ORIGINAL PAPER

Solvent-free one-pot synthesis of 1-carbamatoalkyl-2-naphthols by a tin tetrachloride catalyzed multicomponent reaction

Min Wang · Qing L. Wang · Shuang Zhao · Xin Wan

Received: 19 June 2012/Accepted: 12 January 2013/Published online: 26 February 2013 © Springer-Verlag Wien 2013

Abstract An efficient one-pot synthesis of 1-carbamatoalkyl-2-naphthols using tin tetrachloride as a catalyst for the three-component condensation reaction of 2-naphthol, aldehydes, and carbamates under thermal, solvent-free conditions is described. This new approach has advantages such as mild conditions, short reaction time, high yield, simple work-up, and an inexpensive catalyst.

Keywords 1-Carbamatoalkyl-2-naphthol · Three-component reaction · Tin compound · One-pot synthesis · Solvent-free

Introduction

Multicomponent reactions (MCRs) have gained much attention in organic synthesis, as they can furnish the desired products in a single operation without isolating the intermediates, thus reducing reaction times and energy consumption [1]. Therefore, researchers have made great efforts to find and develop new MCRs.

Compounds containing 1,3-amino-oxygenated functional groups are frequently found in biologically active natural products and potent drugs such as nucleoside antibiotics and HIV protease inhibitors [2–4]. Furthermore, 1-amidoalkyl-2-naphthols and 1-carbamatoalkyl-2-naphthols are important synthetic building blocks and are used as precursors for the synthesis of 1-aminomethyl-2-naphthol derivatives, which exhibit important cardiovascular activity [5]. Recently, we reported the reaction of 2-naphthol, aldehydes, and amides to form amidoalkyl naphthol derivatives [6]. In this paper, carbamate was used as a nucleophile instead of an amide. Moreover, carbamates can be deprotected more easily than an amide group [7]. Carbamatoalkyl naphthols can be present as protected aminonaphthol derivatives and, after deprotection, they can allow access to compounds which cannot be synthesized via the classical procedure. Therefore, the clean synthesis of 1-carbamatoalkyl-2-naphthols is very important.

To the best of our knowledge, only a few works have focused on the synthesis of 1-carbamatoalkyl-2-naphthols [8–22]. The reported methods suffer from disadvantages such as expensive catalysts, high temperatures, and large excesses of raw material. Recently, tin tetrachloride has emerged as an efficient Lewis acid for promoting various organic transformations, such as aromatization [23], heterocycloadditions [24], a coupling reaction [25], rearrangement of epoxides [26], oxidation [27], ringopening reactions [28], and amidoalkylation [29]. As a continuation of our research into MCRs, we report here a facile and efficient synthetic strategy for preparing 1-carbamatoalkyl-2-naphthols 4 from 2-napthol (1), aldehydes 2, and carbamates 3 in short reaction times and with excellent yields using tin tetrachloride (SnCl₄·5H₂O) as a catalyst (Scheme 1). Thirteen new compounds were reported first.

Results and discussion

Initially, we investigated the efficiencies of different reaction media, amounts of catalyst, and reaction temperatures in a model reaction of 2-naphthol (1 equiv.), 2-nitrobenzaldehyde (1 equiv.), and methyl carbamate (1.1 equiv.) in the presence of $SnCl_4$ ·5H₂O (Table 1). It

M. Wang (⊠) · Q. L. Wang · S. Zhao · X. Wan College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou 121000, China e-mail: minwangszg@yahoo.com.cn

Table 1Screening of reaction conditions for the condensation of2-naphthol, 2-nitrobenzaldehyde, and methyl carbamate

Entry	Solvent/cm ³	Catalyst/mo%	Temp/°C	Time/h	Yield/%
1	H ₂ O (3)	2.0	70	2.0	0
2	EtOH (3)	2.0	Reflux	1.0	7
3	CH ₃ CN (3)	2.0	Reflux	3.0	49
4	-	2.0	70	0.1	92
5	-	1.0	70	0.1	91
6	-	0.5	70	0.25	90
7	-	1.0	50	0.3	90
8	-	1.0	60	0.2	94
9	-	1.0	80	0.1	87
10	_	0	70	4.0	0

was found that solvent-free conditions were the best choice (Table 1, entries 1–4). Compared with reactions carried out in organic solvent, condensation without solvent required only 0.1 h to furnish an excellent yield (Table 1, entry 4). After screening several trials, the best results were obtained with 1 mol % $SnCl_4$ · $5H_2O$ at 60 °C (Table 1, entry 8). In addition, no conversion to product was obtained in the absence of catalyst, even after 4.0 h (Table 1, entry 10).

Next, the catalytic activities of several Lewis acids (1 mol %) were compared with that of $SnCl_4 \cdot 5H_2O$ in the same model reaction at 60 °C, the results were shown in Table 2. It could be noted that $SnCl_4 \cdot 5H_2O$ was the most efficient catalyst, since it results in the highest conversion to the desired product in the shortest reaction time (Table 2, entry 12).

The scope of the reaction in the presence of $SnCl_4 \cdot 5H_2O$ (1 mol %) under solvent-free conditions at 60 °C was studied (Table 3). A variety of aromatic aldehydes and aliphatic aldehydes, 2-naphthol, and different carbamates (including methyl carbamate, ethyl carbamate, and benzyl carbamate) were subjected to these reaction conditions. Most products were obtained in good to excellent yields. The aromatic aldehyde with an electron-withdrawing group reacted much more easily than the aromatic aldehyde with an electron-donating group (Table 3, entries 1–9). The position of the substituent on the aromatic ring did not have much of an effect on the yield of the product. The aliphatic aldehyde failed to yield any product (Table 3, entry 10). Besides methyl carbamate, ethyl carbamate and benzyl

 Table 2
 Reaction of 2-naphthol, 2-nitrobenzaldehyde, and methyl carbamate using different acid catalysts

Entry	Catalyst	Time/h	Yield/%
1	SrCl ₂ ·6H ₂ O	3.0	0
2	$CdCl_2 \cdot 2.5H_2O$	3.0	0
3	Bi(NO ₃) ₃ ·5H ₂ O	3.0	28
4	HOAc	8.0	43
5	Al(NO ₃) ₃ ·9H ₂ O	3.0	47
6	ZnCl ₂	8.0	51
7	AlCl ₃ ·6H ₂ O	2.5	58
8	Al(CH ₃ SO ₃) ₃ ·4H ₂ O	1.5	60
9	Cu(p-CH ₃ C ₆ H ₄ SO ₃) ₂ ·6H ₂ O	0.5	73
10	(NH ₄) ₂ Ce(NO ₃) ₆	1.5	78
11	$SnCl_2 \cdot 2H_2O$	0.3	87
12	$SnCl_4 \cdot 5H_2O$	0.2	94

carbamate were studied in the amidoalkylation reaction; all of these showed good reactivity.

A possible mechanism for this transformation is proposed in Scheme 2. As reported in the literature [6], the reaction of 2-naphthol with aldehyde in the presence of an acid catalyst is known to give *ortho*-quinone methide (*o*-QM). The *o*-QM generated in situ reacted with carbamate via conjugate addition to form 1-carbamatoalkyl-2-naphthol derivative **4**.

Conclusion

In summary, $SnCl_4.5H_2O$ has been demonstrated to be a mild and efficient catalyst for the one-pot three-component reaction of 2-naphthol, aromatic aldehydes, and methyl/ ethyl/benzyl carbamates under solvent-free conditions at 60 °C. Most reactions proceed within short reaction times and produce high yields. We believe that this method could be an attractive alternative to existing methods for the synthesis of 1-carbamatoalkyl-2-naphthols.

Experimental

Melting points were determined using an RY-1 micromelting point apparatus (Tianjin Tianguang Optical

 \mathbf{R}^2 \mathbb{R}^1 Yield/% Entry Time/h Product M.p. (lit. m.p.)/°C 0.2 1 C_6H_5 4a 83 217-219 (217-218 [9]) Me 2 2-NO₂C₆H₄ 0.2 4b 94 241-243 (241-242 [10]) Me 3 3-NO₂C₆H₄ 0.1 4c 96 244-246 (253-255 [10]) Me 211-213 (206-208 [18]) 4 4-NO₂C₆H₄ Me 0.1 4d 88 5 $2-ClC_6H_4$ 0.1 94 218 - 220Me 4e 90 6 4-ClC₆H₄ Me 0.1 4f 202-204 (203-205 [10]) 7 2,4-Cl₂C₆H₃ 0.2 93 210-212 Me 4g Trace 8 4-CH₃C₆H₄ 10.0 4h Me 9 4-OCH₃C₆H₄ 10.0 4i Me Trace 10 CH₃CH₂CH₂ Me 10.0 4j 0 0.2 4k 87 203-204 (195-196 [16]) 11 C₆H₅ Et 12 2-NO₂C₆H₄ Et 0.15 41 90 214-216 3-NO₂C₆H₄ 0.1 95 236-238 13 Et 4m 14 4-NO₂C₆H₄ Et 0.1 4n 90 229-231 2-ClC₆H₄ Et 0.15 92 216-217 15 40 $4-ClC_6H_4$ Et 0.15 4p 93 217-219 16 2,4-Cl₂C₆H₃ Et 0.2 91 196-198 17 4q 18 CH₂Ph 1.0 4r 89 182-184 (180-182 [10]) C₆H₅ 19 2-NO₂C₆H₄ CH₂Ph 0.7 4s 90 211-213 0.2 4t 94 206-208 (205-207 [10]) 20 3-NO₂C₆H₄ CH₂Ph 0.2 92 21 4-NO₂C₆H₄ CH₂Ph 4u 202-204 22 2-ClC₆H₄ CH₂Ph 0.3 4v 90 211-213 23 4-ClC₆H₄ 0.5 88 173-175 CH₂Ph 4w24 2,4-Cl₂C₆H₃ CH₂Ph 0.2 4x 87 211-213

Table 3 Synthesis of carbamatoalkyl naphthols in the presence of $SnCl_4 \cdot 5H_2O$

Instrument Ltd. Co., Tianjin City, China). Infrared spectra were recorded on a Varian (Palo Alto, CA, USA) Scimitar 2000 series Fourier transform instrument. ¹H and ¹³C NMR spectra were recorded on an Agilent (Santa Clara, CA, USA) 400-MR instrument in DMSO- d_6 using TMS as an internal standard. Mass spectra were obtained with an Agilent 1100 series LC/MSD VL ESI instrument. Elemental analyses (C, H, N) were conducted using the EA 2400II elemental analyzer (PerkinElmer, Waltham, MA, USA), and the results obtained were found to be in good agreement (±0.3 %) with the calculated values.

General procedure for the synthesis of 1-carbamatoalkyl-2-naphthol derivatives 4

SnCl₄·5H₂O (0.05 mmol) was added to a mixture of 2-naphthol (1, 5 mmol), aldehyde 2 (5 mmol), and carbamate 3 (5.5 mmol). The reaction mixture was magnetically stirred at 60 °C in a water bath and the reaction was followed by TLC. After completion, the mixture was cooled to room temperature, washed with cold water, and recrystallized from aqueous EtOH (60 %, v/v). The products were characterized by IR, ¹H NMR, ¹³C NMR, LC/MS, and elemental analysis.

Methyl [(2-chlorophenyl)(2-hydroxynaphthalen-1-yl)methyl]carbamate (**4e**, C₁₉H₁₆ClNO₃)

White solid; IR (KBr): $\bar{v} = 3,431$, 3,220, 1,690, 1,527, 1,340, 1,052, 819, 753, 706 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.96$ (s, 1H, OH), 8.04 (d, 1H, J = 8.2 Hz, NH), 7.86 (d, 1H, J = 7.1 Hz, ArH), 7.77 (dd, 2H, J = 17.4, 8.3 Hz, ArH), 7.52 (d, 1H, J = 4.6 Hz, ArH), 7.40 (dd, 2H, J = 12.3, 6.8 Hz, ArH), 7.26 (d, 3H, J = 13.9 Hz, ArH), 7.16 (d, 1H, J = 8.6 Hz, ArH), 6.91 (d, 1H, J = 7.8 Hz, CH), 3.54 (s, 3H, OCH₃) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 156.5$, 153.9, 139.8, 133.0, 132.9, 130.3, 129.9, 129.7, 129.0, 128.8, 128.7, 126.9, 126.7, 123.3, 122.7, 119.0, 117.4, 51.9, 50.1 ppm; LC/MS: m/z (%) = 340 [(M–H)⁻, 100].

Methyl [(2,4-dichlorophenyl)(2-hydroxynaphthalen-1-yl)methyl]carbamate (4g, $C_{19}H_{15}Cl_2NO_3$)

White solid; IR (KBr): $\bar{\nu} = 3,403$, 3,260, 1,678, 1,519, 1,062, 873, 753, 718 cm⁻¹; ¹H NMR (400 MHz, DMSOd₆): $\delta = 9.97$ (s, 1H, OH), 8.02 (d, 1H, J = 8.5 Hz, NH), 7.96 (d, 1H, J = 7.8 Hz, ArH), 7.78 (dd, 2H, J = 17.8, 8.4 Hz, ArH), 7.57–7.38 (m, 4H, ArH), 7.28 (t, 1H, J = 7.3 Hz, ArH), 7.14 (d, 1H, J = 8.7 Hz, ArH), 6.85 (d, 1H, J = 8.0 Hz, CH), 3.55 (s, 3H, OCH₃) ppm; ¹³C NMR (125 MHz, DMSO-d₆): $\delta = 156.6$, 154.0, 139.3, 133.6, 133.0, 132.3, 131.6, 130.1, 129.0, 128.9, 128.6, 127.0, 126.9, 123.0, 122.8, 118.9, 116.7, 52.0, 49.8 ppm; LC/MS: m/z (%) = 375 [(M–H)⁻, 100].

Ethyl [(2-nitrophenyl)(2-hydroxynaphthalen-1-yl)methyl]-carbamate (**4**, $C_{20}H_{18}N_2O_5$)

White solid; IR (KBr): $\bar{\nu} = 3,402, 3,277, 1,686, 1,530, 1,334, 1,038, 813, 744, 697 cm⁻¹; ¹H NMR (400 MHz, DMSO-$ *d* $₆): <math>\delta = 9.79$ (s, 1H, OH), 7.92 (d, 1H, J = 8.6 Hz, NH), 7.81–7.72 (m, 4H, ArH), 7.64–7.58 (m, 2H, ArH), 7.44 (dt, 2H, J = 17.0, 6.0 Hz, ArH), 7.29–7.26 (m, 2H, ArH), 7.05 (d, 1H, J = 8.7 Hz, CH), 4.04 (q, 2H, J = 7.0 Hz, CH₂), 1.15 (t, 3H, J = 7.0 Hz, CH₃) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 156.4, 154.0, 149.0, 136.9, 133.3, 132.5, 130.3, 129.4, 128.9, 128.5, 128.1, 126.9, 124.4, 123.0, 122.8, 118.8, 116.5, 60.5, 48.1, 15.0 ppm; LC/MS: <math>m/z$ (%) = 365 [(M–H)⁻, 100].

Ethyl [(3-nitrophenyl)(2-hydroxynaphthalen-1-yl)methyl]carbamate (**4m**, $C_{20}H_{18}N_2O_5$)

White solid; IR (KBr): $\bar{\nu} = 3,395, 3,277, 1,678, 1,527, 1,348, 1,045, 808, 752, 701 cm⁻¹; ¹H NMR (400 MHz, DMSO-$ *d* $₆): <math>\delta = 10.24$ (s, 1H, OH), 8.13 (d, 1H, J = 8.2 Hz, NH), 8.07 (d, 1H, J = 8.1 Hz, ArH), 7.98 (d, 1H, J = 7.8 Hz, ArH), 7.82 (t, 3H, J = 8.4 Hz, ArH), 7.64 (d, 1H, J = 7.8 Hz, ArH), 7.56 (t, 1H, J = 8.0 Hz, ArH), 7.44 (t, 1H, J = 7.5 Hz, ArH), 7.31 (t, 1H, J = 7.8 Hz, ArH), 7.23 (d, 1H, J = 8.8 Hz, ArH), 6.97 (d, 1H, J = 7.8 Hz,

CH), 4.08 (q, 2H, J = 6.8 Hz, CH₂), 1.18 (t, 3H, J = 6.8 Hz, CH₃) ppm; ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 156.7$, 153.5, 148.1, 145.5, 133.2, 132.3, 130.3, 130.1, 129.1, 128.7, 127.2, 123.5, 123.1, 121.9, 120.9, 118.8, 118.3, 60.7, 50.3, 15.0 ppm; LC/MS: m/z (%) = 365 [(M–H)⁻, 100].

Ethyl [(4-nitrophenyl)(2-hydroxynaphthalen-1-yl)methyl]carbamate (**4n**, C₂₀H₁₈N₂O₅)

White solid; IR (KBr): $\bar{\nu} = 3,430, 3,185, 1,685, 1,518, 1,350, 1,049, 821, 739, 708 cm⁻¹; ¹H NMR (400 MHz, DMSO-$ *d* $₆): <math>\delta = 10.21$ (s, 1H, OH), 8.15 (d, 2H, J = 8.8 Hz, ArH), 7.94–7.73 (m, 4H, NH and ArH), 7.49 (d, 2H, J = 8.6 Hz, ArH), 7.43 (t, 1H, J = 7.5 Hz, ArH), 7.30 (t, 1H, J = 7.5 Hz, ArH), 7.23 (d, 1H, J = 8.8 Hz, ArH), 6.97 (d, 1H, J = 7.7 Hz, CH), 4.07 (q, 2H, J = 6.7 Hz, CH₂), 1.17 (t, 3H, J = 6.7 Hz, CH₃) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 156.7, 153.5, 151.1, 146.4, 132.3, 130.3, 129.0, 128.8, 127.5, 127.2, 123.8, 123.2, 123.0, 118.8, 118.4, 60.7, 50.5, 15.0 ppm; LC/MS:$ *m/z*(%) = 365 [(M–H)⁻, 100].

Ethyl [(2-chlorophenyl)(2-hydroxynaphthalen-1-yl)-

methyl]carbamate (**40**, C₂₀H₁₈ClNO₃)

White solid; IR (KBr): $\bar{\nu} = 3,420, 3,229, 1,685, 1,525, 1,336, 1,051, 821, 753, 706 cm⁻¹; ¹H NMR (400 MHz, DMSO-$ *d* $₆): <math>\delta = 10.19$ (s, 1H, OH), 8.28 (d, 1H, *J* = 8.5 Hz, NH), 8.04–7.97 (m, 3H, ArH), 7.77 (d, 1H, *J* = 5.9 Hz, ArH), 7.66–7.48 (m, 5H, ArH), 7.39 (d, 1H, *J* = 8.7 Hz, ArH), 7.15 (d, 1H, *J* = 8.3 Hz, CH), 4.22 (q, 2H, *J* = 7.1 Hz, CH₂), 1.36 (t, 3H, *J* = 7.1 Hz, CH₃) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 156.1, 153.9, 139.8, 133.0, 132.9, 130.3, 129.9, 129.7, 129.0, 128.8, 128.6, 126.9, 126.7, 123.3, 122.7, 119.0, 117.5, 60.3, 50.0, 15.0 ppm; LC/MS:$ *m/z*(%) = 354 [(M–H)⁻, 100].

*Ethyl [(4-chlorophenyl)(2-hydroxynaphthalen-1-yl)methyl]carbamate (***4p**, C₂₀H₁₈ClNO₃*)*

White solid; IR (KBr): $\bar{v} = 3,424$, 3,197, 1,676, 1,517, 1,329, 1,042, 821, 751, 711 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 10.15$ (s, 1H, OH), 7.93 (d, 1H, J = 8.3 Hz, NH), 7.80 (dd, 2H, J = 12.8, 6.8 Hz, ArH), 7.58 (d, 1H, J = 8.2 Hz, ArH), 7.41 (t, 1H, J = 7.3 Hz, ArH), 7.33–7.22 (m, 6H, ArH), 6.87 (d, 1H, J = 8.1 Hz, CH), 4.05 (q, 2H, J = 7.2 Hz, CH₂), 1.17 (t, 3H, J = 6.9 Hz, CH₃) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 156.6$, 153.3, 141.9, 132.3, 131.4, 130.0, 129.0, 128.7, 128.4, 128.3, 127.4, 127.1, 123.6, 123.0, 118.8, 60.7, 50.2, 14.9 ppm; LC/MS: m/z (%) = 354 [(M–H)⁻, 100].

Ethyl [(2,4-dichlorophenyl)(2-hydroxynaphthalen-1-yl)methyl]carbamate (**4q**, C₂₀H₁₇Cl₂NO₃)

White solid; IR (KBr): $\bar{\nu} = 3,412, 3,071, 1,683, 1,514, 1,336, 1,052, 815, 743, 721 \text{ cm}^{-1}$; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.93$ (s, 1H, OH), 8.04 (d, 1H,

J = 8.6 Hz, NH), 7.81–7.75 (m, 3H, ArH), 7.58 (d, 1H, J = 8.5 Hz, ArH), 7.49 (d, 1H, J = 1.5 Hz, ArH), 7.44 (t, 1H, J = 7.5 Hz, ArH), 7.38 (dd, 1H, J = 6.8, 1.8 Hz, ArH), 7.28 (t, 1H, J = 7.4 Hz, ArH), 7.14 (d, 1H, J = 8.8 Hz, ArH), 6.86 (d, 1H, J = 8.1 Hz, CH), 3.98 (q, 2H, J = 6.7 Hz, CH₂), 1.14 (t, 3H, J = 6.4 Hz, CH₃) ppm; ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 156.1$, 154.0, 139.3, 133.5, 132.9, 132.3, 131.6, 130.1, 129.0, 129.0, 128.6, 127.0, 126.9, 123.1, 122.8, 119.0, 116.8, 60.4, 49.7, 15.0 ppm; LC/MS: m/z (%) = 389 [(M–H)⁻, 100].

*Benzyl [(2-nitrophenyl)(2-hydroxynaphthalen-1-yl)methyl]carbamate (***4s**, C₂₅H₂₀N₂O₅*)*

White solid; IR (KBr): $\bar{\nu} = 3,424, 3,250, 1,702, 1,527, 1,334, 1,046, 835, 752, 696 cm⁻¹; ¹H NMR (400 MHz, DMSO-$ *d* $₆): <math>\delta = 9.81$ (s, 1H, OH), 8.08 (d, 1H, *J* = 7.9 Hz, NH), 7.94 (d, 1H, *J* = 8.2 Hz, ArH), 7.79 (d, 1H, *J* = 8.0 Hz, ArH), 7.74 (t, 2H, *J* = 7.3 Hz, ArH), 7.62–7.26 (m, 11H, ArH), 7.08 (d, 1H, *J* = 8.5 Hz, CH), 5.12 (d, 1H, *J* = 12.8 Hz, CH₂), 5.06 (d, 1H, *J* = 12.8 Hz, CH₂) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 156.3, 154.1, 149.0, 137.5, 136.9, 133.3, 132.5, 130.4, 129.7, 129.4, 128.9, 128.7, 128.5, 128.2, 128.1, 127.8, 127.2, 127.0, 124.5, 123.0, 122.9, 118.8, 116.4, 65.9, 48.3 ppm; LC/MS:$ *m/z*(%) = 427 [(M-H)⁻, 100].

*Benzyl [(4-nitrophenyl)(2-hydroxynaphthalen-1-yl)methyl]carbamate (***4u**, C₂₅H₂₀N₂O₅*)*

White solid; IR (KBr): $\bar{\nu} = 3,414$, 3,064, 1,686, 1,515, 1,347, 1,049, 825, 745, 695 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): $\delta = 10.21$ (s, 1H, OH), 8.15 (d, 2H, J = 8.7 Hz, ArH), 7.99 (d, 1H, J = 6.6 Hz, NH), 7.93 (d, 1H, J = 6.4 Hz, ArH), 7.82 (t, 2H, J = 8.7 Hz, ArH), 7.50 (d, 2H, J = 8.5 Hz, ArH), 7.41–7.28 (m, 7H, ArH), 7.24 (d, 1H, J = 8.8 Hz, ArH), 7.01 (d, 1H, J = 7.8 Hz, CH), 5.14 (d, 1H, J = 12.6 Hz, CH₂), 5.08 (d, 1H, J = 12.6 Hz, CH₂) ppm; ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 156.6$, 153.5, 151.1, 146.5, 137.2, 132.3, 130.3, 129.0, 128.8, 128.7, 128.2, 127.5, 127.2, 123.8, 123.3, 123.0, 118.7, 118.3, 66.3, 50.6 ppm; LC/MS: m/z (%) = 427 [(M–H)⁻, 100].

Benzyl [(2-chlorophenyl)(2-hydroxynaphthalen-1-yl)methyl]carbamate (**4v**, C₂₅H₂₀ClNO₃)

White solid; IR (KBr): $\bar{v} = 3,421, 3,170, 1,700, 1,518, 1,336, 1,050, 820, 754, 694 cm⁻¹; ¹H NMR (400 MHz, DMSO-$ *d* $₆): <math>\delta = 9.96$ (s, 1H, OH), 8.04 (d, 2H, J = 7.8 Hz, ArH), 7.81–7.75 (m, 2H, NH and ArH), 7.52–7.25 (m, 10H, ArH), 7.16 (d, 2H, J = 7.3 Hz, ArH), 6.94 (d, 1H, J = 5.8 Hz, CH), 5.09 (d, 1H, J = 12.0 Hz, CH₂), 5.01 (d, 1H, J = 12.0 Hz, CH₂) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 156.0, 153.9, 139.7, 137.6, 133.0, 132.9, 130.3, 129.9, 129.7, 129.0, 128.9, 128.7, 128.7, 129.0, 128.9, 128.7, 137.6,$

128.1, 127.8, 126.9, 126.7, 123.3, 122.7, 118.9, 117.3, 65.8, 50.1 ppm; LC/MS: *m*/*z* (%) = 416 [(M–H)⁻, 100].

Benzyl [(4-chlorophenyl)(2-hydroxynaphthalen-1-yl)-

methyl]carbamate (**4w**, C₂₅H₂₀ClNO₃)

White solid; IR (KBr): $\bar{\nu} = 3,402, 3,200, 1,681, 1,515, 1,321, 1,042, 813, 746, 696 cm⁻¹; ¹H NMR (400 MHz, DMSO-$ *d* $₆): <math>\delta = 10.15$ (s, 1H, OH), 7.93 (d, 1H, *J* = 8.2 Hz, NH), 7.82–7.77 (m, 3H, ArH), 7.39-7.23 (m, 12H, ArH), 6.90 (d, 1H, *J* = 8.1 Hz, CH), 5.11 (d, 1H, *J* = 12.6 Hz, CH₂), 5.01 (d, 1H, *J* = 12.6 Hz, CH₂) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 156.5, 153.4, 141.8, 137.3, 132.3, 131.3, 129.9, 129.0, 128.9, 128.7, 128.4, 128.3, 128.2, 127.4, 127.0, 123.7, 123.4, 122.8, 119.0, 118.7, 66.1, 50.3 ppm; LC/MS:$ *m/z*(%) = 416 [(M–H)⁻, 100].

Benzyl [(2,4-dichlorophenyl)(2-hydroxynaphthalen-1-yl)methyl]carbamate (**4x**, C₂₅H₁₉Cl₂NO₃)

White solid; IR (KBr): $\bar{\nu} = 3,416, 3,066, 1,686, 1,522, 1,341, 1,055, 819, 744, 719 cm⁻¹; ¹H NMR (400 MHz, DMSO-$ *d* $₆): <math>\delta = 9.92$ (s, 1H, OH), 8.06–8.01 (m, 2H, NH and ArH), 7.80 (d, 1H, J = 8.0 Hz, ArH), 7.75 (d, 1H, J = 8.8 Hz, ArH), 7.56 (d, 1H, J = 8.4 Hz, ArH), 7.50–7.26 (m, 9H, ArH), 7.14 (d, 1H, J = 8.7 Hz, ArH), 6.87 (d, 1H, J = 6.7 Hz, CH), 5.09 (d, 1H, J = 12.8 Hz, CH₂), 5.01 (d, 1H, J = 12.8 Hz, CH₂) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 156.0, 154.0, 139.2, 137.5, 133.6, 133.0, 132.3, 131.6, 130.1, 129.1, 129.0, 128.7, 128.6, 128.1, 127.9, 127.0, 126.9, 123.1, 122.8, 119.0, 116.6, 65.8, 49.8 ppm; LC/MS:$ *m/z*(%) = 451 [(M–H)⁻, 100].

Acknowledgments This research work was financially supported by the Education Committee of Liaoning Province of China (No. L2011198).

References

- 1. Csütörtöki R, Szatmári I, Mándi A, Kurtán T, Fülöp F (2011) Synlett 22:1940
- 2. Knapp S (1995) Chem Rev 95:1859
- Juaristi E (1997) Enantioselective synthesis of β-amino acids. Wiley, New York
- 4. Dingermann T, Steinhilber D, Folkers G (2004) Molecular biology in medicinal chemistry. Wiley-VCH, Weinheim
- 5. Shen AY, Tsai CT, Chen CL (1999) Eur J Med Chem 34:877
- 6. Wang M, Liang Y (2011) Monatsh Chem 142:153
- 7. Green W, Wuts PGM (1999) Protecting groups in organic synthesis, 2nd edn. Wiley, New York
- Mosslemin MH, Nateghi MR, Mohebat R (2008) Monatsh Chem 139:1247
- Shaterian HR, Hosseinian A, Ghashang MA (2008) Tetrahedron Lett 49:5804
- Tavakoli-Hoseini N, Heravi MM, Bamoharran FF, Davoodnia A (2011) Bull Korean Chem Soc 32:787

- 11. Reza SH, Asghar H, Majid G (2009) Chin J Chem 27:821
- Heravi MM, Tavakoli-Hoseini N, Bamoharram FF (2010) Green Chem Lett Rev 3:263
- Shaterian HR, Hosseinian A, Ghashang M (2009) Synth Commun 39:2560
- 14. Kundu D, Majee A, Hajra A (2010) Catal Commun 11:1157
- 15. Tamaddon F, Bistgani JM (2011) Synlett 22:2947
- Deshmukh KM, Qureshi ZS, Patil YP, Bhanage BM (2012) Synth Commun 42:93
- 17. Yarahmadi H, Shaterian HR (2012) J Chem Res 36:52
- Shafiee MRM, Moloudi R, Ghashang M (2011) J Chem Res 35:622
- 19. Zare A, Yousofi T, Moosavi-Zare AR (2012) RSC Adv 2:7988
- Zare A, Akbarzadeh S, Foroozani E, Kaveh H, Moosavi-Zare AR, Hasaninejad A, Mokhlesi M, Beyzavi MH, Zolfigol MA (2012) J Sulfur Chem 33:259
- Khazaei A, Zolfigol MA, Moosavi-Zare AR, Abi F, Zare A, Kaveh H, Khakyzadeh V, Kazem-Rostami M, Parhami A, Torabi-Monfared H (2013) Tetrahedron 69:212

- Csütörtöki R, Szatmári I, Koch A, Heydenreich M, Kleinpeter E, Fülöp F (2011) Tetrahedron 67:8564
- Bigdeli MA, Rahmati A, Abbasi-Ghadim H, Mahdavinia GH (2007) Tetrahedron Lett 48:4575
- 24. Dujardin G, Martel A, Brown E (1998) Tetrahedron Lett 39:8647
- 25. Jing HW, Nguyen ST (2007) J Mol Catal A 261:12
- 26. Kita Y, Matsuda S, Inoguchi R, Ganesh JK, Fujioka H (2005) Tetrahedron Lett 46:89
- 27. Takeya T, Doi H, Ogata T, Okamoto I, Kotani E (2004) Tetrahedron 60:9049
- Savushkina GP, Ivanov VV, Yenikolopyan NS (1975) Vysokomol Soyed A17:865
- 29. Wang M, Liang Y, Zhang TT, Gao JJ (2012) Chem Nat Compd 48:185