 715; 1H NMR (300 MHz, CDCl3) δ (ppm): 9.20 (br, 
1H), 5.85 (s, 1H), 4.63 (s, 2H), 4.35 (t, J = 6.4 Hz, 2H), 
4.10 (t, J = 6.4 Hz, 2H), 3.63 (m, 4H), 2.47 (s, 3H); 13C 
NMR (75 MHz, CDCl3) δ (ppm): 199.1, 166.8, 164.9, 161.0, 
101.2, 99.7, 66.2, 65.4, 52.4, 50.5, 32.3, 19.9. Anal. calcd 
for C12H15NO4S2: C 47.82, H 5.02, N 4.65. Found: C 47.75, 
H 5.12, N 4.62.

(4‑Hydrox y‑6‑methyl‑2‑ oxo ‑2H‑pyran‑3‑yl)methyl 
azepane‑1‑carbodithioate (6f)  Pale brown solid; yield 78%; 
m.p. 153–155 °C, 1H NMR (300 MHz, CDCl3) δ (ppm): 
8.70 (br, 1H), 5.80 (s, 1H), 4.53 (s, 2H), 4.20 (t, J = 6.1 Hz, 
2H), 3.90 (t, J = 6.1 Hz, 2H), 2.17 (s, 3H), 1.85 (m, 4H), 1.54 
(m, 4H); 13C NMR (75 MHz, CDCl3) δ (ppm): 194.7, 167.8, 
165.3, 161.6, 101.7, 101.3, 56.2, 52.1, 30.5, 28.2, 27.8, 26.9, 
26.5, 19.5. Anal. calcd for C14H19NO3S2: C 53.64, H 6.12, 
N 4.47. Found: C 53.51, H 6.19, N 4.45.

(2‑Hydroxynaphthalen‑1‑yl)methyl pyrrolidine‑1‑carbodith-
ioate (8a)  Off-white solid; yield 96%; m.p. 136–138 °C, IR 
(KBr, cm−1) νmax 3276, 2987, 2860, 1631, 1603, 1513, 1492, 
1450, 1352, 1239, 1157, 1002, 919, 862, 835, 743; 1H NMR 
(300 MHz, CDCl3) δ (ppm): 8.50 (br, 1H), 7.79 (m, 2H), 
7.26–7.31 (m, 3H), 7.25 (d, J = 7.9 Hz, 1H), 5.21 (s, 2H), 
4.00 (t, J = 6.6 Hz, 2H), 3.64 (t, J = 6.6 Hz, 2H), 1.91–2.12 
(m, 4H); 13C NMR (75 MHz, CDCl3) δ (ppm): 197.5, 154.7, 
135.1, 130.2, 129.8, 128.8, 122.9, 122.1, 119.7, 114.8, 54.9, 
50.6, 33.3, 26.5, 24.6. Anal. calcd for C16H17NOS2: C 63.33, 
H 5.65, N 4.62. Found: C 63.20, H 5.72, N 4.61.

(2‑Hydroxynaphthalen‑1‑yl)methyl diethylcarbamodithio-
ate (8b)  Off-white solid; yield 84%; m.p. 130–132 °C, IR 
(KBr, cm−1) νmax 3281, 3056, 2975, 2930, 1626, 1581, 1492, 
1452, 1422, 1223, 1202, 1143, 1122, 1062, 973, 914, 862, 
811, 747; 1H NMR (300 MHz, CDCl3) δ (ppm): 8.25 (s, 
1H),7.81 (d, J = 8.1 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.69 
(d, J = 8.9 Hz, 1H), 7.53 (dt, J = 1.0, J = 8.1 Hz, 1H), 7.36 

(dt, J = 1.0, J = 8.1 Hz, 1H), 7.16 (d, J = 8.9 Hz, 1H), 5.19 
(s, 2H), 4.09 (q, J = 7.09 Hz, 2H), 3.76 (q, J = 7.09 Hz, 2H), 
1.28 (m, 6H); 13C NMR (75 MHz, CDCl3) δ (ppm): 195.5, 
152.7, 132.7, 129.5, 128.7, 128.4, 122.7, 121.8, 119.1, 
114.2, 46.9, 33.1, 11.9, 11.1. Anal. calcd for C16H19NOS2: 
C 62.91, H 6.25, N 4.59. Found: C 62.83, H 6.34, N 4.57.

(2‑Hydroxynaphthalen‑1‑yl)methyl diethylcarbamodithio-
ate (8b)  Off-white solid; yield 84%; m.p. 130–132 °C, IR 
(KBr, cm−1) νmax 3281, 3056, 2975, 2930, 1626, 1581, 1492, 
1452, 1422, 1223, 1202, 1143, 1122, 1062, 973, 914, 862, 
811, 747; 1H NMR (300 MHz, CDCl3) δ (ppm): 8.25 (s, 
1H),7.81 (d, J = 8.1 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.69 
(d, J = 8.9 Hz, 1H), 7.53 (dt, J = 1.0, J = 8.1 Hz, 1H), 7.36 
(dt, J = 1.0, J = 8.1 Hz, 1H), 7.16 (d, J = 8.9 Hz, 1H), 5.19 
(s, 2H), 4.09 (q, J = 7.09 Hz, 2H), 3.76 (q, J = 7.09 Hz, 2H), 
1.28 (m, 6H); 13C NMR (75 MHz, CDCl3) δ (ppm): 195.5, 
152.7, 132.7, 129.5, 128.7, 128.4, 122.7, 121.8, 119.1, 
114.2, 46.9, 33.1, 11.9, 11.1. Anal. calcd for C16H19NOS2: 
C 62.91, H 6.25, N 4.59. Found: C 62.83, H 6.34, N 4.57.

(2‑Hydroxynaphthalen‑1‑yl)methyl dimethylcarbamodithio-
ate (8c)  Off-white solid; yield 90%; m.p. 145–148 °C, IR 
(KBr, cm−1) νmax 3172, 2869, 1652, 1603, 1589, 1426, 1380, 
1209, 1119, 921, 817, 775; 1H NMR (300 MHz, CDCl3) 
δ (ppm): 9.55 (s, 1H), 7.85 (m, 2H), 7.32–7.45 (m, 3H), 
7.32 (d, J = 7.1 Hz, 1H), 5.19 (s, 2H), 3.57 (s, 3H), 3.44 (s, 
3H); 13C NMR (75 MHz, CDCl3) δ (ppm): 192.8, 153.9, 
135.2, 130.3, 128.9, 128.5, 122.7, 122.1, 119.3, 114.5, 56.5, 
34.2. Anal. calcd for C14H15NOS2: C 60.63, H 5.43, N 5.05. 
Found: C 60.51, H 5.51, N 5.02.

(2‑Hydroxynaphthalen‑1‑yl)methyl piperidine‑1‑carbod-
ithioate (8d)  Off-white solid; yield 80%; m.p. 137–139 °C, 
IR (KBr, cm−1) νmax 3301, 3117, 2986, 1617, 1589, 1486, 
1459, 1422, 1223, 1219, 1143, 1131, 832, 715; 1H NMR 
(300 MHz, CDCl3) δ (ppm): 9.55 (s, 1H), 7.85 (m, 2H), 
7.32–7.45 (m, 3H), 7.32 (d, J = 7.1 Hz, 1H), 5.21 (s, 2H), 
4.12 (t, J = 6.0 Hz, 2H), 3.52 (t, J = 6.0 Hz, 2H), 1.62 (m, 
6H);13C NMR (75 MHz, CDCl3) δ (ppm): 194.5, 154.5, 
135.0, 130.4, 129.7, 128.4, 122.7, 122.0, 119.9, 114.5, 52.9, 
51.6, 33.6, 26.5, 25.0, 24.8. Anal. calcd for C17H19NOS2: 
C 64.32, H 6.02, N 4.41. Found: C 64.27, H 6.12, N 4.39.

(2‑Hydroxynaphthalen‑1‑yl)methyl morpholine‑4‑carbodith-
ioate (8e)  Off-white solid; yield 75%; m.p. 123–125 °C, IR 
(KBr, cm−1) νmax 3321, 3079, 2968, 1603, 1543, 1465, 1474, 
1441,1216, 1158, 1112, 950, 853, 749; 1H NMR (300 MHz, 
CDCl3) δ (ppm): 9.10 (br, 1H), 7.72–7.84 (m, 2H), 7.68 
(d, J = 8.8 Hz, 1H), 7.45 (m, 1H), 7.29 (m, 1H), 7.10 (d, 
J = 8.8 Hz, 1H), 5.20 (s, 2H), 4.16 (m, 4H), 3.91 (m, 4H); 
13C NMR (75 MHz, CDCl3) δ (ppm): 197.1, 153.0, 134.7, 
130.4, 128.9, 128.5, 123.9, 122.5, 121.3, 115.8, 67.1, 66.0, 
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53.6, 51.4, 33.5. Anal. calcd for C16H17NO2S2: C 60.17, H 
5.35, N 4.38. Found: C 60.04, H 5.64, N 4.37.
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