Etoposide: a new approach to the synthesis of $4-O-(2-amino-2-deoxy-4,6-O-ethylidene-\beta-D-glucopyrano-syl)-4'-O-demethyl-4-epipodophyllotoxin$

Cenek Kolar*, Konrad Dehmel, and Heinz Wolf

Research Laboratories of Behringwerke AG, P.O. Box 1140, D-3550 Marburg (F.R.G.)

(Received November 17th, 1989; accepted for publication, February 6th, 1990)

ABSTRACT

Synthesis of 3-O-acetyl-2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene- α - (7 α) and - β -D-glucopyranose (7 β) and their 3-O-chloroacetyl analogues (11 α and 11 β) are described. Condensation (BF₃etherate, ethyl acetate, -20°) of 7 α with 4'-O-benzyloxycarbonyl-4'-O-demethyl-4-epipodophyllotoxin (8) afforded mainly the β -glycoside 9 β (α , β -ratio 1:9). Condensation of 11 $\alpha\beta$ with 8 or the 4'-O-chloroacetyl analogue 13 gave mainly the 4-O-(2-benzyloxycarbonylamino-3-O-chloroacetyl-2-deoxy-4,6-O-ethylidene- β -D-glucopyranosyl)-epipodophyllotoxin 12 β or 15 β . Glycosidation of podophyllotoxin (14) with 11 $\alpha\beta$ (during which the aglycon epimerized at C-4 under the action of BF₃-etherate) afforded α - (16 α) and β -glycoside (16 β) in the ratio 1:5. Removal of the chloroacetyl groups from 12 β , its α analogue 12 α , and 15 β gave the 4-O-(2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene- α - (17 α) and - β -D-glucopyranosyl)-4'-O-demethyl-epipodophyllotoxins (17 β and 20 β), respectively. Hydrogenolysis of the benzyloxycarbonyl groups then gave 4-O-(2-amino-2-deoxy-4,6-O-ethylidene- α - (18 α) and - β -D-glucopyranosyl)-4'-O-demethyl-4-epipodophyllotoxin (18 β). Reductive alkylation of 18 β and 18 α afforded the 2"-deoxy-2"-dimethylamino-etoposide 3 and its α analogue 19 α .

INTRODUCTION

Etoposides^{1,2} [4-O-(4,6-O-alkylidene- β -D-glucopyranosyl)-4'-O-demethyl-4-epipodophyllotoxins] constitute an important group of antitumor agents. Etoposide (VP-16, 1) and Teniposide (VM-26, 2) are effictive in the treatment of small-cell lung cancers, lymphoma, leukemia, and Karposi's sarcoma³⁻⁵, and 2"-deoxy-2"-dimethylamino-etoposide⁶ (DMA-etoposide, 3) is in clinical trial.

The most difficult steps in the synthesis of etoposides are the glycosidation[†] and deacylation steps. The glycosidation of epipodophyllotoxin requires⁷ a β -glycopyranose donor, and etoposide VP-16 has been synthesised^{8,9} from the donors 2,3-di-O-acetyl-and 2,3-di-O-chloroacetyl-4,6-O-ethylidene- β -D-glucopyranose.

DMA-etoposide was synthesised^{6,9} by condensation of 4'-O-benzyloxycarbonyl-4'-O-demethyl-4-epipodophyllotoxin¹⁰ (8) with 2,3,4-tri-O-acetyl-2-benzyloxycarbonylamino-2-deoxy- β -D-glucopyranose¹¹ in the presence of BF₃-etherate and afforded

^{*} Author for correspondence.

[†] Epipodophyllotoxin forms the C-4 carbonium ion under the action of BF₃-etherate and the glycosyloxy group is transferred from the donor to this position.

a mixture of glycosides with an α,β ratio of 1:5.5, and 4'-O-chloroacetyl-4'-O-demethyl-4-epipodophyllotoxin (13) has been glycosidated¹² using 2-benzyloxycarbonylamino-3-O-chloroacetyl-2-deoxy-4,6-O-ethylidene- β -D-glucopyranose (11 β).

Deacylation¹³ of the protected etoposides is complicated by the occurrence of secondary reactions, *i.e.*, epimerization at C-2 (base-catalyzed reaction) and cleavage of the γ -lactone (acid-catalyzed reaction) of the aglycon.

We now report a new method for the glycosidation of epipodophyllotoxins, using derivatives of 2-amino-2-deoxy- α -D-glucopyranose and a simple procedure for removing chloroacetyl groups.

RESULTS AND DISCUSSION

The glycosidation agent 7β was synthesised from 2-benzyloxycarbonylamino-2deoxy-4,6-O-ethylidene-D-glucopyranose (4) as reported⁹ but using the acetyl group instead of the chloroacetyl group for protection. Treatment of 4 with benzyloxycarbonyl chloride and sodium hydroxide in aqueous 1,4-dioxane gave the α - (5α , 40%) and β -1-O-benzyloxycarbonyl (5β , 36%) derivatives, each of which was converted (Ac₂O, 1:1 pyridine-dichloromethane) into the 3-acetate (6α and 6β , respectively) in good yield.

Hydrogenolysis of 6β in various solvents (MeOH, EtOH, Me₂CO, EtOAc, or their mixtures) at room temperature showed that the use of 10% Pd–C in ethyl acetate afforded a product with the lowest $[\alpha]_D$ values $[-3.0^\circ (c \ 0.5, \text{ ethyl acetate})$ and $-4.4^\circ (c \ 0.5, \text{ acetonitrile})]$ and that its mutarotation proceeded relatively slowly $[+0.6^\circ/h (c \ 0.5, \text{EtOAc})]$. ¹H-N.m.r. spectroscopy of this product revealed the α (7 α , $J_{1,2}$ 3.6 Hz, H-1) and β anomers (7 β , $J_{1,2}$ 8.2 Hz, H-1) in the ratio 10:1. Hydrogenolysis (10% Pd–C, ethyl acetate) of 6α afforded a mixture of products, from which 35% of 7 α was isolated with an α : β -ratio of 10:1 (¹H-n.m.r. data).

Glycosidation of 4'-O-benzyloxycarbonyl-4-epipodophyllotoxin (8) with 7β , under essentially the conditions described^{7.9} (BF₃-etherate, dichloromethane, molecular sieves 4 Å, -20°), afforded a mixture of 9α and 9β in the ratio 1:15. As expected, similar condensation of 7α and 8 gave mainly (76%) 9α with only a trace of 9β . However, when 7α and 8 reacted in ethyl acetate with BF₃-etherate (37 equiv.) as the promoter at -20° , surprisingly, a mixture of 9α and 9β was obtained in the ratio 1:9.

Because of these results, the synthesis strategy for DMA-etoposide was changed as follows. Reaction of 4 with chloroacetyl chloride in 4:3 dichloromethane-pyridine gave the bis-chloroacetates 10α and 10β . Treatment¹⁴ of 10α and 10β with silica gel or aminated silica gel (LiChroprep NH₂) in methanol removed the 1-substituent and gave a mixture of 11α and 11β that was stable in acid and was purified easily on silica gel. The overall yield of 11α and 11β was 83%.

When $11\alpha\beta$ was dissolved in dichloromethane, mutarotation was complete in ~5 min ($[\alpha]_D + 31^\circ$). The ¹H-n.m.r. spectrum (CD₂Cl₂) revealed an α : β -ratio of ~ 10:1 and 11 α could be crystallized.

In order to obtain further data on mutarotation under the conditions of glycosidation, the optical rotation of 11 α was measured in different solvents in the presence and absence of BF₃-etherate at -20° . For a solution in 1:1 dichloromethane–ethyl acetate, the addition of BF₃-etherate caused an immediate change in $[\alpha]_D^{-20}$ from $+31^{\circ} \rightarrow +17^{\circ}$. Hence, a new α , β -equilibrium was achieved. When BF₃ was removed, 11 α was obtained with $[\alpha]_D^{-20} + 29^{\circ}$.

Glycosidation of **8** with $11\alpha\beta$ ($[\alpha]_D^{-20} + 29^\circ$) under the conditions (BF₃-etherate, molecular sieves 4 Å, -20°) described for the preparation of 9 β , but using 1:1 dichloro-

methane-ethyl acetate as the medium instead of ethyl acetate, afforded a mixture of 12α and 12β in the ratio 1:10, from which, after chromatography, 75% of 12β was obtained. However, the reaction in dichloromethane gave 12α exclusively.

The new method was applied for the glycosidation of 4'-O-chloroacetyl-4'-Odemethyl-4-epipodophyllotoxin¹¹ (13) and podophyllotoxin¹³ (14). Condensation of $11\alpha\beta$ with 13 in 1:1 dichloromethane-ethyl acetate afforded 15α (22%) and 15β (64%) in the ratio⁹ 1:2.9. When $11\alpha\beta$ was used to glycosidate podophyllotoxin 14 under the same reaction conditions, 16α (14%) and 16β (73%) were obtained. In the glycosidation process, 14 epimerizes⁷ under the action of BF₃-etherate to form the 4-epipodophyllotoxin, and 11α mutarotates in dichloromethane-ethyl acetate to form 11β .

Deprotection⁹ of etoposide derivatives is usually effected by O-dechloroacetylation with zinc acetate in refluxing methanol and by hydrogenolysis (Pd–C) of the benzyloxycarbonyl groups. O-Chloroacetylated etoposides can be deacetylated¹⁵ with Dowex 1-X8 (HO⁻) resin in methanol or methanol–dichloromethane without any considerable formation of secondary products. Thus, 12α and 12β were converted into 17α and 17β , respectively, within 6–8 h (combined yield 95–96%). The ¹H-n.m.r. spectrum of each glycosyl-epipodophyllotoxin contained a typical signal for H-3 (~2.81 p.p.m. ΣJ 36 Hz) of the aglycon. The large $J_{2,3}$ value (14 Hz) is consistent with H-2,3 being trans-diaxial. ¹H, ¹H-COSY experiments were used to assign the resonances of the sugar ring protons in the ¹H-n.m.r. spectra. The observed coupling constants $(J_{1^{\prime\prime}2^{\prime\prime}} 4.2 \text{ Hz for } 17\alpha \text{ and } J_{1^{\prime\prime}2^{\prime\prime}} 8.2 \text{ Hz for } 17\beta)$ are characteristic for α and β anomers.

Removal⁸ of the benzyloxycarbonyl group from 17α and 17β and methylation⁹ (CH₂O, NaCNBH₃) of the amino group in the products 18α and 18β , respectively, gave DMA-etoposide 3 and its α anomer 19α . Likewise, O-dechloroacetylation of 15β followed by hydrogenolysis of the product 20β gave 4-O-(2-amino-2-deoxy-4,6-O-ethylidene- α -D-glucopyranosyl)-4'-O-demethyl-4-epipodophyllotoxin (18α).

EXPERIMENTAL

General. — Reactions were carried out at ambient temperature unless otherwise stated. Solutions were concentrated under reduced pressure at $<40^{\circ}$ (bath). Organic solutions were washed with 0.1M potassium dihydrogen phosphate or 0.1M sodium citrate adjusted to the appropriate pH value using 0.1M NaOH or 0.1M HCl. Melting points, determined on a Büchi apparatus, are uncorrected. ¹H-N.m.r. spectra were recorded with a Bruker AC-200, AC-300, AM-400, or Jeol GX400 spectrometer, on solutions in CDCl₃ (internal Me₄Si) unless stated otherwise. The ¹H resonances were assigned by ¹H, ¹H-COSY experiments, using the standard pulse sequences of the Bruker Aspect-300 software. Specific optical rotations were determined with a Perkin–Elmer 241 polarimeter equipped with 10-cm cuvettes, for solutions in CHCl₃ at 24°, unless noted otherwise. Reactions were monitored by t.l.c. on Silica Gel 60 F₂₅₄ (Merck) with detection by u.v. light or by charring with sulfuric acid. Preparative chromatography was performed on Kieselgel 60 (Merck, 0.015–0.040 mm). The glycosidations were performed under argon or nitrogen.

1-O-Benzyloxycarbonyl-2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene- α -(5 α) and - β -D-glucopyranose⁹ (5 β). — To a solution of 2-benzyloxycarbonylamino-2deoxy-4,6-O-ethylidene-D-glucopyranose (4; 3.00 g, 8.84 mmol) in 2:1 1,4-dioxanewater (300 mL) was added M NaOH (2.3 mL, 0.25 equiv.). To the cooled mixture at 5° was added dropwise a solution of benzyloxycarbonyl chloride in 1,4-dioxane (300 mL) and an approximately equivalent quantity of M NaOH (13.2 mL). The mixture was stirred for 2 h at 5°, then for 30 h at room temperature, filtered, diluted with water (200 mL), and extracted with chloroform (100 mL × 3). The combined extracts were washed with citrate buffer (pH 5.5, 70 mL) and water, dried (Na₂SO₄), and concentrated *in* vacuo. Column chromatography (15:1 chloroform-MeOH) of the residue on silica gel (140 g) gave 5 α (1.70 g, 40%) and 5 β (1.52 g, 36%).

Compound 5 α had m.p. 170°, $[\alpha]_D$ +95° (c 1). ¹H-N.m.r. data (200 MHz): δ 7.32–7.42 (m, 10 H, 2 Ph), 6.01 (d, 1 H, $J_{1,2}$ 3.0 Hz, H-1), 5.19 (s, 2 H, PhC H_2), 5.11 (s, 2 H, PhC H_2), 5.05 (d, 1 H, $J_{2,NH}$ 9.0 Hz, NH), 4.72 (q, 1 H, $J_{Me,CH}$ 5.0 Hz, MeCH=), 4.10 (dd, 1 H, $J_{5,6e}$ 4.5, $J_{6a,6e}$ 10.0 Hz, H-6), 4.05 (m, 1 H, H-3), 3.83 (ddd, 1 H, $J_{2,3}$ 9.2 Hz, H-2), 3.71 (ddd, 1 H, $J_{4,5}$ 10.0, $J_{5,6a}$ 10.0 Hz, H-5), 3.49 (dd, 1 H, H-6a), 3.38 (dd, 1 H, $J_{3,4}$ 10.0 Hz, H-4), 2.79 (d, 1 H, $J_{3,0H}$ 3.0 Hz, HO-3), 1.35 (d, 3 H, MeCH=).

Anal. Calc. for C₂₄H₂₇NO₉ (473.48): C, 60.88; H, 5.75; N, 2.96. Found: C, 60.67; H, 5.76; N, 2.79.

Compound 5 β had m.p. 155°, $[\alpha]_D = -19^\circ$ (c 1). ¹H-N.m.r. data (90 MHz): δ 7.36–7.30 (m, 10 H, 2 Ph), 5.66 (d, 1 H, $J_{1,2}$ 8.0 Hz, H-1), 1.36 (d, 1 H, $J_{Me,CH}$ 5.0 Hz, MeCH =).

Anal. Found: C, 60.81; H, 5.73; N, 2.88.

3-O-Acetyl-1-O-benzyloxycarbonyl-2-benzyloxycarbonylamino-2-deoxy-4,6-Oethylidene- α -D-glucopyranose (6α). — To a solution of 5α (1.50 g, 2.90 mmol) in 1:1 dichloromethane-pyridine (30 mL) was added at 0° a solution of acetic anhydride (0.57 g, 3.50 mmol) in dichloromethane (7 mL). The mixture was stirred at 0° to room temperature for 16 h and then concentrated *in vacuo*. A solution of the residue in chloroform (80 mL) was washed with phosphate buffer (pH 8, 30 mL), citrate buffer (pH 5, 30 mL), and water, dried (Na₂SO₄), and concentrated *in vacuo*. Column chromatography (5:5:1 dichloromethane-light petroleum-acetone) of the product on silica gel (50 g) gave 6α (1.39 g, 93%), m.p. 134–137°, $[\alpha]_D$ + 76° (*c* 1). ¹H-N.m.r. data (200 MHz): δ 7.3–7.4 (m, 5 H, Ph), 6.02 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1), 5.22 (dd, 1 H, $J_{2,3}$ 10.3, $J_{3,4}$ 10.1 Hz, H-3), 5.18 (s, 2 H, PhCH₂), 5.13 (d, 1 H, $J_{A,B}$ 12.0 Hz, PhCHA), 5.10 (d, 1 H, $J_{2,NH}$ 9.5 Hz, NH), 5.02 (d, 1 H, PhCHB), 4.68 (q, 1 H, $J_{Me,CH}$ 5.0 Hz, MeCH=), 4.13 (ddd, 1 H, H-2), 4.12 (dd, 1 H, $J_{5,6e}$ 4.5, $J_{6a,6e}$ 10.3 Hz, H-6e), 3.82 (ddd, 1 H, $J_{4,5}$ 9.1, $J_{5,6a}$ 10.0 Hz, H-5), 3.51 (dd, 1 H, H-4), 3.51 (dd, 1 H, H-6a), 1.31 (d, 3 H, MeCH=).

Anal. Calc. for C₂₆H₂₉NO₁₀ (515.52): C, 60.58; H, 5.67; N, 2.72. Found: C, 60.43; H, 5.71; N, 2.65.

3-O-Acetyl-1-O-benzyloxycarbonyl-2-benzyloxycarbonylamino-2-deoxy-4,6-Oethylidene- β -D-glucopyranose (6 β). — Acetylation of 5 β (1.5 g, 2.90 mmol), as described for the preparation of 6 α , gave 6 β (1.42 g, 95%), m.p. 112–115°, [α]_D –9° (c 1). ¹H-N.m.r. data (200 MHz): δ 7.27–7.37 (m, 5 H, Ph), 5.56 (d, 1 H, $J_{1,2}$ 8.7 Hz, H-1), 5.23 (d, 1 H, $J_{A,B}$ 12.0 Hz, PhCHA), 5.19 (d, 1 H, $J_{A',B'}$ 12.0 Hz, PhCHA'), 5.14 (dd, 1 H, $J_{2,3}$ 10.0, $J_{3,4}$ 10.0 Hz, H-3), 5.13 (d, 1 H, PhCHB), 5.07 (d, 1 H, $J_{2,NH}$ 9.8 Hz, NH), 5.03 (d, 1 H, PhCHB'), 4.67 (q, 1 H, $J_{Me,CH}$ 5.0 Hz, MeCH=), 4.19 (dd, 1 H, $J_{5,6e}$ 3.5, $J_{6a,6e}$ 10.2 Hz, H-6e), 3.89 (ddd, 1 H, H-2), 3.56 (ddd, 1 H, $J_{4,5}$ 8.7, $J_{5,6a}$ 10.1 Hz, H-5), 3.50 (dd, 1 H, H-6a), 3.50 (dd, 1 H, H-4), 1.32 (d, 3 H, MeCH=).

Anal. Calc. for C₂₆H₂₉NO₁₀ (515.52): C, 60.58; H, 5.67; N, 2.72. Found: C, 60.60; H, 5.67; N, 2.67.

3-O-Acetyl-2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene- β -D-glucopyranose (7 β). — A mixture of **6** β (500 mg, 0.96 mmol), 10% Pd–C (200 mg), and magnesium sulfate (1 g) in ethyl acetate (50 mL) was stirred under hydrogen for 1 h at room temperature, then filtered through Celite, and concentrated *in vacuo* to afford crude 7 β (370 mg, 90%), which was used in the next step without further purification; [α]_D – 4.4° (c 0.5, acetonitrile), [α]_D – 3.0° (c 0.5, ethyl acetate). ¹H,¹H-COSY and ¹H-n.m.r. data (400 MHz, CDCl₃, α and β anomers 10:1): δ 7.22–7.30 (m, 5 H, Ph), 6.01 (d, 1 H, J_{1,OH} 8.2 Hz, HO-1), 5.42 (d, 1 H, J_{2,NH} 8.2 Hz, NH), 5.07 (dd, 1 H, J_{2,3} 10.0, J_{3,4} 10.0 Hz, H-3), 4.65 (q, 1 H, J_{Me,CH} 5.0 Hz, MeCH=), 4.55 (dd, 1 H, J_{1,2} 8.3 Hz, H-1), 4.12 (dd, 1 H, J_{5,6e} 4.7, J_{6a,6e} 10.1 Hz, H-6e), 3.56 (m, 1 H, H-2), 3.52 (dd, 1 H, H-6a), 3.40 (dd, 1 H, H-4), 3.28 (ddd, 1 H, J_{4,5} 10.0, J_{5,6a} 10.0 Hz, H-5), 1.89 (s, 3 H, Ac), 1.22 (d, 3 H, J_{Me,CH}, MeC=).

3-O-Acetyl-2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene- α -D-glucopyranose (7 α). — A solution of 6α (500 mg, 0.96 mmol) in ethyl acetate (50 mL) was stirred for 1 h under hydrogen (1 atm.) in the presence of 10% Pd–C (200 mg), followed by the usual work-up. Column chromatography (6:1 dichloromethane-acetone) of the product on silica gel (70 g) gave 7 α (128 mg, 35%) as a syrup, $[\alpha]_D + 28^\circ$ (c 1). ¹H-H.m.r. data [400 MHz, (CD₃)₂CO]: δ 7.30–7.37 (m, 5 H, Ph), 6.21 (d, 1 H, $J_{1,OH}$ 4.2, $J_{2,OH}$ 1.0 Hz, HO-1), 5.86 (d, 1 H, $J_{2,NH}$ 10.1 Hz, NH), 5.23 (dd, 1 H, $J_{2,3}$ 10.0, $J_{3,4}$ 9.8 Hz, H-3), 5.20 (d, 1 H, $J_{1,2}$ 3.8 Hz, H-1), 5.13 (d, 1 H, $J_{A,B}$ 12.6 Hz, PhCHA), 5.02 (d, 1 H, PhCHB), 4.75 (q, 1 H, $J_{Me,CH}$ 5.0 Hz, MeCH=), 3.98 (dd, 1 H, $J_{5,6e}$ 5.1, $J_{6a,6e}$ 10.1 Hz, H-6e), 3.90 (ddd, 1 H, $J_{4,5}$ 9.8, $J_{5,6a}$ 10.1 Hz, H-5), 3.88 (ddd, 1 H, H-2), 3.54 (dd, 1 H, H-6a), 3.50 (dd, 1 H, H-4), 1.89 (s, 3 H, Ac), 1.22 (d, 3 H, MeC=).

Anal. Calc. for C₁₈H₂₃NO₈ (381.39): C, 56.69; H, 6.08; N, 3.67. Found: C, 56.53; H, 6.05; N, 3.53.

4-O-(3-O-Acetyl-2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene- α -D-glucopyranosyl)-4'-O-benzyloxycarbonyl-4'-O-demethyl-4-epipodophyllotoxin (9 α). — To a mixture of epipodophyllotoxin 8 (280 mg, 0.52 mmol), 7 α (190 mg, 0.50 mmol), and powdered molecular sieves 4 Å (500 mg) in dichloromethane (30 mL) was added 50% BF₃-etherate (0.12 mL, ~1 mmol of BF₃) at - 18°. After 3-h stirring, triethylamine (0.2 mL) was added, and the mixture was worked-up, as described for the preparation of 9 β , to afford 9 α (341 mg, 76%) and 9 β (20 mg, 4.5%), α , β -ratio 17:1. Compound 9 α had m.p. 157°, [α]_D + 67° (c 1). ¹H-N.m.r. data (300 MHz): δ 7.38–7.24 (m, 10 H, 2 Ph), 6.79 (s, 1 H, H-5), 6.46 (s, 1 H, H-8), 6.18 (s, 2 H, H-2',6'), 5.92 (s, 1 H, H-15A), 5.92 (s, 1 H, H-15B), 5.33 (d, 1 H, $J_{NH,2''}$ 9.2 Hz, NH), 5.20 (s, 2 H, PhC H_2), 5.06 (d, 1 H, $J_{A,B}$ 12.5 Hz, PhC H_A), 5.03 (dd, 1 H, $J_{2'',3''}$ 10, $J_{3'',4''}$ 10 Hz, H-3''), 5.02 (d, 1 H, $J_{1'',2''}$ 4.5 Hz, H-1''), 4.99 (d, 1 H, PhC H_B), 4.62 (d, 1 H, $J_{3,4}$ 3.2 Hz, H-4), 4.61 (d, 1 H, $J_{1,2}$ 5.0 Hz, H-1), 4.61 (q, 1 H, $J_{Me,CH}$ 5.0 Hz, MeCH=), 4.13 (dd, 1 H, $J_{A,B}$ 8.5, $J_{3,11A}$ 10.5 Hz, H-11A), 4.00 (dd, 1 H, $J_{6''a,6''e}$ 10, $J_{5'',6''e}$ 4.5 Hz, H-6''e), 3.98 (dd, 1 H, $J_{3,11B}$ 8.0 Hz, H-11B), 3.92 (ddd, 1 H, H-2''), 3.61 (s, 6 H, 2 OMe), 3.49 (dd, 1 H, H-6''), 3.43 (m, 1 H, H-5''), 3.39 (dd, 1 H, $J_{4'',5''}$ 10 Hz, H-4''), 3.34 (dd, 1 H, $J_{2,3}$ 14.5 Hz, H-2), 2.75 (m, 1 H, H-3), 1.89 (s, 3 H, Ac), 1.26 (d, 3 H, MeC =).

Anal. Calc. for C₄₇H₄₇NO₁₇ (897.90): C, 62.87; H, 5.28; N, 1.56; Found: C, 62.81; H, 5.26; N, 1.42.

4-O-(3-O-Acetyl-2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene-β-D-glucopyranosyl)-4'-O-benzyloxycarbonyl-4'-O-demethyl-4-epipodophyllotoxin (9 β). — (a) To a mixture of 8 (150 mg, 0.28 mmol) and 7β (140 mg, ~90% pure) and molecular sieves 4 Å (500 mg) in dichloromethane (30 mL) was added 50% BF₄-etherate (0.07 mL, ~0.58 mmol of BF₃) at -18° . After 30-min stirring, dichloromethane (50 mL) and triethylamine (0.2 mL) were added, and the mixture was filtered, washed with 0.1M citrate buffer (50 mL, pH 5) and ice-water (50 mL \times 2), dried (Na₂SO₄), and concentrated in vacuo. Column chromatography (10:1 dichloromethane-acetone) of the residue on silica gel (65 g) gave 9β (181 mg, 72%), m.p. 205–207°, $[\alpha]_{\rm p} - 44^{\circ}$ (c 1). ¹H-N.m.r. data (300 MHz): δ 7.38–7.19 (m, 10 H, 2 Ph), 6.68 (s, 1 H, H-5), 6.44 (s, 1 H, H-8), 6.18 (s, 2 H, H-2',6'), 5.88 (s, 1 H, H-15A), 5.73 (s, 1 H, H-15B), 5.20 (s, 2 H, PhCH₂), 5.12 (dd, 1 H, J_{2''3''} 10.0, J_{3''4'} 9.2 Hz, H-3''), 5.00 (d, 1 H, J_{A,B} 12.5 Hz, PhCHA), 4.84 (d, 1 H, PhCHB), 4.82 (d, 1 H, J₁₄ 3.2 Hz, H-4), 4.79 (d, 1 H, J_{NH.2"} 10.0 Hz, NH), 4.69 (d, 1 H, J_{1".2"} 8.5 Hz, H-1''), 4.69 (q, 1 H, $J_{Me,CH}$ 5.0 Hz, MeCH =), 4.45 (d, 1 H, $J_{1,2}$ 5.0 Hz, H-1), 4.41 (dd, 1 H, J_{A,B} 9.0, J_{3,11A} 9.1 Hz, H-11A), 4.18 (dd, 1 H, J_{3,11B} 7.3 Hz, H-11B), 4.15 (dd, 1 H, J_{6"a.6"e} 10.0, J_{5",6"e} 4.5 Hz, H-6"e), 3.60 (s, 6 H, 2 MeO), 3.56 (ddd, 1 H, H-2"), 3.54 (dd, 1 H, J_{5",6"e} 10.0 Hz, H-6"a), 3.40 (dd, 1 H, J_{4".5"} 9.5 Hz, H-4"), 3.33 (ddd, 1 H, H-5"), 3.19 (dd, 1 H, $J_{2,3}$ 14.3 Hz, H-2), 2.77 (m, 1 H, H-3), 1.97 (s, 3 H, Ac), 1.28 (d, 3 H, MeCH =).

Anal. Calc. for C₄₇H₄₇NO₁₇ (897.90): C, 62.87; H, 5.28; N, 1.56. Found: C, 62.69; H, 5.29; N, 1.47.

T.l.c. revealed only a trace of 9α .

(b) To a mixture of 8 (1000 mg, 1.87 mmol), 7α (500 mg, 1.31 mmol), and powdered molecular sieves 4 Å (1.4 g) in dry ethyl acetate (70 mL) was added 50% BF₃-etherate (8.7 mL, ~70 mmol of BF₃) at -18° . After 1-h stirring, triethylamine (10 mL) was added and the mixture was worked-up as described in (*a*) to give 9α (82 mg, 7%) and 9β (750 mg), α,β -ratio 1:9.1.

2-Benzyloxycarbonylamino-1,3-di-O-chloroacetyl-2-deoxy-4,6-O-ethylidene- α -(10 α) and - β -D-glucopyranose (10 β). — To a solution of 4 (23.2 g, 68.36 mmol) in 4:3 dichloromethane-pyridine (350 mL) was added dropwise a solution of chloroacetyl chloride (16.4 mL, 23.28 g, 206 mmol) in dichloromethane (50 mL) at -20°. The mixture was stirred for 2 h, diluted with dichloromethane (200 mL), washed with aqueous 5% citric acid until the aqueous layer reached pH 4, dried (Na₂SO₄), and concentrated *in vacuo*. T.l.c. (1:1 dichloromethane-ethyl acetate) showed the residue (33.4 g) to contain 10α and 10β which was used in the subsequent step without further purification. A part of the crude product was purified by preparative t.l.c.

Compound **10** α had m.p. 118–120°, $[\alpha]_D$ + 66° (*c* 1). ¹H-N.m.r. data (300 MHz): δ 7.4–7.3 (m, 5 H, Ph), 6.20 (d, 1 H, $J_{1,2}$ 3.8 Hz, H-1), 5.28 (dd, 1 H, $J_{2,3}$ 10.4, $J_{3,4}$ 9.6 Hz, H-3), 5.11 (d, 1 H, $J_{A,B}$ 11.5 Hz, PhCHA), 5.03 (d, 1 H, PhCHB), 5.02 (d, 1 H, $J_{2,NH}$ 9.8 Hz, NH), 4.70 (q, 1 H, $J_{CH,Me}$ 5.0 Hz, MeCH=), 4.23 (ddd, 1 H, H-2), 4.15 (s, 2 H, ClCH₂), 4.13 (dd, 1 H, $J_{5,6e}$ 4.5, $J_{6a,6e}$ 10.5 Hz, H-6e), 4.02 (d, 1 H, $J_{A,B}$ 15.0 Hz, ClCHA), 3.92 (d, 1 H, ClCHB), 3.79 (ddd, 1 H, $J_{4,5}$ 10.0, $J_{5,6a}$ 10.1 Hz, H-5), 3.58 (dd, 1 H, H-4), 3.52 (dd, 1 H, H-6).

Anal. Calc. for C₂₀H₂₃Cl₂NO₉ (492.31): C, 48.79; H, 4.71; Cl, 14.40; N, 2.85. Found: C, 48.78; H, 4.72; Cl, 14.49; N, 2.77.

Compound **10** β had m.p. 175–176°, $[\alpha]_D - 3^\circ$ (*c* 1). ¹H-N.m.r. data (400 MHz): δ 7.32–7.22 (m, 5 H, Ph), 5.69 (d, 1 H, $J_{1,2}$ 8.6 Hz, H-1), 5.17 (dd, 1 H, $J_{2,3}$ 9.4, $J_{3,4}$ 9.2 Hz, H-3), 5.08 (d, 1 H, $J_{2,NH}$ 10.0 Hz, NH), 5.03 (d, 1 H, $J_{A,B}$ 12.2 Hz, PhCHA), 4.98 (d, 1 H, PhCHB), 4.63 (q, 1 H, $J_{Me,CH}$ 5.1 Hz, MeCH=), 4.12 (dd, 1 H, $J_{5,6e}$ 4.2 Hz, H-6e), 3.97 (d, 1 H, $J_{A,B}$ 15.0 Hz, ClCHA), 3.95 (d, 1 H, $J_{A,B}$ 15.3 Hz, ClCHA'), 3.93 (ddd, 1 H, H-2), 3.89 (d, 1 H, ClCHB), 3.83 (d, 1 H, ClCHB'), 3.46 (dd, 1 H, $J_{5,6a}$ 10.0, $J_{6a,6e}$ 10.3 Hz, H-6a), 3.45 (ddd, 1 H, H-5), 3.45 (dd, 1 H, H-4), 1.26 (d, 3 H, MeCH=).

Anal. Calc. for $C_{20}H_{23}Cl_2NO_9$ (492.31): C, 48.79; H, 4.71; Cl, 14.40; N, 2.85. Found: C, 48.74; H, 4.74; Cl, 14.54; N, 2.76.

2-Benzyloxycarbonylamino-3-O-chloroacetyl-2-deoxy-4,6-O-ethylidene- α - (11 α) and $-\beta$ -D-glucopyranose (11 β). — A solution of crude 10 $\alpha\beta$ in methanol (500 mL) was stirred with silica gel (65 g; LiChroprep NH₂; 20-40 mm; Merck) for 3 h at room temperature, then filtered through Celite, and the combined filtrate and washings were concentrated in vacuo. A solution of the residue in ethyl acetate was washed with phosphate buffer (pH 7.0), dried (Na₂SO₄), and concentrated *in vacuo*. The residue (30 g) was absorbed on silica gel (80 g), and eluted from a column of silica gel (250 g) with 20:1 dichloromethane-acetone to give $11\alpha\beta$ (23.6 g, 83%), isolated as a syrup, $[\alpha]_{\rm D} + 31^{\circ}$ (c 1). Recrystallization from dichloromethane-ethyl acetate-light petroleum gave 11α , m.p. 188–190°, $[\alpha]_{\rm D}$ + 37° (c 1, acetone), $[\alpha]_{\rm D}^{-20}$ + 31° (c 1, 1:1 dichloromethane–ethyl acetate). ¹H-N.m.r. data (400 MHz, CD₂Cl₂): δ 7.30–7.38 (m, 5 H, Ph), 5.27 (dd, 1 H, J_{2,3} 10.1, J_{3,4} 10.0 Hz, H-3), 5.23 (dd, 1 H, J_{1,2} 3.8, J_{1,OH} 4.2 Hz, H-1), 5.23 (d, 1 H, J_{2,NH} 10.0 Hz, NH), 5.09 (d, 1 H, J_{AB} 12.6 Hz, PhCHA), 5.03 (d, 1 H, PhCHB), 4.69 (q, 1 H, J_{MeCH} 5.0 Hz, MeCH=), 4.08 (dd, 1 H, $J_{5.6e}$ 5.0, $J_{6a.6e}$ 10.1 Hz, H-6e), 4.04 (d, 1 H, $J_{A,B}$ 14.5 Hz, ClCHA), 3.99 (ddd, 1 H, H-2), 3.97 (ddd, 1 H, J_{4.5} 10.0, J_{5.60} 10.0 Hz, H-5), 3.95 (d, 1 H, CICHB), 3.53 (dd, 1 H, H-6a), 3.51 (dd, 1 H, H-4), 3.29 (dd, 1 H, J_{1 OH} 4.2, J_{2 OH} 1.3 Hz, HO-1), 1.29 (d, 3 H, MeCH =); (300 MHz, CDCl₃): 11 α , δ 7.38–7.30 (m, 5 H, Ph), 5.32 $(dd, 1 H, J_{2,3} 11, J_{3,4} 10 Hz, H-3), 5.26 (d, 1 H, J_{2,NH} 10 Hz, NH), 5.23 (d, 1 H, J_{1,2} 3.5 Hz, 10 H$ H-1), 5.11 (d, 1 H, J_{A,B} 12 Hz, PhCHA), 5.03 (d, 1 H, PhCHB), 4.69 (q, 1 H, J_{Me,CH} 5 Hz, MeCH =), 4.09 (dd, 1 H, $J_{5,6e}$ 4.7, $J_{6a,6e}$ 10 Hz, H-6e), 4.04 (ddd, 1 H, H-2), 4.02 (d, 1 H, J_{A,B} 14.6 Hz, ClCHA), 3.99 (ddd, 1 H, J_{4.5} 10, J_{5.6a} 10 Hz, H-5), 3.92 (d, 1 H, ClCHB), 3.52 $(dd, 1 H, H-6a), 3.48 (dd, 1 H, H-4), 1.32 (d, 3 H, MeCH =); 11\beta, \delta 7.30-7.38 (m, 5 H, 1.32)$ Ph), 5.26 (d, 1 H, NH), 5.11 (dd, 1 H, $J_{2,3}$ 10.1, $J_{3,4}$ 10.0 Hz, H-3), 4.70 (d, 1 H, H-1), 4.69 (q, 1 H, $J_{Me,CH}$ 5.0 Hz, MeCH=), 4.17 (dd, 1 H, $J_{5,6e}$ 5.0, $J_{6a,6e}$ 9.8 Hz, H-6e), 3.67 (ddd, 1 H, $J_{1,2}$ 8.2, $J_{2,3}$ 10.0, $J_{2,NH}$ 10.0 Hz, H-2), 3.57 (dd, 1 H, $J_{5,6a}$ 10.1 Hz, H-6a), 3.52 (dd, 1 H, H-4), 3.37 (ddd, 1 H, $J_{4,5}$ 10.0 Hz, H-5), 1.29 (d, 3 H, MeCH=).

Anal. Calc. for C₁₈H₂₂ClNO₈ (415.83): C, 51.99; H, 5.33; Cl, 8.53; N, 3.37. Found: C, 51.73; H, 5.33; N, 3.31.

4'-O-Benzyloxycarbonyl-4-O-(2-benzyloxycarbonylamino-3-O-chloroacetyl-2-deoxy-4,6-O-ethylidene- α -D-glucopyranosyl)-4'-O-demethyl-4-epipodophyllotoxin (12 α). — To a stirred mixture of 8 (610 mg, 1.14 mmol), 11α (450 mg, 1.08 mmol), and powdered molecular sieves 4 Å (1.0 g) in dichloromethane (80 mL) was added dropwise 50% BF₃-etherate (1.4 mL, \sim 11.62 mmol of BF₃) at -18° . After work-up, as described for the preparation of 9α , column chromatography (10:1 dichloromethane-acetone) afforded 12α (815 mg, 81%), m.p. 137–142°, $[\alpha]_{D}$ + 50.5° (c 1). ¹H-N.m.r. data (300 MHz): δ7.44-7.30 (m, 10 H, 2 Ph), 6.82 (s, 1 H, H-5), 6.52 (s, 1 H, H-8), 6.24 (s, 2 H, H-2', 6'), 6.00 (d, 1 H, H-15A), 5.98 (d, 1 H, H-15B), 5.26 (s, 2 H, PhCH₂), 5.13 (d, 1 H, J_{2" NH} 8.2 Hz, NH), 5.12 (d, 1 H, J_{A,B} 12.5 Hz, PhCHA), 5.11 (dd, 1 H, J_{2",3"} 10.0, J_{3",4"} 10.0 Hz, H-3"), 5.09 (d, 1 H, J_{1".2"} 4.5 Hz, H-1"), 5.07 (d, 1 H, PhCHB), 4.71 (d, 1 H, J_{3.4} 3.2 Hz, H-4), 4.68 (d, 1 H, J_{1,2} 5.5 Hz, H-1), 4.66 (q, 1 H, J_{3,11A} 10.1, J_{A,B} 9.2 Hz, H-11A), 4.08 (dd, 1 H, J_{3.11B} 7.8 Hz, H-11B), 4.08 (dd, 1 H, H-6"e), 4.06 (ddd, 1 H, H-2"), 3.99 (d, 1 H, J_{A,B} 15.0 Hz, ClCHA), 3.91 (d, 1 H, ClCHB), 3.67 (s, 6 H, MeO-3',5'), 3.53 (dd, 1 H, H-6"a), 3.50 (dd, 1 H, H-4"), 3.50 (ddd, 1 H, H-5"), 3.39 (dd, 1 H, J₂₃ 14.3 Hz, H-2), 2.83 (m, 1 H, H-3), 1.29 (d, 3 H, $J_{Me,CH}$ 5.0 Hz, MeCH =).

Anal. Calc. for C₄₇H₄₆ClNO₁₇ (932.34): C, 60.55; H, 4.97; Cl, 3.80; N, 1.50. Found: C, 60.49; H, 4.98; N, 1.47.

4'-O-Benzyloxycarbonyl-4-O-(2-benzyloxycarbonylamino-3-O-chloroacetyl-2-deoxy-4,6-O-ethylidene-β-D-glucopyranosyl)-4'-O-demethyl-4-epipodophyllotoxin (12β). — To a stirred mixture of 8 (13.0 g, 24.32 mmol), $11\alpha\beta$ (10.11 g, 24.32 mmol), and molecular sieves 4 Å (23 g) in 1:1 dichloromethane-ethyl acetate (300 mL) was added 50% BF₃-etherate (80 mL, \sim 66.4 mmol) at -18° . After 4 h, more 8 (1.3 g, 2.43 mmol) was added, the mixture was stirred for 6 h at -18° , triethylamine (80 mL) and ethyl acetate (150 mL) were added, and the suspension was filtered through Celite. The combined filtrate and washings were concentrated in vacuo. A solution of the residue in dichloromethane was washed with citrate buffer (pH 5, 200 mL \times 2) and ice-water (200 mL), dried (Na2SO4), and concentrated in vacuo. Column chromatography (15:1 dichloromethane-acetone) of the residue gave 12α (1.7 g, 7.5%) and 12β (17.0 g, 75%), m.p. 142° , $[\alpha]_{D} - 41^{\circ} (c 1)$. ¹H-N.m.r. data (300 MHz): δ 7.30–7.44 (m, 10 H, 2 Ph), 6.74 (s, 1 H, H-5), 6.50 (s, 1 H, H-8), 6.24 (s, 2 H, H-2',6'), 5.93 (s, 1 H, H-15A), 5.76 (s, 1 H, H-15B), 5.33 (dd, 1 H, J₂₃ 10, J₃₄ 10 Hz, H-3'), 5.26 (s, 2 H, PhCH₂), 5.05 (s, 1 H, J_{AB} 12.5 Hz, PhCHA), 4.93 (s, 1 H, PhCHB), 4.89 (d, 1 H, J_{1",2"} 7.5 Hz, H-1"), 4.89 (d, 1 H, J_{3,4} 3.2 Hz, H-4), 3.89 (d, 1 H, $J_{2",NH}$ 9.5 Hz, NH), 4.70 (q, 1 H, $J_{Me,CH}$ 5 Hz, MeCH =), 4.52 (d, 1 H, J_{1.2} 5.3 Hz, H-1), 4.45 (dd, 1 H, J_{A,B} 9, J_{3,11A} 10.0 Hz, H-11A), 4.24 (dd, 1 H, J_{3,11B} 7.3 Hz, H-11B), 4.22 (d, 1 H, J_{5",6"e} 4.5, J_{6",a,6"e} 10.5 Hz, H-6"e), 4.06 (d, 1 H, J_{A,B} 15.0 Hz, CICHA), 3.99 (d, 1 H, CICHB), 3.60 (dd, 1 H, J_{5".6"a} 10.2 Hz, H-6"a), 3.66 (s, 6 H, MeO-3',5'), 3.60 (dd, 1 H, $J_{4'',5''}$ 9.3 Hz, H-4''), 3.42 (ddd, 1 H, H-5''), 3.23 (dd, 1 H, $J_{2,3}$ 14 Hz, H-2), 2.83 (m, 1 H, H-3), 1.34 (s, 3 H, MeCH =).

Anal. Calc. for C₄₇H₄₆ClNO₁₇ (932.34): C, 60.55; H, 4.97; Cl, 3.80; N, 1.50. Found: C, 60.64; H, 4.99; N, 1.37.

4-O-(2-Benzyloxycarbonylamino-3-O-chloroacetyl-2-deoxy-4,6-O-ethylidene- α -(15 α) and - β -D-glucopyranosyl)-4'-O-chloroacetyl-4'-O-demethyl-4-epipodophyllotoxin (15 β). — Condensation⁹ of 13 with 11 $\alpha\beta$, as described for the preparation of 12 β , gave 15 α (22%), m.p. 153°, $[\alpha]_D$ +45.5° (c 1), and 15 β (64%), m.p. 153–155°, $[\alpha]_D$ – 37° (c 1).

4-O-(2-Benzyloxycarbonylamino-3-O-chloroacetyl-2-deoxy-4,6-O-ethylidene- α -(16 α) and - β -D-glucopyranosyl)-4-epipodophyllotoxin (16 β). — To a mixture of podophyllotoxin (14, 1.00 g, 2.41 mmol), 11 $\alpha\beta$ (1.00 g, 2.41 mmol), and powdered molecular sieves 4 Å (2 g) was added 50% BF₃-etherate (8.5 mL, ~70 mmol of BF₃) at -18°. The mixture was stirred for 20 h, then treated with triethylamine (10 mL), and worked-up as described for preparation of 12 α . Column chromatography (10:1 dichloromethane-acetone) of the product on silica gel (100 g) gave 16 α (0.33 g, 14%), and 16 β (1.42 g, 73%).

Compound **16** α had m.p. 254°, $[\alpha]_D + 50.5°$ (*c* 1). ¹H-N.m.r. data (300 MHz): δ 7.37–7.33 (m, 5 H, Ph), 6.82 (s, 1 H, H-5), 6.53 (s, 1 H, H-8), 5.99 (bs, 2 H, H-15A,B), 5.17 (dd, 1 H, $J_{2'',3''}$ 9.5, $J_{3'',4''}$ 9.5 Hz, H-3''), 5.13 (d, 1 H, $J_{2'',NH}$ 9 Hz, NH), 5.10 (s, 2 H, PhC H_2), 5.07 (d, 1 H, $J_{1'',2''}$ 4.2 Hz, H-1''), 4.72 (d, 1 H, $J_{3,4}$ 2.7 Hz, H-4), 4.66 (d, 1 H, $J_{1,2}$ 5.5 Hz, H-1), 4.66 (q, 1 H, $J_{CH,Me}$ 5.0 Hz, McCH=), 4.17 (dd, 1 H, $J_{3,11A}$ 10.5, $J_{A,B}$ 8.5 Hz, H-11A), 4.10 (dd, 1 H, $J_{3,11B}$ 7.3 Hz, H-11B), 4.08 (dd, 1 H, $J_{5'',6''}$ 4.5, $J_{6''a,6''e}$ 10.0 Hz, H-6''e), 4.06 (m, 1 H, H-2''), 4.00 (d, 1 H, $J_{A,B}$ 14.5 Hz, ClCHA), 3.91 (d, 1 H, ClCHB), 3.80 (s, 3 H, MeO-4'), 3.73 (s, 6 H, MeO-3',5'), 3.51 (dd, 1 H, H-6''a), 3.51 (dd, 1 H, H-4''), 3.50 (m, 1 H, H-5''), 3.39 (dd, 1 H, $J_{2,3}$ 14.0 Hz, H-2), 2.88 (m, 1 H, ΣJ 36.1 Hz, H-3), 1.29 (d, 3 H, MeCH=).

Anal. Calc. for C₄₀H₄₂ClNO₁₅ (812.23): C, 59.15; H, 5.21; N, 1.72. Found: C, 59.27; H, 5.24; N, 1.63.

Compound **16** β had m.p. 221°, $[\alpha]_D - 40^\circ$ (*c* 1). ¹H-N.m.r. data (300 MHz): δ 7.36–7.26 (m, 5 H, Ph), 6.74 (s, 1 H, H-5), 6.51 (s, 1 H, H-8), 6.21 (s, 2 H, H-2', 6'), 5.95 (s, 1 H, H-15A), 5.79 (s, 1 H, H-15B), 5.30 (dd, 1 H, $J_{2",3"}$ 10.0, $J_{3",4"}$ 9.1 Hz, H-3''), 5.07 (d, 1 H, $J_{A,B}$ 12.5 Hz, PhCHA), 4.94 (d, 1 H, PhCHB), 4.90 (d, 1 H, $J_{3,4}$ 3.1 Hz, H-4), 4.86 (d, 1 H, $J_{1",2"}$ 7.9 Hz, H-1''), 4.83 (d, 1 H, $J_{2",NH}$ 9.0 Hz, NH), 4.71 (d, 1 H, $J_{1,2}$ 5.5 Hz, H-1), 4.71 (q, 1 H, $J_{Me,CH}$ 5.0 Hz, MeCH=), 4.45 (dd, 1 H, $J_{3,11A}$ 11.0, $J_{A,B}$ 8.5 Hz, H-11A), 4.25 (dd, 1 H, $J_{3,11B}$ 7.1 Hz, H-11B), 4.23 (dd, 1 H, $J_{5",6"e}$ 4.0, $J_{6"a,6"e}$ 10.0 Hz, H-6"'e), 4.06 (d, 1 H, $J_{A,B}$ 15.0 Hz, ClCHA), 3.99 (d, 1 H, ClCHB), 3.79 (s, 3 H, MeO-4'), 3.73 (s, 6 H, MeO-3', 5'), 3.60 (dd, 1 H, $J_{5",6"a}$ 10.0 Hz, H-6"a), 3.60 (m, 1 H, H-2''), 3.48 (dd, 1 H, $J_{4",5"}$ 9.2 Hz, H-4''), 3.43 (m, 1 H, H-5''), 3.22 (dd, 1 H, $J_{2,3}$ 14.1 Hz, H-2), 2.88 (m, 1 H, ΣJ 36 Hz, H-3), 1.34 (d, 3 H, MeCH =).

Anal. Found: C, 59.17; H, 5.23; N, 1.70.

4'-O-Benzyloxycarbonyl-4-O-(2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene- α -D-glucopyranosyl)-4'-O-demethyl-4-epipodophyllotoxin (17 α). — To a solution of 12 α (500 mg, 0.53 mmol) in methanol (25 mL) was added Dowex 1-X8 (HO⁻) resin (800 mg). After 6 h, the mixture was worked-up, and the product was purified, as described for preparation of 17β , to give 17α (435 mg, 96%), m.p. 155° , $[\alpha]_{\rm D} + 75^{\circ}$ (c 1, methanol); lit.¹¹ m.p. $146-148^{\circ}$, $[\alpha]_{\rm D} + 65^{\circ}$ (c 0.7).

4'-O-Benzyloxycarbonyl-4-O-(2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene- β -D-glucopyranosyl)-4'-O-demethyl-4-epipodophyllotoxin (17 β). — To a solution of 12β (14.0 g, 15.01 mmol) in methanol (500 mL) was added Dowex 1-X8 (HO⁻) resin (20 g). The mixture was stirred for 8 h at room temperature and filtered, and the resin was washed with methanol (150 mL). The combined filtrate and washings were concentrated in vacuo, and a solution of the residue in dichloromethane (400 mL) was washed with phosphate buffer (pH 7, 100 mL \times 2), dried (Na₂SO₄), and concentrated in vacuo. The product crystallized from ethyl acetate-di-isopropyl ether to give 17β (12.20 g, 95%), m.p. 155°, $[\alpha]_{\rm D} = 69^{\circ} (c 1)$; lit.¹¹ m.p. 136–138°, $[\alpha]_{\rm D} = 71^{\circ} (c 0.81)$. ¹H-N.m.r. data (300 MHz, H–D change): δ 7.36–7.24 (m, 10 H, 2 Ph), 6.29 (s, 1 H, H-5), 6.46 (s, 1 H, H-8), 6.31 (s, 2 H, H-2',6'), 5.86 (s, 1 H, H-15A), 5.70 (s, 1 H, H-15B), 5.18 (s, 2 H, PhCH₂), 4.97 (d, 1 H, J_{AB} 12.5 Hz, PhCHA), 4.93 (d, 1 H, J₃₄ 3.1 Hz, H-4), 4.86 (d, 1 H, PhCHB), 4.76 (q, 1 H, $J_{Me,CH}$ 5.0 Hz, MeCH =), 4.75 (d, 1 H, $J_{1'',2''}$ 8.2 Hz, H-1''), 4.52 (d, 1 H, J_{1,2} 5.0 Hz, H-1), 4.45 (dd, 1 H, J_{3,11A} 9.8, J_{A,B} 9.1 Hz, H-11A), 4.24 (dd, 1 H, J_{3,11B} 7.3 Hz, H-11B), 4.13 (dd, 1 H, J_{5",6"e} 4.3, J_{6"a,6"e} 10.2 Hz, H-6"e), 3.69 (dd, 1 H, J_{2",3"} 9.0, J_{3",4"} 9.2 Hz, H-3"), 3.58 (dd, 1 H, J_{5",6"a} 10 Hz, H-6"a), 3.39 (dd, 1 H, H-2"), 3.38 (dd, 1 H, J_{4",5"} 10.5 Hz, H-4"), 3.28 (m, 1 H, H-5"), 2.81 (m, 1 H, *ΣJ* 36 Hz, H-3), 1.31 (d, 3 H, MeCH =).

Anal. Calc. for C₄₅H₄₅NO₁₆ (855.86): C, 63.15; H, 5.30; N, 1.64. Found: C, 63.24; H, 5.32; N, 1.57.

4-O-(2-Amino-2-deoxy-4,6-O-ethylidene- α -D-glucopyranosyl)-4'-O-demethyl-4epipodophyllotoxin (18 α). — Compound 17 α (400 mg, 0.46 mmol) was treated, as described for the preparation of 18 β , to give 18 α (243 mg, 90%), m.p. 224°, $[\alpha]_{\rm D}$ +25° (c 0.5); lit.¹¹ m.p. 225–227°, $[\alpha]_{\rm D}$ +25° (c 0.83).

4-O-(2-Amino-2-deoxy-4,6-O-ethylidene- β -D-glucopyranosyl)-4'-O-demethyl-4epipodophyllotoxin (18 β). — A solution of 17 β (10.0 g, 11.68 mmol) in methanol (200 mL) was stirred for 3 h under hydrogen (1 atm.) in the presence of 10% Pd–C (2.5 g), then filtered through Celite, the filter pad was washed, and the combined filtrate and washings were concentrated *in vacuo*. Column chromatography (10:1 dichlorome-thane-methanol) of the residue on silica gel (100 g) gave 18 β (6.17 g, 90%), m.p. 218–220° (dec.), $[\alpha]_D - 115^\circ$ (c 1, methanol); lit.¹¹ m.p. 201–203°, $[\alpha]_D - 111^\circ$ (c 0.85).

4'-O-Demethyl-4-O-(2-deoxy-2-dimethylamino-4,6-O-ethylidene- β -D-glucopyranosyl)-4-epipodophyllotoxin (3). — To a solution of **18** β (5.0 g, 8.51 mmol) in methanol (100 mL) were added sodium cyanoborohydride (2.14 g, 34.04 mmol) and aqueous formaldehyde (37%, 8 mL). The mixture was stirred for 1 h at room temperature, then concentrated *in vacuo*. Column chromatography (10:1 dichloromethane-methanol) of the residue on silica gel (90 g) afforded 3 (4.45 g, 87%), m.p. 196–198°, $[\alpha]_D - 104^\circ$ (c 1); lit.⁶ m.p. 196–198°, $[\alpha]_D - 107^\circ$ (c 0.78).

4'-O-Demethyl-4-O-(2-deoxy-2-dimethylamino-4,6-O-ethylidene- α -D-glucopyranosyl)-4-epipodophyllotoxin (19 α). — Compound 18 α (120 mg, 0.20 mmol) was subjected to reductive alkylation, as described for the preparation of **3**, to give **19** α (104 mg, 85%), m.p. 270–273°, [α]_D + 17.4° (*c* 1). ¹H-N.m.r. data (400 MHz): δ 6.75 (s, 1 H, H-5), 6.51 (s, 1 H, H-8), 6.25 (s, 2 H, H-2',6'), 5.99 (d, 1 H, $J_{A,B}$ 1.0 Hz, H-15A), 5.98 (d, 1 H, H-15B), 4.91 (d, 1 H, $J_{3,4}$ 3.5 Hz, H-4), 4.89 (dd, 1 H, $J_{3,11A}$ 10.5, $J_{A,B}$ 9.0 Hz, H-11A), 4.72 (d, 1 H, $J_{1'',2''}$ 3.5 Hz, H-1″), 4.71 (q, 1 H, $J_{Me,CH}$ 5.0 Hz, MeCH=), 4.63 (d, 1 H, $J_{1,2}$ 5.5 Hz, H-1), 4.28 (dd, 1 H, $J_{3,11B}$ 7.5 Hz, H-11B), 4.12 (dd, 1 H, $J_{5'',6''}$ 4.5, $J_{6''a,6''}$ 10.0 Hz, H-6″*e*), 4.10 (dd, 1 H, $J_{2'',3''}$ 10.0, $J_{3'',4''}$ 9.1 Hz, H-3″), 3.77 (s, 6 H, MeO-3',5'), 3.54 (dd, 1 H, $J_{5'',6''a}$ 10.0 Hz, H-6″*a*), 3.48 (ddd, 1 H, $J_{4'',5''}$ 10.0 Hz, H-5″), 3.36 (dd, 1 H, $J_{2,3}$ 14.2 Hz, H-2), 3.30 (dd, 1 H, H-4″), 2.89 (m, 1 H, ΣJ 35.5 Hz, H-3), 2.74 (dd, 1 H, H-2″), 2.56 (s, 6 H, NMe₂), 1.34 (d, 3 H, *Me*CH =).

Anal. Calc. for C₃₁H₃₇NO₁₂ (615.64): C, 60.48; H, 6.06; N, 2.28. Found: C, 60.53; H, 6.03; N, 2.17.

4-O-(2-Benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene- β -D-glucopyranosyl)-4'-O-demethyl-4-epipodophyllotoxin (**20** β). — Compound **15** β was deprotected, as described for the preparation of **17** α , to give **20** β , m.p. 143–145° [α]_D – 74° (*c* 1). ¹H-N.m.r. data (400 MHz): δ 7.2–7.3 (m, 5 H, Ph), 6.698 (s, 1 H, H-5), 6.45 (s, 1 H, H-8), 6.19 (s, 2 H, H-2', 6'), 5.84 (s, 1 H, H-15A), 5.65 (bs. 1 H, H-15B), 4.97 (s, 2 H, PhCH₂),4.89 (d, 1 H, $J_{1'',2''}$ 7.6 Hz, H-1''), 4.79 (d, 1 H, $J_{3,4}$ 3.8 Hz, H-4), 4.68 (q, 1 H, $J_{CH,Me}$ 5.0 Hz, MeCH=), 4.49 (d, 1 H, $J_{1,2}$ 5.1 Hz, H-1), 4.38 (dd, 1 H, $J_{3,11A}$ 10.0, $J_{A,B}$ 9.0 Hz, H-11A), 4.27 (s, 2 H, ClCH₂), 4.16 (dd, 1 H, $J_{3,11B}$, 7.4 Hz, H-11B), 4.11 (dd, 1 H, $J_{5'',6''e}$ 4.6, $J_{6''a,6''e}$ 10.6 Hz, H-6''e), 3.60 (s, 6 H, MeO-3',5'), 3.51 (dd, 1 H, $J_{5'',6''a}$ 9.6 Hz, H-6''a), 3.29 (ddd, 1 H, $J_{4'',5''}$ 9.3 Hz, H-5), 3.25 (dd, 1 H, $J_{3'',4''}$ 9.5 Hz, H-4''), 3.15 (dd, 1 H, $J_{2,3}$ 13.9 Hz, H-2), 3.15 (dd, 1 H, H-2''), 2.76 (m, 1 H, ΣJ 35.6 Hz, H-3), 1.32 (d, 1 H, *Me*CH=).

Anal. Calc. for C₃₇H₃₉NO₁₄ (721.72): C, 61.58, H, 5.45. Found: C, 61.67, H, 5.47.

REFERENCES

- 1 I. Jardine, in J. M. Cassady and J. D. Douros (Eds.), Anticancer Agents Based on Natural Product Models, Academic Press, New York, 1980, pp. 319-351.
- 2 B. H. Long and M. G. Brattain, in B. F. Issel, F. M. Mugia, and S. K. Carter (Eds.), *Etoposide (VP 16):* Current Status and New Developments, Academic Press, New York, 1984.
- 3 J. M. S. van Maanen, J. Retél, J. de Vries, and H. M. Pinedo, J. Natl. Cancer Inst., 80 (1988) 1526-1533.
- 4 C. Keller-Juslén, M. Kuhn, A. von Wartburg, and H. Stähelin, J. Med. Chem., 14 (1971) 936-940.
- 5 J. J. M. Holthuis, Pharm. Weekbl. Sci. Ed., 10 (1988) 101-116.
- 6 H. Saito, H. Yoshikawa, Y. Nishimura, S. Kondo, T. Takeuchi, and H. Umezawa, *Chem. Pharm Bull.*, 34 (1986) 3741-3746.
- 7 M. Kuhn, C. Keller-Juslén, and A. von Wartburg, Helv. Chim. Acta, 52 (1969) 944-948.
- 8 A. von Wartburg, M. Kuhn, C. Keller-Juslén, and J. Renz, U. S. Pat. 3408441 (1968); Chem. Abstr., 17 (1970) 78339g.
- 9 H. Saito, Y. Nishimura, S. Kondo, and H. Umezawa, Chem. Lett., (1987) 799-802.
- 10 M. Kuhn and A. von Wartburg, Helv. Chim. Acta, 52 (1969) 948-955.
- 11 H. Saito, H. Yoshikawa, Y. Nishimura, S. Kondo, T. Takeuchi, and H. Umezawa, *Chem. Pharm. Bull.*, 34 (1986) 3733–3740.
- 12 D. Rajapaksa and R. Rodrigo, J. Am. Chem. Soc., 103 (1981) 6208-6212.
- 13 M. Kuhn and A. von Wartburg, Helv. Chim. Acta, 51 (1968) 163-168.
- 14 R. M. Rowell and M. S. Feather, Carbohydr. Res., 4 (1967) 486-491.
- 15 R. W. Binkley, in Modern Carbohydrate Chemistry, Dekker, New York, 1988, pp. 141-143.