Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery of piperidinyl aminopyrimidine derivatives as IKK-2 inhibitors

Sora Kim^{a,b}, Jin Kyo Jung^{a,c}, Hyo Seon Lee^a, Youngjae Kim^{a,d}, Jiyoon Kim^{a,e}, Kihang Choi^b, Du-Jong Baek^c, Bongjin Moon^e, Kwang-Seok Oh^f, Byung Ho Lee^f, Kye Jung Shin^{a,g}, Ae Nim Pae^a, Ghilsoo Nam^a, Eun Joo Roh^a, Yong Seo Cho^a, Hyunah Choo^{a,d,*}

^a Life/Health Division, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136-791, Republic of Korea

^b Department of Chemistry, Korea University, Seongbuk-gu, Seoul 136-713, Republic of Korea

^c Department of Chemistry, College of Natural Sciences, Sangmyung University, Seoul 110-743, Republic of Korea

^d Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon, Republic of Korea

^e Department of Chemistry, Sogang University, Seoul, Republic of Korea

^f Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea

^g College of Pharmacy, The Catholic University of Korea, Seongsim Campus, Bucheon, Gyeonggi-do, Republic of Korea

ARTICLE INFO

Article history: Received 19 January 2011 Revised 9 March 2011 Accepted 11 March 2011 Available online 17 March 2011

Keywords: Rheumatoid arthritis Inflammation Aminopyrimidine IKK-2 Kinase inhibitor

ABSTRACT

A serine–threonine kinase IKK-2 plays an important role in activation of NF- κ B through phosphorylation of the inhibitor of NF- κ B (I κ B). As NF- κ B is a major transcription factor that regulates genes responsible for cell proliferation and inflammation, development of selective IKK-2 inhibitors has been an important area of anti-inflammatory and anti-cancer research. In this study, to obtain active and selective IKK-2 inhibitors, various substituents were introduced to a piperidinyl aminopyrimidine core structure. The structure–activity relationship study indicated that hydrogen, methanesulfonyl, and aminosulfonyl groups substituted at the piperidinylamino functionality provide high inhibitory activity against IKK-2. Also, morpholinosulfonyl and piperazinosulfonyl group substituted at the aromatic ring attached to the aminopyrimidine core significantly increased the inhibitory activity of the resulting derivatives. In particular, compound **17** with the aromatic piperazinosulfonyl substituent showed the most potent (IC₅₀ = 1.30 μ M) and selective (over other kinases such as p38 α , p38 β , JNK1, JNK2, JNK3, and IKK-1) inhibitory activity against IKK-2.

© 2011 Elsevier Ltd. All rights reserved.

NF-κB is a major transcription factor that regulates genes responsible for anti-apoptosis, proliferation, and inflammation.¹⁻³ NF-κB suppression is beneficial in a host of animal models of inflammatory disease and many therapeutic agents including corticosteroids, leflunomide, sulfasalazine, and aspirin are known to mediate at least some of their effects through NF-κB blockade.⁴⁻⁸

NF-κB is sequestered as a dimer in the cytosol of unstimulated cells via non-covalent interactions with the inhibitor proteins (IκB), and signals that induce NF-κB activity cause phosphorylation of IκBs, their dissociation and subsequent degradation, allowing NF-κB proteins to enter the nucleus and induce gene expression.⁹ Phosphorylation of IκBs and thereby activation of NF-κB is catalyzed by a serine-threonine kinase complex, IκB kinase (IKK), which is composed of three subunits, IKK-1 (IKKα), IKK-2 (IKKβ), and NEMO (IKKγ). Among the subunits, IKK-2 plays an important role in activation of NF-κB, resulting in enhanced production of TNF-α, IL-1, intercellular adhesion molecule (ICAM)-1, and cyclooxygenase (COX)-2, which indicates that this

pathway is important for inflammation and the innate immune system.^{9,10} Also, activation of IKK-2 stimulates anti-apoptotic and proliferative pathways. Taken together, inhibitors of IKK-2 have been being developed for treatment of inflammatory diseases such as rheumatoid arthritis (RA) and chronic obstructive pulmonary disease (COPD) as well as cancer.^{11,12} IMD-1041,¹³ GMX-1778 (CHS 828),¹⁴ and teglarinad chloride (GMX-1777)¹⁵ (Fig. 1) are three major IKK-2 inhibitors under clinical investigation for the management of COPD (IMD-1041) and solid tumors and lymphoma (CHS828 and GMX-1777).

In contrast to the elucidated role of IKK-2 in the NF-κB pathway, IKK-1 deficient mice presented an unexpected phenotype including skeletal and skin abnormalities.¹⁶ Therefore, development of selective IKK-2 inhibitors has been an important area of antiinflammatory and anti-cancer research. Among IKK-2 inhibitors, aminopyrimidine derivatives have been reported to possess selectivity over IKK-1.¹⁷ Herein, we describe our initial lead optimization study of piperidinyl aminopyrimidines which led to identification of novel selective IKK-2 inhibitors.

Compounds with an aminopyrimidine core structure are competitive inhibitors of IKK-2 with respect to the cofactor, ATP.¹⁷ As most kinases uses ATP as a cofactor, it seems to be very difficult

^{*} Corresponding author. Tel.: +82 2 958 5157; fax: +82 2 958 5189. *E-mail address*: hchoo@kist.re.kr (H. Choo).

⁰⁹⁶⁰⁻⁸⁹⁴X/ $\$ - see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2011.03.044

Figure 1. IKK inhibitors in clinical trials.

Figure 2. IKK-2 inhibitors with an aminopyrimidine core structure.

to obtain selectivity to IKK-2 over other kinases. According to the literatures, however, introduction of proper substituents to the core structure makes compounds selective to IKK-2 (Fig. 2).¹⁷ In this study, we introduced an aryl group and a piperidin-4-yl group at C4 and 2-NH₂ position of the aminopyrimidine core structure, respectively, to obtain inhibitory activity and selectivity to IKK-2.

The synthesis of title compounds, piperidinyl aminopyrimidines, was started with 1-acetyl-4-substituted benzenes 1-4 (Scheme 1). The compounds 1-4 were treated with DMF-DMA (N,N-dimethylformamide dimethyl acetal) at 150 °C to afford the corresponding N,N-dimethylamino derivatives 5-8 in 82-98% yields, which were converted to the compounds 9-12 with the aminopyrimidine core structure. Treatment of one vinylogous amide 5 with guanidine provided the aminopyrimidine core via addition-elimination to the vinylogous amide 5 followed by cyclization. Reductive amination of N-Boc-4-piperidone with the free aminopyrimidine intermediate thus obtained, in the presence of TiCl(O^{*i*}Pr)₃ and NaBH(OAc)₃ provided **9** in 20% yield for two steps. On the other hand, direct condensation of the other vinylogous amides 6-8 with N-(N-Boc-4-piperidinyl)-guanidinium chloride in EtOH gave the corresponding aminopyrimidine derivatives 10-12 in 34-46% yields. The Boc protecting groups of the compounds 9-12 were removed under acidic conditions with 30% TFA in CH₂Cl₂ to give **13–16** in 66–99% yields. The carbobenzyloxy (Cbz) protecting group in 16 was also removed by hydrogenolysis to afford a piperazine-substituted compound 17.

Various substituents such as sulfonyl, benzoyl, urea, and methyl group were introduced to the free piperidinylamino functionality of the compound **13**. Thus, the compound **13** was treated with various benzenesulfonyl chlorides with aromatic substituents or alkylsulfonyl chlorides such as CH₃SO₂Cl and CF₃SO₂Cl under basic conditions to give the corresponding sulfonylated derivatives

18a–18m in 27–75% yields. Also, treatment of **13** with chlorosulfonyl isocyanate and *t*-BuOH in CH_2Cl_2 followed by Boc-deprotection under acidic conditions (30% TFA) provided the aminosulfonyl-substituted derivative **18n** in 80% yield. The compound **13** was converted to the corresponding benzoylated compounds such as 3-F-, 4-F-, 3-OMe-, 4-OMe-, 2,4-di-OMe-, and 4-CF₃-benzoylated compounds (**18o–18t**) in 28–75% yields by using the appropriately substituted benzoyl chlorides in the presence of pyridine and DMAP in CH₂Cl₂ at –78 °C. *N*-Butylaminocarbonyl-piperidinyl aminopyrimidine derivative **18u** was obtained in 35% yield by reacting **13** with *n*-butyl isocyanate in pyridine at 120 °C. Reductive amination of formaldehyde with **13** afforded the methylated derivative **18v** in 47% yield.

A selected group of the substituted aminopyrimidine derivatives were prepared from compounds **14–16**. Thus, the compound **14** was converted to **19**, **19n**, and **19v** with methanesulfonyl, aminosulfonyl, and methyl groups substituted at the piperidinylamino functionality. The compound **15** also underwent methanesulfonylation and aminosulfonylation to afford the derivatives **201** and **20n**, respectively, and the same reactions with **16** followed by Cbz deprotection furnished **221** and **22n**.

A total of 33 compounds with the aminopyrimidine core structure were synthesized and biologically evaluated against IKK-2. Assay for IKK-2 inhibitors was done by using TR-FRET (Time-Resolved Fluorescence Resonance Energy Transfer) method on IMAP[®] platform.¹⁸ For the assay, 5-carboxyfluoresceinylated (5-FAM) IkB α -derived peptide, 5-FAM-GRHDSGLDSMK-NH₂, was used as substrate of IKK-2 and IMAP binding reagent and terbium donor were added for detection reaction. In the primary assay, % inhibition of each compound at fixed concentration (10 µM) against IKK-2 was measured and, only for those compounds which showed more than 50% inhibition, the half maximal inhibitory

Scheme 1. Synthesis of piperidinyl aminopyrimidine derivatives. Reagents and conditions: (a) DMF-DMA, 150 °C; (b) guanidine, EtOH, 80 °C; *N*-Boc-4-piperidone, TiCl(OⁱPr)₃, NaBH(OAC)₃, AcOH, CH₂Cl₂, rt; (c) *N*-(*N*-Boc-4-piperidinyl)-guanidinium chloride, EtOH, 80 °C; (d) 30% TFA in CH₂Cl₂, rt; (e) Pd(OH)₂/C, H₂, MeOH, EtOAc, H₂O, AcOH, rt; (f) various sulfonyl chlorides, DIPEA, CH₂Cl₂, rt; (g) chlorosulfonyl isocyanate, *t*-BuOH, CH₂Cl₂; 30% TFA in CH₂Cl₂, rt; (h) substituted benzoyl chlorides, DMAP, pyr, CH₂Cl₂, -78 °C; (i) *N*-butyl isocyanate, pyr, 120 °C; (j) 37% HCHO, MeOH, NaBH(OAC)₃, rt.

concentration (IC₅₀) was evaluated. The inhibitory activity of the piperidinyl aminopyrimidine derivatives with 4-chlorophenyl group and various substituents at nitrogen of the piperidine ring (13 and 18a-v) are summarized in Table 1. Among the piperidinyl aminopyrimidine derivatives, only three compounds (13, 18l, and 18n) showed more than 50% inhibition with 75.03%, 73.58%, and 70.86% inhibitions, respectively. Compounds 18a-18k with benzenesulfonyl groups did not inhibit IKK-2 activity significantly. On the other hand, compounds **181** and **18n** with methanesulfonyl and aminosulfonyl groups were potent inhibitors of the IKK-2 with IC_{50} values of 3.67 and 3.80 μM , respectively. In contrast, the compound 18m with a trifluoromethanesulfonyl group showed low inhibitory activity (% inhibition at 10 µM is only 13.90%). Compounds 180-18t with benzoyl groups showed as low activities as the benzenesulfonyl-substituted derivatives (18a-18k). The compound **18u** with *n*-butylaminocarbonyl group showed low activity with 32.16% inhibition. The compound 18v with methyl group also showed low activity with 38.68% inhibition and an IC_{50} value of 19.70 μ M. From these results, it was clear that the piperidinyl aminopyrimidine derivatives with substituents such as H, CH₃SO₂, NH₂SO₂, and CH₃ at the piperidine moiety showed potent inhibitory activity against the target enzyme.

With the optimized piperidinyl substituents (Y = H, CH₃SO₂, NH₂SO₂, CH₃) in hand, the structure–activity relationship of the aromatic substituent at the chlorine position was then investigated. Thus, instead of the chlorine atom, morpholinosulfonyl, *N*-methylpiperazinosulfonyl, and piperazinosulfonyl groups were introduced at the X position of the aromatic substituent of the aminopyrimidine core structure, and the inhibitory activity against IKK-2 of the resulting piperidinyl aminopyrimidine derivatives was evaluated (Table 2). The inhibitory activity of the morpholinosulfonyl-substituted derivatives **14** (Y = H) and **191** (Y = CH₃SO₂) was as potent as the corresponding compounds **13** and **181** (X = Cl). The compounds **19n** (Y = NH₂SO₂, IC₅₀ = 0.92 μ M) and **19v** (Y = CH₃, IC₅₀ = 5.60 μ M) showed improved activities compared with the corresponding chlorine-substituted derivatives **18n**

 $(X = CI, Y = NH_2SO_2, IC_{50} = 3.80 \,\mu\text{M})$ and **18v** $(X = CI, Y = CH_3, IC_{50} = 19.70 \,\mu\text{M})$. On the other hand, the compounds **15**, **20I**, and **20n** with *N*-methylpiperazinosulfonyl group showed lower inhibi-

Table 1

IKK-2 inhibitory activities of piperidinyl aminopyrimidine derivatives with 4-chlorophenyl group

H N N N Y
12 110

	c 1	17	or 1 1 1 1	10
Entry	Compounds	Y	% Inhibition at	IC ₅₀
			10 μM (%)	(µM)
1	13	Н	75.03	3.20
2	18a	PhSO ₂	17.59	a
3	18b	2-F-PhSO ₂	20.31	a
4	18c	3-F-PhSO ₂	15.12	a
5	18d	4-F-PhSO ₂	13.47	a
6	18e	2,4-Di-F-PhSO ₂	19.68	a
7	18f	3-OCH ₃ -PhSO ₂	12.74	a
8	18g	4-OCH ₃ -PhSO ₂	26.15	a
9	18h	2,5-Di-OCH ₃ -	19.58	a
		PhSO ₂		
10	18i	2-CF ₃ -PhSO ₂	26.57	a
11	18j	3-CF ₃ -PhSO ₂	14.10	a
12	18k	4-CF ₃ -PhSO ₂	15.60	a
13	181	CH_3SO_2	73.58	3.67
14	18m	CF_3SO_2	13.90	a
15	18n	NH_2SO_2	70.86	3.80
16	180	3-F-PhCO	38.79	a
17	18p	4-F-PhCO	39.04	a
18	18q	3-OCH ₃ -PhCO	40.15	a
19	18r	4-OCH ₃ -PhCO	32.25	a
20	18s	2,4-Di-OCH ₃ -	42.79	a
		PhCO		
21	18t	4-CF ₃ -PhCO	24.29	a
22	18u	n-C ₄ H ₉ NHCO	32.16	a
23	18v	CH ₃	38.68	19.70
24	Reference compound ¹⁹	a	0.15	

^a Not determined.

Table 2

IKK-2 inhibitory activities of piperidinyl aminopyrimidine derivatives

tory activities than the corresponding compounds **13**, **181**, and **18n** with aromatic chlorine substituent. The IC₅₀ values of **15** and **20n** were 7.02 and 4.25 μ M, respectively. In case of the piper-azinosulfonyl-substituted derivatives (**17**, **22I**, and **22n**), the compound **17** (Y = H) was a potent inhibitor with an IC₅₀ value of 1.30 μ M. However, the compounds **22I** and **22n** with methanesulfonyl and aminosulfonyl group as X showed similar activities as the corresponding compounds **18I** (X = Cl, Y = CH₃SO₂) and **18n** (X = Cl, Y = NH₂SO₂) with IC₅₀ values of 3.14 and 3.85 μ M, respectively.

The most active compounds **19n** and **17**²⁰ were biologically evaluated against other kinases such as IKK-1, p38 α , p38 β , JNK1, JNK2, and JNK3 to obtain selectivity information. The results are shown in Table 3. Selectivity to IKK-2 is necessary to reduce side effects possibly occurring with inhibition of other kinases. The compound **19n** (X = morpholinosulfonyl, Y = NH₂SO₂) did not show significant inhibitory activity against IKK-1 but no selectivity was observed over the other kinases such as p38 α , p38 β , JNK1, JNK2, and JNK3. On the other hand, the compound **17** (X = piperazinosulfonyl, Y = H) showed good selectivity over p38 α , p38 β , JNK1, JNK2, and JNK3 as well as IKK-1. Therefore, the selectivity to IKK-2 seems to be more dependent on the X substituent but the role of the piperazinosulfonyl group of **17** in the inhibitory activity as well as selectivity to IKK-2 necessitates further investigation.

In summary, in order to obtain active and selective IKK-2 inhibitors, various substituents were introduced to the piperidinyl aminopyrimidine core structure. First, the structure-activity relationship of the piperidinyl amino substituent (Y) was investigated (13 and 18a-18v, Table 1), which indicated that the relatively small substituents such as hydrogen, methanesulfonyl and aminosulfonyl group show better inhibitory activity against IKK-2. Then, substituents such as morpholinosulfonyl, N-methylpiperazinosulfonyl, and piperazinosulfonyl group were introduced at the 4-position of the aromatic ring attached to the aminopyrimidine core (X) (14, 15, 17, and 19-21, Table 2). Among the derivatives thus prepared, compounds **19n** and **17** showed the most potent inhibitory activity against IKK-2. In addition, the compound 17 showed good selectivity over other kinases such as IKK-1, p38a, p38b, JNK1, JNK2, and JNK3. Based on this information, further optimization study of the inhibitory activity as well as

			0		
Entry	Compounds	Х	Y	% Inhibition at 10 μM (%)	$IC_{50} (\mu M)$
1 2 3 4 5 6 7	14 191 19n 19v 15 201 20n	O= →S= O →S= O →S= N N	H CH ₃ SO ₂ NH ₂ SO ₂ CH ₃ H CH ₃ SO ₂ NH ₂ SO ₂	82.51 61.51 89.55 67.06 59.35 43.15 67.11	2.09 2.20 0.92 5.60 7.02 _a 4.25
8 9 10 11	17 221 22n Reference compound	O S S N N N N N N N N N N N N N	H CH ₃ SO ₂ NH ₂ SO ₂	84.08 76.09 70.90 ^a	1.30 3.14 3.85 0.15

^a Not determined.

Table 3

Selectivity of compounds **19n** and **17** over other kinases (IC_{50} values in μM)

Entry	Compounds	IKK-2	IKK-1	p38a	p38 β	JNK1	JNK2	JNK3
1	19n	0.92	20.37	4.7	0.21	0.48	1.9	0.88
2	17	1.30	>30	>30	>30	19.73	>30	>30

selectivity for IKK-2 of the piperidinyl aminopyrimidine derivatives will be performed in due course.

Acknowledgment

This work was supported by Development of Bio-oriented Technology Program (2010-0029603) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology and Korea Institute of Science and Technology (KIST).

References and notes

- 1. Straus, D. S. Expert Opin. Drug Discov. 2009, 4, 823.
- 2. Schmid, J. A.; Birbach, A. Cytokine Growth Factor Rev. 2008, 19, 157.
- 3. Karin, M.; Yamamoto, Y.; Wang, Q. M. Nat. Rev. Drug Discov. 2004, 3, 17.
- Chadwick, C. C.; Chippari, S.; Matelan, E.; Borges-Marcucci, L.; Eckert, A. M.; Keith, J. C., Jr.; Albert, L. M.; Leathurby, Y.; Harris, H. A.; Bhat, R. A.; Ashwel, M.; Trybulski, E.; Winneker, R. C.; Adelman, S. J.; Steffan, R. J.; Harnish, D. C. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 2543.
- 5. Breedveld, F. C.; Dayer, J. M. Ann. Rheum. Dis. 2000, 59, 841.
- 6. Luong, B. T.; Chong, B. S.; Lewder, D. M. Ann. Pharmacother. 2000, 34, 743.
- 7. Dale, J.; Alcorn, N.; Capell, H.; Madhok, R. Nat. Clin. Pract. Rheum. 2007, 3, 450.
- 8. Firestein, G. S. Arthritis Rheum.-US 2004, 50, 2381.
- Sugiyama, H.; Yoshida, M.; Mori, K.; Kawamoto, T.; Sogabe, S.; Takagi, T.; Oki, H.; Tanaka, T.; Kimura, H.; Ikeura, Y. *Chem. Pharm. Bull.* **2007**, 55, 613.
- 10. Perkins, N. D. Nat. Rev. Mol. Cell Biol. 2007, 8, 49.
- 11. Caramori, G.; Adcock, I. M.; Ito, K. Curr. Opin. Invest. Drugs 2004, 5, 1141.
- 12. Viatour, P.; Merville, M. P.; Bours, V.; Chariot, A. Trends Biochem. Sci. 2005, 30, 43.
- http://clinicaltrials.gov/show/NCT00883584, IMD-1041 Chronic Obstructive Pulmonary Disease: Proof of Concept (POC) Study (COPD).
- 14. von Heideman, A.; Berglund, A.; Larsson, R.; Nygren, P. Cancer Chemother. Pharmacol. 2010, 65, 1165.

- 15. Fuchs, D.; Rodriguez, A.; Eriksson, S.; Christofferson, R.; Sundberg, C.; Azarbayjani, F. Int. J. Cancer 2010, 126, 2773.
- Takeda, K.; Takeuchi, O.; Tsujimura, T.; Itami, S.; Adachi, O.; Kawai, T.; Sanjo, H.; Yoshikawa, K.; Terada, N.; Akira, S. Science 1999, 284, 313.
- (a) Sors, A.; Jean-Luis, F.; Begue, E.; Parmentier, L.; Dubertret, L.; Dreano, M.; Courtois, G.; Bachelez, H.; Michel, L. Clin. Cancer Res. 2008, 14, 901; (b) Bingham, A. H.; Davenport, R. J.; Fosbeary, R.; Gowers, L.; Knight, R. L.; Lowe, C.; Owen, D. A.; Parry, D. M.; Pitt, W. R. Bioorg. Med. Chem. Lett. 2008, 18, 3622; (c) Crombie, A. L.; Sum, F.-W.; Powell, D. W.; Hopper, D. W.; Torres, N.; Berger, D. M.; Zhang, Y.; Gavrill, M.; Sadler, T. M.; Arndt, K. Bioorg. Med. Chem. Lett. 2008, 18, 3622; (c) Owen, D. A.; Parry, D. M.; Pitt, W. R. Bioorg. Med. Chem. Lett. 2009, 18, 3622; (c) Crombie, A. L.; Sum, F.-W.; Powell, D. W.; Hopper, D. W.; Torres, N.; Berger, D. M.; Zhang, Y.; Gavrill, M.; Sadler, T. M.; Arndt, K. Bioorg. Med. Chem. Lett. 2010, 20, 3821; (d) Bingham, A. H.; Davenport, R. J.; Gowers, L.; Knight, R. L.; Lowe, C.; Owen, D. A.; Parry, D. M.; Pitt, W. R. Bioorg. Med. Chem. Lett. 2004, 14, 409; (e) Palanki, M. S. S.; Erdman, P. E.; Ren, M.; Suto, M.; Bennett, B. L.; Manning, A.; Ransone, L.; Spooner, C.; Desai, S.; Ow, A.; Totsuka, R.; Tsao, P.; Toriumi, W. Bioorg. Med. Chem. Lett. 2003, 13, 4077; (f) Palanki, M. S. S.; Gayo-Fung, L. M.; Shevlin, G. I.; Erdman, P.; Sato, M.; Goldman, M.; Ransone, L. J.; Spooner, C. Bioorg. Med. Chem. Lett. 2002, 12, 2573.
- (a) Oh, K.-S.; Lee, S.; Choi, J. K.; Lee, B. H. Comb. Chem. High Throughput Screening 2010, 13, 790; (b) Nagarajan, S.; Doddareddy, M. R.; Choo, H.; Cho, Y. S.; Oh, K.-S.; Lee, B. H.; Pae, A. N. Bioorg. Med. Chem. 2009, 17, 2759.
- Murata, T.; Shimada, M.; Kadono, H.; Sakakibara, S.; Yoshino, T.; Masuda, T.; Shimazaki, M.; Shintani, T.; Fuchikami, K.; Bacon, K. B.; Ziegelbauer, K. B.; Lowinger, T. B. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 4013and the structure of the reference compound is as follows:

20. Spectral data of compound **19n**: ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.45 (d, *J* = 5.00 Hz, 1H), 8.34 (d, *J* = 8.26 Hz, 2H), 7.86 (d, *J* = 8.41 Hz, 2H), 7.36 (d, *J* = 7.43 Hz, 1H), 7.24 (d, *J* = 5.15 Hz, 1H), 6.74 (s, 2H), 3.82–3.97 (m, 1H), 3.65 (t, *J* = 4.26 Hz, 4H), 3.44–3.53 (m, 2H), 2.92 (t, *J* = 4.51 Hz, 4H), 2.60–2.77 (m, 2H), 1.92–2.06 (m, 2H), 1.51–1.70 (m, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 162.36, 160.04 (2C), 141.96, 136.49, 128.57, 128.12, 106.77, 65.76, 47.61, 46.35, 45.64, 30.93; MS (TOF, ES+, M+Na) 505.2, and spectral data of compound **17**: ¹H NMR (300 MHz, MeOD-*d*₄) δ 8.40 (d, *J* = 5.27 Hz, 1H), 8.34 (d, *J* = 8.43 Hz, 2H), 7.89 (d, *J* = 8.30 Hz, 2H), 7.22 (d, *J* = 5.18 Hz, 1H), 4.08–4.25 (m, 1H), 3.32–3.46 (m, 2H), 2.96–3.13 (m, 6H), 2.84–2.95 (m, 4H), 2.16–2.31 (m, 2H), 1.67–1.77 (m, 2H); ¹³C NMR (75 MHz, MeOD-*d*₄) δ 163.35, 161.91, 158.92, 141.67, 137.17, 127.92, 127.47, 106.36, 46.58, 46.26, 44.46, 43.55, 29.97; MS (TOF, ES+, M+H) 403.0.